Lifetime Data Analysis (2021) 27:710-736
https://doi.org/10.1007/510985-021-09532-6

®

Check for
updates

Continuous and discrete-time survival prediction with
neural networks

Havard Kvamme' . @rnulf Borgan'’

Received: 18 August 2020 / Accepted: 26 August 2021 / Published online: 7 October 2021
© The Author(s) 2021

Abstract

Due to rapid developments in machine learning, and in particular neural networks,
a number of new methods for time-to-event predictions have been developed in the
last few years. As neural networks are parametric models, it is more straightforward
to integrate parametric survival models in the neural network framework than the
popular semi-parametric Cox model. In particular, discrete-time survival models,
which are fully parametric, are interesting candidates to extend with neural networks.
The likelihood for discrete-time survival data may be parameterized by the probability
mass function (PMF) or by the discrete hazard rate, and both of these formulations have
been used to develop neural network-based methods for time-to-event predictions. In
this paper, we review and compare these approaches. More importantly, we show how
the discrete-time methods may be adopted as approximations for continuous-time data.
To this end, we introduce two discretization schemes, corresponding to equidistant
times or equidistant marginal survival probabilities, and two ways of interpolating the
discrete-time predictions, corresponding to piecewise constant density functions or
piecewise constant hazard rates. Through simulations and study of real-world data, the
methods based on the hazard rate parametrization are found to perform slightly better
than the methods that use the PMF parametrization. Inspired by these investigations,
we also propose a continuous-time method by assuming that the continuous-time
hazard rate is piecewise constant. The method, named PC-Hazard, is found to be
highly competitive with the aforementioned methods in addition to other methods for
survival prediction found in the literature.

Keywords Time-to-event prediction - Neural networks - Interpolation - Discretization

B Havard Kvamme
haavakva@math.uio.no

@rnulf Borgan
borgan @math.uio.no

1 Department of Mathematics, University of Oslo, P.O. Box 1053 Blindern, 0316 Oslo, Norway

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10985-021-09532-6&domain=pdf

Survival prediction with neural networks 71

1 Introduction

Survival analysis considers the problem of modeling the distribution of the time to an
event. A plethora of statistical methods for analyzing time-to-event data, and especially
right-censored survival data, have been developed over the last fifty years or so. Most
of these methods, like Cox regression, assume continuous-time models, but methods
based on discrete-time models are sometimes used as well. Statistical methods for
continuous-time survival data are discussed in a number of textbooks, such as Klein
and Moeschberger (2003). The literature on discrete-time models and methods is more
limited, but the recent book by Tutz and Schmid (2016) provides a nice presentation.

An important part of survival analysis is the topic of time-to-event prediction, also
denoted survival prediction. This generally concerns predicting when an event will
occur for new individuals (not part of our training set), where each individual is defined
by a vector of covariates. Time-to-event prediction is most commonly approached by
predicting the survival function for each individual, meaning we provide an estimate of
the event time distribution conditioned on each individual’s covariates. In standard sur-
vival analysis, Cox regression is often used for this purpose (Klein and Moeschberger
2003, Chapter 8.6).

As a result of the rapid development in machine learning, and in particular neural
networks, a number of new methods for time-to-event predictions have been developed
in the last few years. This development has benefited from the excellent frameworks
for neural network development, such as TensorFlow, PyTorch, Theano, Keras, and
CNTK, which have simplified the application of neural networks to existing likelihood-
based methodologies. Thus, novel methods for time-to-event predictions have been
developed based on Cox’s partial likelihood (e.g., Katzman et al. 2018; Luck et al.
2017; Yousefi et al. 2017; Kvamme et al. 2019) and the likelihood for discrete-time
survival data (e.g., Lee et al. 2018; Fotso 2018; Gensheimer and Narasimhan 2019).

In survival analysis, continuous-time models are arguably more commonly applied
than their discrete-time counterparts. However, as neural networks are parametric
models, fully parametric models are typically more straightforward to integrate with
the neural network frameworks than semi- and non-parametric models. This makes
discrete-time survival models, which are fully parametric, interesting candidates to
extend with neural networks when developing methods for time-to-event predictions.

To the best of our knowledge, Lee et al. (2018) were the first to apply modern
neural networks to the discrete-time likelihood for right-censored data. Their predic-
tion method, denoted DeepHit, parameterizes the probability mass function (PMF) of
the survival distribution with a neural network and combines the log-likelihood for
right-censored data with a ranking loss for improved discriminative performance. In
statistical survival analysis, it is, however, more common to express the likelihood by
the hazard rate. Gensheimer and Narasimhan (2019) used this form of the likelihood
and parameterized the discrete-time hazard rate with a neural network. They showed
that their prediction method performs well, both in terms of discrimination and cali-
bration of the survival predictions. However, they did not compare their methodology,
which they refer to as Nnet-survival, with methods that parameterize the PMF.

One aim of the present paper is to perform a systematic study of the use of neural
nets in conjunction with discrete-time likelihoods for right-censored time-to-event

@ Springer

712 H. Kvamme, @. Borgan

data. In particular, we perform a systematic comparison of methods that parameterize
the PMF and the discrete hazard rate.

More importantly, we show how methods that are developed for discrete-time
survival data using neural networks, may be adopted as approximations for continuous-
time data. In this way, we circumvent the problem that continuous-time survival models
are not so easily adapted to the neural net frameworks. To this end, we have to perform
a discretization of the continuous time scale; a subject that has received little attention
in the literature. Immediately, it might seem reasonable to have a very fine-grained dis-
cretization scheme, allowing the approximate discretized event times to be very close
to the true event times. However, the number of parameters in the neural networks
typically increases with finer discretization schemes, possibly making the network
overfit. Therefore, there is a balance to be considered between the number of param-
eters in the network and the approximation error introduced by the discretization. We
consider two discretization schemes, corresponding to equidistant times or equidistant
survival probabilities, and conduct a simulation study to better understand the effect
of the discretization scheme and the number of time points used for the discrete-time
methods.

Closely related to the discretization of a continuous time scale is the subject of
interpolation. A coarse discretization grid has the benefit of reducing the number
of parameters in a neural network. But the approximation error that incurs when a
discrete-time method is used as an approximation for continuous-time data, becomes
smaller with a finer discretization grid. By interpolating the discrete-time survival
predictions, one may use a coarser discretization grid with less of an impact on the
approximation error of the predictions. For this reason, two interpolation schemes are
investigated in this paper. The first assumes constant density functions between the
time points in the discretization grid, and the second assumes constant hazard rates
between the grid points. As a modification of the latter method, we also propose a
continuous-time method obtained by assuming that the continuous-time hazard rate
is piecewise constant, and we compare this method with the aforementioned discrete-
time methods with and without interpolation.

The paper is organized as follows. First, in Sect. 2, we consider the discrete-time
likelihood for right-censored event times and discuss how the likelihood may be
parameterized with neural networks. Then, in Sect. 3, continuous-time models for
time-to-event data are considered, and we discuss how discretization of the continu-
ous time scale enables the use of discrete-time survival methods for continuous-time
data. Here we also present the two schemes for interpolating discrete survival func-
tions, and we consider our continuous-time method obtained by assuming piecewise
constant hazards. In Sect. 4, a simulation study is conducted to understand the impact
the discretization and interpolation schemes have on the methods, and in Sect. 5, we
compare the methods with existing methods for time-to-event predictions using five
real-world data sets. Finally, we summarize and discuss our findings in Sect. 6. Some
additional material on the simulations and the implementation of the methods are pro-
vided in the Appendix. The code for all methods, data sets, and simulations presented
in this paper are available at https://github.com/havakv/pycox.

@ Springer

https://github.com/havakv/pycox

Survival prediction with neural networks 713

2 Discrete-time models

In this section, we will restrict ourselves to models in discrete time. Then, in Sect. 3,
we will discuss how discrete-time models may be used as approximations of models
in continuous time.

2.1 The discrete-time survival likelihood

Consider an individual described by its covariate vector x € RY. Assume that time is
discrete with values 0 = 79 < 71 < ..., and let T = {ty, 12, ...} denote the set of
positive 7;’s. The time of an event is denoted 7* € T, and our goal is to model the
conditional distribution of this event time given the covariate vector x. The probability
mass function (PMF) and the survival function for the event time are defined as

f@jl%) =P(T* =1),
S(zj 1) =P(T* > 7 [%) =) f(w|%). M

k>j

In survival analysis, models are often expressed in terms of the hazard rate rather than
the PMEF. For discrete time, the hazard rate is defined as

h(zj|x) =P(T* =7, | T* > 1j_1.%) = %
i
and it follows that
S 1x) = h(z;[x)S(Tj-11%), (2)
S(rjIx) =[1—h(z; |x)]S(zj-1[%). 3

Note further that from (3) it follows that the survival function can be expressed as

J
S(zj1x) =[]l = h(w %], “

k=1

In most studies, we do not observe all event times. For some individuals, we
only have a right-censored observation. To allow for censoring, we let C* € T¢ =
{1, 72, ..., Ty} be a right-censoring time. Here 7, defines the maximum follow-up
time, at which all individuals still at risk are administratively censored. The random
variables 7% and C* are typically not observed directly, but instead we observe a
potentially right-censored event time 7 = min{7*, C*} and an event indicator D =
1{T* < C*}. We here follow the common convention in survival analysis that when
an event and censoring time coincide, we observe the occurrence of the event. Note
that, as C* < 1, we are not able to observe event times 7* larger than t,,. Hence,
we are restricted to model the distribution of the event times in T¢.

@ Springer

714 H. Kvamme, @. Borgan

We assume that 7* and C* are conditionally independent given X, and that their
distributions have no parameters in common. Then we can consider, separately, the
contribution to the likelihood of the event time distribution and the censoring distribu-
tion. We are, however, typically only interested in modeling the event time distribution.

Now, considering a set of n independent individuals, each with covariates x;, event
or censoring time ¢#;, and event indicator d;, the likelihood contribution of each indi-
vidual i is given by

Li= £t |x)% 8@ |x)' 4.)

Using this, we can fit models by minimizing the mean negative log-likelihood

1 n
loss = —~ > {diloglf (6 [x)] + (1 — dy) log[S (t; | xi)1}. (6)

i=1

A useful reformulation of the loss function (6) is obtained by rewriting it in terms of
the discrete hazards. To this end, let « (¢) € {0, ..., m} define the index of the discrete
time ¢, meaning t = 7, (). Using (2), (3), and (4), we can then rewrite the likelihood
contribution (5) as

Kk(ti)—1
Li = h(|x)% (1= h(i |x)1'™ T 11— hzj [x)].
j=1

With this formulation, the mean negative log-likelihood in (6) can be rewritten as

n k()

loss = —= 3 > _ {yj loglh(z; I x)] + (1 = yij) logll — h(z; [x)1}. ()

i=1 j=1

Here, y;j = 1{t; = 7j, di = 1}, s0y; = (yi1, ..., Yic(r)) is a vector of zeros with a
single 1 at the event index « (#;) when #; corresponds to an observed event (d; = 1).
We recognize this as the negative log-likelihood for Bernoulli data, or binary cross-
entropy, a useful discovery first noted by Brown (1975).

With the two loss functions (6) and (7), we can now make survival models by
parameterizing the PMF or the discrete hazard rate and minimizing the corresponding
loss. For classical statistical models, these approaches are equivalent and have been
used to obtain maximum likelihood estimates for the parameters in the PMF/hazard
rate; see Tutz and Schmid (2016) for a review. We will, however, not consider clas-
sical maximum likelihood estimates, but focus on the part of the literature that fits
neural networks for the purpose of time-to-event prediction, in which case the two
loss functions may give different results.

@ Springer

Survival prediction with neural networks 715

2.2 Parameterization with neural networks

A neural network ¢ (x) € R™ is a parametric, differentiable function of a covariate
vector X € RY that minimizes a loss function using a gradient descent approach.
While networks typically contain thousands or millions of parameters, simple models
such as linear and logistic regression can also be considered neural networks. For a
large number of parameters, we are usually not interested in the parameter estimates
themselves, but only in the network’s predictive capabilities. While there is a vast
literature on various ways to parameterize neural networks, the internal structure of
the networks is not that relevant for this paper as we only consider the most standard
multilayer perceptron networks, or MLP’s. So, for the purposes of this paper, we think
of the network ¢ (x) € R™ as some very flexible parametric function of the covariates
x. For more on MLP’s and neural networks in general see, e.g., the book by Goodfellow
et al. (2016).

In the previous subsection, we saw that the survival likelihood can be expressed in
terms of the PMF or the hazard rate. In the following, we will describe how to use
this to create survival prediction methods by parameterizing the PMF or hazard with
neural networks. In theory, as both approaches aim at minimizing the same negative
log-likelihood, the methods should yield the same results. But due to the nature of
neural networks, this might not be the case in practice. Contrary to most parametric
statistical models, neural networks are typically overparameterized and a minimum is
not obtained for the training loss. Instead, a held-out validation set is monitored, and
the iterative optimization procedure is stopped when performance on this validation
set starts to deteriorate. Also, considering that neural networks are well known to
be sensitive to numerical instabilities, some parameterizations of a likelihood might
result in better performance than others.

First, considering the hazard parametrization of the likelihood, let ¢ (x) € R™
represent a neural network that takes the covariates x as input and gives m outputs. Each
output ¢ (x) corresponds to a discrete time-point 7, s0 ¢ (X) = {¢1(X), ..., P (X)}.
As the discrete hazards are (conditional) probabilities, we apply the logistic function
(sigmoid function) to the output of the network

1

M = g 01

to ensure that i(t; |x) € (0, 1). We can estimate the hazard rate by minimizing the
loss (7), and survival estimates can be obtained from (4). To the best of our knowledge,
this method was first proposed by Gensheimer and Narasimhan (2019). However, if
one considers the special case where ¢ (x) = BT x, the approach is well known in the
survival literature and seems to have been first addressed by Cox (1972) and Brown
(1975); see also Allison (1982). The book by Tutz and Schmid (2016) gives a review
of the approach.

The implementation we use in the experiments in Sects. 4 and 5 differs slightly from
that of Gensheimer and Narasimhan (2019), as it was found to be numerically more
stable (see Appendix B). In this paper, we will refer to the method as Logistic-Hazard,
as coined by Brown (1975), but one can also find the term Logistic Discrete Hazard

@ Springer

716 H. Kvamme, @. Borgan

used in the statistical literature. Gensheimer and Narasimhan (2019) referred to it as
Nnet-survival, but we will refrain from using that name as we find Logistic-Hazard to
be more descriptive.

We can obtain a survival model by parameterizing the PMF in a similar manner to
the Logistic-Hazard method. As for the hazards, the PMF f(z; | X) represents prob-
abilities, but, contrary to the conditional probabilities that define the hazard, we now
require the PMF to sum to 1. As we only observe event times in T, we fulfill this
requirement indirectly through the probability of surviving past 7,,. Thus we have

m
Y f@]%) + S %) = 1. ®)
k=1

Now, again with ¢ (x) € R™ denoting a neural network, the PMF can be expressed as

expl¢; ()]
L+ 305 explow ()]

fjlx) = forj=1,...,m. O]

Note that (9) is equivalent to the softmax function (also used in multinomial logistic
regression) with a fixed ¢,,+1(x) = 0. Alternatively, one could let ¢,,41(x) vary
freely, something that is quite common in machine learning, but we chose to follow
the typical conventions in statistics. By combining (1) and (8), we can express the
survival function as

m
STilx) =Y flxX)+ ST |x) (10)
k=j+1
forj=1,...,m—1,and

1

S(tn = .
o) = S o]

Now, let oj[¢(x)], for j = 1,...,m + 1, denote the softmax in (9), meaning
om+1[¢ (X)] = S(7, | X). Notice the similarities to classification with m 4 1 classes, as
we are essentially classifying whether the event is happening at either time tq, ..., Ty,
or later than t,,. However, due to censoring, the likelihood is not the cross-entropy.
Instead, by inserting (9) and (10) into (6), we get the mean negative log-likelihood

1 n m+1
loss = —— > | di loglowa) (@ (xi)] + (1 —dplog | 3 @) |]
i1 k=k(t;)+1

(11)
where « (#;) still denotes the index of individual i’s event or censoring time, that is,

i = Te(;)- This is essentially the same negative log-likelihood as presented by Lee
etal. (2018). Note, however, that contrary to the work by Lee et al. (2018) the negative

@ Springer

Survival prediction with neural networks 717

log-likelihood in (11) allows for survival past time 7,,,. Some numerical improvements
of the implementation are addressed in Appendix B. We will refer to this method simply
by PMF as this term is unambiguously discrete, contrary to the term hazard which is
used both for discrete and continuous time.

As a side note, the Multi-task logistic regression (Yu et al. 2011), and the neural
network extension of this method (Fotso 2018), can be shown to be a PMF model by
considering a cumulative sum of the linear predictor, or in the neural network case,
the cumulative sum of the output of the network. Details are given in Appendix C.

3 Continuous-time models

In the following, we no longer consider the time scale to be discrete, but instead
consider continuous-time models, where T*, C* > 0, and we let T = min{T*, C*}
and D = 1{T* < C*} be as before. Let T denote the maximum possible value of C*,
so that P(C* < t) = 1. Hence, a potentially right-censored observation T is in the
interval (0, t]. Instead of a PMF, we now have the density function f (¢ |x) and the
continuous-time survival function

S(IIX)ZP(T*>IIX)=/ fzIx)dz+ S(t|%).
t

Furthermore, the continuous-time hazard rate is a non-negative function of the time
(no longer restricted to [0, 1]),

falx) i Pt <T*<t+At|T" >1,%x)

h(t|x) = = lim
S@|x) Ar—0 At

(12)

As a result, we can express the survival function in terms of the cumulative hazard
H(t|x) = [y h(z|x)dz,

S(t]x) = exp[—H (t|x)]. (13)
This yields the continuous-time version of the likelihood contribution in (5),
Li = f(t | x)% St %)™ = h(t; | %)% expl—H(#; | %)]. (14)

In what follows, we will first discuss how we can apply the discrete-time methods
from Sect. 2.2 for continuous-time data. We will here address how time can be dis-
cretized to fit the discrete-time model formulation, and how to interpolate an estimated
discrete survival function for continuous-time predictions. Then, we will propose a
new continuous-time method by assuming that the hazard in (12) is piecewise constant.

@ Springer

718

H. Kvamme, @. Borgan

S(t)

1.0

—— Kaplan-Meier survival curve
==+ Quantiles

Time

Fig. 1 Illustration of the Kaplan—Meier based discretization scheme. The quantiles of the Kaplan—-Meier
curve are used as the grid points

3.1 Discretization of the time scale

Both the PMF and Logistic-Hazard methods require time to be discrete on the form
0=1 <1 < -+ < 1. Hence, to apply the methods to continuous-time data,
we need to perform some form of discretization of the time scale. Possibly the most
obvious way to discretize time is to make an equidistant grid in [0, t] with m grid
points. An alternative, that we explore in this paper, is to make a grid based on the
distribution of the event times. By disregarding covariates and estimating the marginal
survival function S(¢) with the Kaplan—Meier estimator, we obtain a general trend of
event times. With S(r) denoting the Kaplan—Meier survival estimates, we can make a
grid from the quantiles of the estimates, 1 = 3’(0) =l >l > > = S‘(r). We
will assume that each interval has the same decrease in the survival estimate, so that
(i—=¢iri=U~- 3‘(1))/m. The corresponding time grid, 71 < - -+ < T, is obtained
by letting 7; be the smallest value of ¢ such that S@r) < ¢j. We will then obtain a more
dense grid in intervals with more events, and a less dense grid in intervals with fewer
events. This is illustrated in Fig. 1, where we can see that the grid becomes coarser as
the slope of the survival curve becomes less steep.

The discrete-time methods assume that all events and censorings occur at the 7;’s,
so, when performing the discretization, we move all event times in an interval to
the end of that interval while censored times are moved to the end of the previous
interval. This means that for 7;_; < T; < 7, we replace T; by 7; if D; = 1, and
by t;_1 if D; = 0. Our reason for this choice is that this is typically how the times
are recorded. Consider a study where we are only able to make observations at times
7| < T2 < --- < T;. For a censored observation, ;1 is the last point in time where
the individual was recorded alive, while for an observed event, t; is the first point in
time for which the individual was recorded with the event.

@ Springer

Survival prediction with neural networks 719

[— Discrete CcDI — CHI

0.8 -

0.6 -

S(t)

0.4 A

0.2 A

0.0 ——

T T T T
0 20 40 60 80 100
Time

Fig. 2 Survival estimates by a discrete model for 5 grid points. The three lines represent the discrete
survival estimates and the two interpolation schemes in Sect. 3.2: The constant density interpolation (CDI)
and constant hazard interpolation (CHI)

3.2 Interpolation for continuous-time predictions

When discrete-time survival methods are applied to continuous-time data, the survival
estimates become a step function with steps at the grid points; see the blue curve in
Fig. 2. Consequently, for coarser grids, it might be beneficial to interpolate the discrete
survival estimates. To this end, we propose two simple interpolation schemes that
fulfill the monotonicity requirement of the survival function. The first assumes that
the probability density function is constant in each time interval (7;_1, 7;], while the
second scheme assumes constant hazard in each time interval. We will refer to the
schemes as constant density interpolation (CDI) and constant hazard interpolation
(CHI). Note that the two interpolation schemes correspond to piecewise linear and
piecewise exponential survival estimates, as illustrated in Fig. 2.

3.3 A piecewise constant continuous-time hazard parametrization

We now propose a continuous-time method by parameterizing the hazards in (14).
As for the constant hazard interpolation, we will let the continuous-time hazard be
piecewise constant. Disregarding neural networks, this model was first proposed by
Holford (1976), and further developed by Friedman (1982) who found that piecewise
constant hazards yield a likelihood proportional to that of a Poisson likelihood.

Consider a partition of the time scale 0 = 79 < 11 < --- < 1, = 7, and let x (¢)
denote the interval index of time ¢ such thatt € (T¢(;)—1, Tic(r)] (thisis slightly different
from the discrete case where we had t = 7,(;)). If we assume that the hazard is constant
within each interval, we can express the hazard as the step function /(7 | X) = 1) (X)
for a set of non-negative functions {1(x), ..., 7, (X)}. For At; = 7; — 7;_1, we can
now express the cumulative conditional hazard as

K(1)—1
Helx) = [Y nj00 AT | +0en () (= Tey-1)-

j=1

@ Springer

720 H. Kvamme, @. Borgan

Inserting this into (14) yields the likelihood contribution for individual 7,

k(1)1

Li = N (xi)% exp [%) (0 = Te—1)] l_[exp [—n;(x;) Atj].
=1

What remains is to parameterize the hazard with a neural network. However, to avoid
passing all the 7;’s to the loss function, we let the network instead parameterize the
functions 7 (x) = n;(x) At;. This allows us to rewrite the likelihood contribution as

. N\ d k() —1
Li= (nxA(;'—)(Xl)> exp [=) (xi) p (1)] exp [~ (xi)]
K (ti) j=1
k(t)—1
O Tl (1) (i) exp [~ i)y (xi) p ()] l_[exp [—7;(x)] .
j=1

where

— Tk (t)—1

t
p() = ; (15)
AT

is the proportion of interval «x (¢) at time .

As before, let ¢(x) € R™ denote a neural network. To ensure that 7;(x) is non-
negative, we could have used 77;(x) = exp[¢;(x)]. However, for better numerical
stability we prefer to use the softplus function

1;(x) = log(l + exp[¢; (x)]). (16)

Now, again considering n independent individuals, each with covariates x;, observed
event or censoring time #;, and event indicator d; , our model can be fitted by minimizing
the mean negative log-likelihood

1 n y) Kk(ti)—1 }
loss = - 21 di 10g N1y (Xi) — Ny Xi) p (i) — 21 njx;) |,
i= j=

and estimates for the survival function can be obtained by

Kk(t)—1

S(t %) = expl—H (1|)] = expl—Ticy(¥) p)] [] expl—ii;)], (17)
j=1

where p(t) is given by (15). We will refer to this method as the piecewise constant
hazard method, or PC-Hazard. Even though this is a continuous-time method, we still
need to decide the set of 7;’s that define the intervals. Therefore, the discretization
techniques discussed in Sect. 3.1 are also relevant for this method.

@ Springer

Survival prediction with neural networks 721

4 Simulations

To get a better understanding of the methodologies discussed in Sects. 2 and 3, we
perform a simulation study where we vary the size of the training sets, the discretiza-
tion scheme, and the number of grid points used for discretization. Gensheimer and
Narasimhan (2019) performed a similar study to evaluate the effect of discretization
on their Logistic-Hazard method with the conclusion that there were no differences in
performance. However, their simulations were quite simple (only one binary covari-
ate), their only performance metric was the Harrell Jr et al. (1982) concordance at
1-year survival, and they did not include any interpolation of the survival estimates.
For this reason, we find that further investigations are warranted.

We generate simulated survival times by sequentially sampling from discrete-time
hazards defined on a fine grid of time points. The hazards are specified through their
logit transforms, as this enables us to use functions in R while still obtaining hazards
in (0, 1). The logit hazards, g (¢ | x) = logit[A(¢ | x)], are defined as

g |x) = a1(X) gsin(| X) + a2(X) geon(f | X) + a3(X) gace (Z | X), (18)
where
&in (7 |X) = y1 (%) sin (2 (X[+ y3(X)]) + y4(x),
8eon(t | X) = y5(x),
8acc(t | X) = y6(x) - t — 10,
and
ix) = P ®) 103

>3 exp(yj46(%))

Each of the three functions ggin(# | X), gcon(? | X), and gacc(? | X) are constructed to
give a specific contribution to the hazards: g.on(# | X) gives a constant hazard for a set
of covariates, gacc(f | X) allows for a hazard that increases with time, and ggin (¢ | X)
enables periodic patterns in the hazards. With this combination, we are able to represent
avariety of event time distributions. Each function yj (x) uses five of the covariates in X,
totaling a covariate vector x of size 45. The functions y (x) are defined in Appendix A.
We let the discrete time scale consist of 1,000 equidistant points between 0 and 100
sothat 79 = 0, 71 = 0.1, 0 = 0.2, ..., 1000 = 100. Knowing the hazards, the true
survival function can be obtained with (4). In Fig. 3 we show five examples of logit
hazard rates and their corresponding survival functions. Note that even though we
simulate our data using a discrete-time model, the time-grid is so fine that this mimics
simulation from a continuous-time model. The full details of this simulation study are
given in Appendix A.

@ Springer

722 H. Kvamme, @. Borgan

1.0 1

0.8 1

0.6

S(t)
logit[h(t)]

0.4 1

0.2

0.0 1

0 2‘0 4‘0 6‘0 B‘O 100 0 2‘0 4‘0 S‘O 8‘0 100
Time Time
Fig.3 Examples from the simulation study in Sect. 4. The left figure shows examples of 5 simulated survival
curves, while the right figure shows the corresponding logit hazards. The examples are selected to illustrate
the richness of event time distributions that are expressed by the covariates in the simulated data

4.1 Simulation setup, hyperparameter tuning, and evaluation

We created three training sets of size 3000, 10,000, and 50,000, a validation set of size
10,000 (for hyperparameter tuning), and a test set of size 100,000. For the training and
validation sets, we included a censoring distribution with constant hazard resulting in
37% censoring. The full uncensored test set is used for evaluation. For the discretization
of the time scale, we applied both the equidistant scheme and the Kaplan—-Meier
quantiles, each with 5, 25, 100, and 250 grid points.

The three prediction methods under investigation, described in Sects. 2.2 and 3.3,
all consist of the same “base” neural network ¢ (x) € R™, but have individual output
layers and functions transforming ¢ (x) to survival estimates. These final transforms
do, however, not include any parameters or hyperparameters. For a fair comparison,
we therefore perform the same hyperparameter search of ¢ (x) for all models. As an
extensive search is unfeasible for such models, we only consider MLP networks with
ReLU activation functions, batch normalization, and dropout between each layer. The
size of the networks is controlled by the number of layers and the number of nodes in
each layer, which we assume to be the same for all layers. Our choices are motivated
by an attempt to represent the most standard MLP’s. For more on MLP’s and neural
networks in general see, e.g., the book by Goodfellow et al. (2016).

We performed a hyperparameter grid search over 1, 2, 4, and 8 hidden layers; 16,
64, and 256 nodes; and dropout of O (no dropout) and 0.5. Each net was trained with
a batch size of 256 and the AdamWR optimizer (Loshchilov and Hutter 2019) with
cycle length 1, where, at each restart, the cycle length was doubled and the learning
rate was multiplied by 0.8. Learning rates were found using the methods proposed
by Smith (2017). The methods’ respective loss functions (negative log-likelihoods),
computed on the validation set, were used for selecting the best set of hyperparam-
eters. The hyperparameter tuning was repeated 10 times, giving 10 fitted models for
each combination of method, grid size, discretization scheme, and training set size.
In general, the discretization scheme, both granularity and discretization method, are
hyperparameters. In the simulation experiments, however, we are interested in com-
paring the performance across discretization schemes, and to this end we obtain a

@ Springer

Survival prediction with neural networks 723

model for each scheme. But when we in Sect. 5 compare performance on real data,
we need to include the discretization scheme in the hyperparameter tuning.

For evaluating the predictive performance of the methods, we consider two metrics
on the uncensored held-out test set. The first metric is the average mean squared error
(MSE) between the survival estimates and the true survival function at all 1000 time
points 11, .. ., T1000

1 100,000 1,000

2
MSE = — 5 etV o
100,000 < 1000 /_1((T %) = (fjlx,)) (19)

Here § (zj | x;) and S(7; | x;) are the estimated and true survival functions, respectively,
for individual 7 (in the test set) at time t;. So, in this regard, the discrete-time survival
estimates are represented by step functions, as illustrated in Fig. 2. Note that the
MSE (19) is only applicable for simulated data, as the true survival functions S(z; | x;)
are not known in real-world applications.

The second metric is the time-dependent concordance (Antolini et al. 2005), which
evaluates a method’s ability to correctly rank individuals’ survival estimates according
to their event times. This is achieved by estimating the probability of correctly ranking
two arbitrary individuals

P(S(T; |x;) < S(Ti |x)) | T; < Tj, D; = 1),

where T; and T; are the known potentially right-censored event times of individuals i
and j. In other words, if individual i experiences the event of interest while individual
Jj is still at risk, a good set of predictions should give a lower survival estimate for
individual i than individual j at the event time of individual i. Note that, contrary to
the MSE, larger values for the concordance are considered better.

4.2 Comparison of discrete-time methods

We start by comparing the two discrete methods from Sect. 2.2, that parameterize the
PMF and the discrete-time hazards. We refer to them as PMF and Logistic-Hazard,
respectively.

In Fig. 4 we plot the median test scores of the two methods versus the grid size used
for discretization. The number above each plot gives the size of the training set used
to fit the methods. The full lines represent equidistant grids, while the dotted lines are
from grids obtained with quantiles from Kaplan—Meier survival estimates. We have
also included the constant hazard interpolation (CHI) of the survival estimates from
the Logistic-Hazard method (see Sect. 3.2).

For the smallest training set of size 3000 we see that the best performance (smallest
MSE and highest concordance) is obtained with a grid of size 25 and that the finer
grids of size 100 and 250 result in much worse performance (higher MSE and lower
concordance). For the two larger training sets, the finer grids have generally perfor-
mance on par with or better than that of grid of size 25. This is reasonable as coarser

@ Springer

724 H. Kvamme, @. Borgan

—— (Logistic-Hazard, Equidistant) —— (Logistic-Hazard (CHI), Equidistant) —— (PMF, Equidistant)
—--- (Logistic-Hazard, KM-quantiles) —~== (Logistic-Hazard (CHI), KM-quantiles) —--= (PMF, KM-quantiles)
3000 10000 50000

0.05 1

0.04 4

0.03 4

0.75

0651 0.70 4

0.60 4 0.65 4

0.60 4
0.55

Concordance

050 4 050 o

0.45 4

T T T T T T T T T T T T
50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
Grid size Grid size Grid size

Fig. 4 Median MSE and concordance for each grid size in the simulation study in Sect. 4.2. The number
above each plot gives the size of the training set. The full lines use an equidistant grid, while the dotted
lines use Kaplan—Meier quantiles for discretization. Note that the plots are not on the same scale

grids require fewer parameters in the neural networks, and the networks with very fine
grids are therefore more likely to overfit the data. Nevertheless, the coarsest grid of
size 5 seems to only work well for the interpolated estimates, and does very poorly for
the discrete estimates. The discretization grids from Kaplan—Meier quantiles seem to
give slightly better scores than the equidistant grids for the Logistic-Hazard with the
coarsest grids; in particular for the smaller training sets. This difference is, however,
quite small. Comparing the discrete survival estimates from Logistic-Hazard (blue
lines) with the CHI estimates (orange lines), we see that the two lines overlap for finer
grids. This is expected as the effect of interpolation decreases as the grids become
finer.
In general, the PMF method does not perform as well as the Logistic-Hazard.

4.3 Comparison of interpolation schemes

In the following, we compare the interpolation schemes for the discrete-time hazard
method Logistic-Hazard. The experiments are not shown for the PMF method as the
results are very similar.

In Sect. 3.2 we presented two methods for interpolation of discrete survival esti-
mates. The first assumes constant density in each interval (denoted CDI for constant
density interpolation), while the second assumes constant hazard in each interval
(denoted CHI for constant hazard interpolation). In our simulation study, we have
four grid sizes and two discretization schemes. As the hyperparameter tuning was
repeated 10 times this gives 80 fitted models for each method on each data set. In
Fig. 5, we plot the scores of these 80 models sorted from best to worst, as this both
tells us the best performance, in addition to the stability of the methods. The figure

@ Springer

Survival prediction with neural networks 725

|—-— Logistic-Hazard Logistic-Hazard (CDI) --- Logistic-Hazard (CHI)
3000 10000 50000
.—./| 006 i [
0.09 [: 0.04 |
i l' -
/ 0.05 + H
0.08 — —d 0.03 I
w R S — i |
2 I | i !
] / H |
0.07 T S~ 0.04 i 0.02 i
—— — —d p— H .
J ___/l I"_'.__'-_ ------- '
el i H
Tt 0.03 UEY R SRS S 0.01 i
0.06 L=/ L= ¢ T
= S R e | i = e — \em
065 ~— T —— 0.75 - =i
\ \ 0.70 §
(R S L_.
% =\ * =i 0.70 1
g 0.60 i 0.65 i]
g | i 0.65 1
S i ; |
o \ | —
055 : 0.60 .
| | 0.60 - i
! | i
. - .
i i . 0.55 : + ; 0.55 4 F F .
20 40 60 80 20 40 60 80 20 40 60 80
Rank Rank Rank

Fig. 5 MSE and concordance from the simulation study in Sect. 4.3. The scores are plotted from best to
worst. The number above each plot gives the size of the training set. Note that the plots are not on the same
scale

contains results from the discrete survival estimates (Logistic-Hazard), the constant
density interpolation (CDI), and the constant hazard interpolation (CHI).

Clearly, there is almost no difference in performance between the two interpolation
schemes, while the discrete estimates have slightly worse best-case performance and
much worse worst-case performance. So the interpolation primarily helps with stability
in performance across discretization schemes, but similar performance can be obtained
for discrete predictions given careful hyperparameter tuning.

As the two interpolation schemes perform the same, we will in the further simu-
lations only include the CHI estimates as they and the continuous-time PC-Hazard
method both assume constant hazard rate, simplifying the comparison between the
methods.

4.4 Comparison with PC-Hazard

Finally, we compare the previous methods with our proposed continuous-time haz-
ard method from Sect. 3.3, PC-Hazard. In Fig. 6 we plot the MSE and concordance for
the interpolated Logistic-Hazard (CHI) method and the continuous-time PC-Hazard
method. Note that the y-axis is compressed compared to the previous figures. First,
we notice that PC-Hazard does better for the coarsest grid with only five grid points,
while Logistic-Hazard (CHI) typically performs best with 25 grid points. In general,
the differences in performance between the two models are very small. We note, how-
ever, that the best performing model for the smallest training set is the PC-Hazard with
a Kaplan—Meier grid of size 5, both in terms of MSE and concordance. Finally, we
again see that the Kaplan—-Meier quantiles seem to give slightly better performance
than the equidistant discretization when the grids are coarse.

@ Springer

726 H. Kvamme, @. Borgan

—— (Logistic-Hazard (CHI), Equidistant) (PC-Hazard, Equidistant)
--- (Logistic-Hazard (CHI), KM-quantiles) (PC-Hazard, KM-quantiles)
3000 10000 50000
0.080 0.036
0.014
0.075 0.034 o
0.012
0.070 + 0.032
w
)
= 0010
0.065 1 0.030 4 \ -
\ e
0.060 \ 0.008 1y 2T
0.028 1% [=
\ M
0.055 T T T T 0.006 T T T T
0.740 T~ 0.780
0.67 S Fao_
s N ==~
s, ==
SN S S N AP O A i T
o 066 0.735 4-3, ~ 0775 4 [\\N
g N
< S
& 0.65 4 S
5 N 0.770 A
£ 0.4 0.730 4 <
o S
063 4 S 0765 A
~
0.725 _N
0.62
0.760 1
T T T T T T T T T T T T
50 100 150 200 250 50 100 150 200 250 50 100 150 200 250
Grid size Grid size Grid size

Fig. 6 Median MSE and concordance for each grid size of the simulation study in Sect. 4.4. The number
above each plot gives the size of the training set. The full lines use an equidistant grid, while the dotted
lines use Kaplan—Meier quantiles for discretization. Note that the plots are not on the same scale

In Fig. 7 in Appendix A, we have included a plot of the same type as Fig. 5 for the
Logistic-Hazard (CHI) method, the Logistic-Hazard method, the PMF method, and
the PC-Hazard method. The figure again shows that the PMF method performs slightly
worse than the other methods, while the PC-Hazard method performs similarly to the
Logistic-Hazard (CHI) estimates.

4.5 Summary of simulations

To summarize the results of the simulations, we have shown that the size of the dis-
cretization grid (number of 7;’s) has a large impact on the performance of the methods,
and therefore needs to be carefully tuned. Finer grids enable the methods to reduce
bias in the predictions but require more parameters in the neural networks (higher
variance). By defining the discretization grid with Kaplan—Meier quantiles, the per-
formance for the coarser grids typically improves, while it has no apparent effect for
finer grids.

Interpolation of the discrete-time survival estimates alleviates some of the sensi-
tivity to the discretization scheme. For the coarser grids, interpolation was generally
found to improve performance, while it does affect the performance for finer grids.
The performance of the two proposed interpolation schemes, CHI and CDI, was more
or less indistinguishable.

Comparing the three methods, we found that PMF did not perform as well as the
Logistic-Hazard, both in terms of best-case performance and stability to discretization-
grid configurations. PC-Hazard was found to be competitive with the interpolated
Logistic-Hazard method and even performed better for the smallest training set. But
the differences between all methods were small, and the size of the training sets and

@ Springer

Survival prediction with neural networks 727

Table 1 Data sets for comparing

survival methods Data set Size Covariates Prop. censored
FLCHAIN 6524 8 0.70
METABRIC 1904 9 0.42
NWTCO 4028 6 0.86
Rot. & GBSG 2232 7 0.43
SUPPORT 8873 14 0.32

the grid size were shown to have a much larger impact on the performance than the
choice of method.

5 Experiments with real data

We now compare the methods discussed in this paper to other methods in the lit-
erature, in particular DeepHit (Lee et al. 2018), DeepSurv (Katzman et al. 2018),
Cox-Time (Kvamme et al. 2019), CoxCC (Kvamme et al. 2019), Random Survival
Forests (RSF, Ishwaran et al. 2008), and a regular Cox regression.

We conduct the comparison on five common real-world data sets: the Study to
Understand Prognoses Preferences Outcomes and Risks of Treatment (SUPPORT),
the Molecular Taxonomy of Breast Cancer International Consortium (METABRIC),
the Rotterdam tumor bank and German Breast Cancer Study Group (Rot. & GBSG),
the Assay Of Serum Free Light Chain (FLCHAIN), and the National Wilm’s Tumor
Study (NWTCO). Katzman et al. (2018) made the first three data sets available in
their python package DeepSurv, and we have made no further preprocessing of the
data. FLCHAIN and NWTCO were made available in the survival package of R
(Therneau 2015), but we use the same version of FLCHAIN as Kvamme et al. (2019).
No alterations were made to the NWTCO data set. The size, the number of covariates,
and the proportion of censored individuals in each data set are given in Table 1.

5.1 Hyperparameter tuning and evaluation

The experiments were conducted by five-fold cross-validation. For each split, a sep-
arate hyperparameter search was conducted, meaning that for each method we may
end up with separate hyperparameters for each split.

For hyperparameter tuning, we set aside 20% of the data in each split as a validation
set (corresponding to 16% of the full data set). For each method considered, we used the
tuning criteria proposed in the original papers for choosing the best hyperparameters.

For the methods presented in this paper, we cannot use the validation loss for the
hyperparameter search, as done in the simulations in Sect. 4.1. This is because we now
need to include the discretization scheme as part of the hyperparameter search, and the
losses (negative log-likelihoods) are dependent on the granularity of the discretization
scheme (dependent on the number of output nodes). Instead, we will use the integrated
Brier score (IBS) by Graf et al. (1999) computed over 100 equidistant points between

@ Springer

728 H. Kvamme, @. Borgan

the minimum and maximum observed times in the validation set. The IBS considers
both discrimination and calibration of the survival estimates, and accounts for cen-
sored individuals by weighting the score by the inverse of the estimated censoring
distribution.

For evaluation, we will consider the IBS in addition to the time-dependent con-
cordance (Antolini et al. 2005). In contrast to the IBS, the concordance only evaluate
the discriminative capabilities of a method’s predictions. It is interesting to study both
metrics as there might be a trade-off between well-calibrated estimates and good dis-
criminative performance. For these real data sets, we do not know the true survival
function and we can therefore not use the MSE (19) reported in the simulation studies.

The experiments were conducted using the same hyperparameter search and training
strategy as presented in Section 6.1 of the paper by Kvamme et al. (2019), but we
decrease the learning rate by 0.8 at the start of each cycle, as this was found to give
more stable training. For the methods requiring discretization of the time scale, the
hyperparameter search considered grid sizes of 5, 25, 50, 100, and 200, both with
equidistant spacing and by using the Kaplan—Meier quantiles. The best parameter
configuration for each method in each of the five cross-validation splits was fitted 10
times, and we calculated the median concordance and integrated Brier score (IBS) of
the 10 repetitions and averaged these over the five folds.

5.2 Results

The results are presented in Tables 2 and 3. In terms of concordance, we see that
DeepHit and PC-Hazard perform very well. The three Logistic-Hazard methods and
Cox-Time all perform close to PC-Hazard, while the PMF, RSF and the other Cox
methods perform slightly worse. The concordances of the two proposed interpolation
schemes, CHI and CD], are very similar, but the CDI method tends to give slightly bet-
ter scores. There does, however, not seem to be much performance gain in interpolation
for the concordance.

Examining the IBS in Table 3 (smaller is better) we again find that PC-Hazard
performs very well. But now, DeepHit does quite poorly. This is expected as DeepHit
is designed for discrimination rather than well-calibrated estimates (see Kvamme et al.
2019). In general, the PMF, the RSF, and the three proportional Cox methods seem
to have slightly higher IBS than the Hazard methods, but again the differences are
quite small. Cox-Time performs quite well on all data sets except for FLCHAIN and
NWTCO. Comparing the interpolation schemes of Logistic-Hazard, it seems that CDI
still performs slightly better than CHI, although both are quite close to the discrete
estimates of Logistic-Hazard.

In summary, all three methods discussed in this paper are competitive with existing
survival methodology. However, the interpolated Logistic-Hazard and the PC-Hazard
seem to give the most stable high performance considering both discrimination and
calibration.

@ Springer

729

Survival prediction with neural networks

PIOq UT 135 21k BIeP [OBI J0J Son[eA)sasIe]

8¢9°0 6L9°0 9IL'0 6590 16L°0 prezeH-Dd
0€9°0 9L9°0 00L0 099°0 06L°0 (IaD) prezey-onsisoy
8790 €L9°0 YIL'O 9690 06L°0 (IHD) prezeH-onsISo]
§29°0 0L9°0 Y0L'0 8690 °6L°0 pIezeH-onSIS0]
LT9°0 6990 0IL0 €90 98L°0 ANd
6£9°0 SL90 0IL0 SL90 16L°0 nHdoaq
€90 899°0 S0L0 1590 ¥8L°0 ASY
0€9°0 YL9°0 60L°0 ¥99°0 €6L°0 QWILL-X0)
S19°0 L9°0 60L°0 090 6L0 amgdeoq
719°0 0L9°0 I1L°0 LY9°0 °6L0 DD0x0D
6650 799°0 90L0 9290 06L°0 uoISsI30Y X0D)
Jd0ddNS DSID % 10 ODLMN DI VLIN NIVHO14 [9POIN

$J9S BJEp P[IOM-[BAI UO UOIBPI[BA-SSOID P[OJ-G WO} DUBPIOOUO)) ¢ d|qel

pringer

As

H. Kvamme, @. Borgan

730

PIOq UT 135 9Tk BIeP OB 0] SAN[BA JSA[[WS

<Ico 6910 8€L00 Lo 8160°0 pIeZeH-Dd
<Ico 0LT°0 17,00 Lro L1600 (IaD) prezey-ousiso|
€Ico 0LT0 8€L00 €LT'0 61600 (IHD) prezeH-ousIso|
€Ico ILT°0 wL00 Lo 8160°0 pIezeH-onsIS0]
€10 691°0 8¥L0°0 YLT'O ¥260°0 dINd
LTTO ¥81°0 86L0°0 981°0 62600 nHdeaq
€1c0 0LT0 6vL0°0 SLT'O 82600 ASY
ITo 0LT°0 €6L0°0 €LI'0 §260°0 QWL -X0)
€1co 0L1'0 SvL00 ANV 61600 amgdooq
€1co ILT°0 SvL00 €LT'0 ¥260°0 JDx0D
810 0810 16L0°0 €81°0 1960°0 uoISs130Y X0D)
Ld0ddNs DSED % 10 ODLMN DIIdVLIN NIVHO 14 [9PON

S)3S BJEp PIIOM-[BAI UO UONBPI[BA-SSOIO P[OJ-G WOI 21008 ILIg pajeidaju] ¢ ajqel

pringer

As

Survival prediction with neural networks 731

6 Discussion

In this paper, we have explored survival methodology built on neural networks for
discrete-time data, and how it can be applied for continuous-time prediction. We
have compared two existing discrete-time survival methods that minimize the nega-
tive log-likelihood of right-censored event times, where the first method (Lee et al.
2018) parameterize the event time probability mass function (PMF), while the sec-
ond method (Gensheimer and Narasimhan 2019) parameterize the discrete hazard rate
(Logistic-Hazard). Through empirical studies of simulated and real data sets, we found
that the Logistic-Hazard method typically performs better than the PMF parametriza-
tion, both in terms of discrimination and calibration of the survival predictions.

We proposed two interpolation schemes for the discrete methods. Both schemes
were found to improve predictions for methods with a coarse discretization of the time
scale. In particular, as coarser discretization reduces the number of network parameters,
the interpolation schemes gave the largest improvements when applied to smaller data
sets. The two interpolation schemes were found to perform very similarly.

We also proposed a new continuous-time method that assumes constant hazard
in predefined time intervals (PC-Hazard). The method was found to perform very
well compared to existing methods, both in terms of discrimination and calibration.
Furthermore, in a simulation study, we found that the method continued to perform
better for coarser discretization grids than the interpolated Logistic-Hazard method.
This was particularly beneficial for the smallest training set in the simulation study.

All three methods investigated in this paper need some form of discretization or
coarsening of the time scale. In that regard, we proposed a simple scheme that uses
the quantiles of the event time distribution estimated by Kaplan—Meier, and showed
through simulations that the quantile-based grids typically outperformed equidistant
grids for coarser grids.

In summary, we found that all three methods perform quite similarly, and the choice
of discretization has a larger impact on performance than the choice of method. For
the discrete methods, interpolation of the survival predictions will typically make the
performance less sensitive to the discretization scheme.

Some interesting further development of our work would be to extend the models
to allow for left-truncated event times and competing risks. While these are common
topics in survival analysis, the literature on neural network extensions is quite limited.

Finally, we have only considered time-to-event prediction given the information
that is available at the outset of a study. One could also be interested in predicting
the remaining time until an event given observation of time-dependent covariates
and that the event has not yet happened by a time fy. The landmarking approach of
van Houwelingen and Putter (2011) offers one possible framework for such dynamic
predictions.

Acknowledgements This work was supported by The Norwegian Research Council 237718 through the
Big Insight Center for research-driven innovation.

Funding Open access funding provided by University of Oslo (incl Oslo University Hospital).

@ Springer

732 H. Kvamme, @. Borgan

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Appendix A More on the simulations

In the following, we include additional information about the simulation study in
Sect. 4. We start by explaining in detail how the data sets were created, and in Sect. A.2
we give some additional results.

A.1 Discrete-time survival Simulations from logit hazards

The simulated survival data sets were generated by drawing from the discrete hazard
h(t|x) across times t € {0.1,0.2, ..., 100}. The discrete hazard was defined through
the logit hazard g(¢ | x) € R,

1

R E TR)

ensuring that A(z |x) € (0, 1). In (18), we defined the logit hazard g(¢ | X) in terms
of a set of functions y;(x), fori = 1,...9. In order to describe how the y;(x)’s are
defined, let X ;) define a subset of the covariates x and let x; be a linear combination
of this subset, X; = X(Tj) B j for j = 1,...,9, where the subsets are non-overlapping

and of equal size (if the subsets are of size m, we have x € R™). The y;(x)’s are
defined as

y1(X) = 5%,
21 5~
_ 2T G-,
Y2 (X) 100
y3(x) = 153,

y4(X) =2Xx4 — 6 — [y1(x)],

y5(X) = g(fs +1) -8,

1
1+exp[—8(@E+ 1)+ 51
y7(x) = 5(x7 + 0.6),
y8(x) = Sxs,

Y9(x) = SXo,

Ye(X) =

@ Springer

http://creativecommons.org/licenses/by/4.0/

Survival prediction with neural networks 733

where |z] is the floor operation. We draw X iid Unif[—1, 1], and B iid N(O, 1).
The forms of the y; (x)’s have been chosen to obtain reasonable survival functions. In
particular, y»(x) ensures that the number of periods is a multiple of 2, as we wanted
to introduce a more restricted seasonality pattern in hazard than any arbitrary period.

Finally, denoting the covariates in X(jy € R™ as x; 1,x;2,...x; », we draw x; x
while ensuring X(Tj) B; = x; through the following scheme: For known f; € R™, we
draw x; conditionally such that

k
<;z,- =Y xji ,3,-,,») | %/, X0 ooy Xj ket ~ Unif[—1, 1], fork=1,...,m — L.

i=1

iid __ . -
Hence, we sample u; y ~ Unif[—1, 1]fork =1,...,m — 1, and setu;; = X; —
Zle xji Bj.i» giving the covariates

g7 (@ —uja). ifk =1
1 .

Xjk = m(uj,k_l—ujik), 1fk=2,...,m—1
ﬁ(fj—Z?;)Cj,i,Bj’,‘), if k =m.

Using this scheme, it is straightforward to change the number of covariates without
affecting the hazards. The code for generating these simulations is available at https://
github.com/havakv/pycox.

A.2 Additional simulation results

We here present some additional results from the simulation study in Sect. 4.3. Recall
that each method s fitted 80 times (4 grids x 2 discretization schemes x 10 repetitions).
In the same manner as in Fig. 5, we plot in Fig. 7 the MSE and concordance for the
Logistic-Hazard, Logistic-Hazard (CHI), PC-Hazard, and PMF, where the scores of
the 80 models are sorted from best to worst.

We again see that PC-Hazard and the Logistic-Hazard (CHI) perform better than the
discrete estimates of Logistic-Hazard and PMF. Furthermore, Logistic-Hazard seems
to generally perform better than the PMF method. We still find that for the best grid
configurations, the differences between all models are very small. But we reiterate that,
for practical purposes, it is quite desirable to have stable performance for a variety of
hyperparameter configurations.

Appendix B Implementation details

The implementations of the survival methods described in Sects. 2 and 3 are slightly
different from the mathematical notation. This is because we also need to consider
numerical stability. An implementation of the methods can be found at https://github.
com/havakv/pycox.

@ Springer

https://github.com/havakv/pycox
https://github.com/havakv/pycox
https://github.com/havakv/pycox
https://github.com/havakv/pycox

734 H. Kvamme, @. Borgan

—— Logistic-Hazard ~ —— Logistic-Hazard (CHI) —— PC-Hazard —— PMF|
3000 10000 50000
0.10
0.10 0.04 4
0.08 4
0.09
0.03 4
w
0 0.08 4 1
s 0.06
0.07 4 0.02 1
0.04 4
0.06 + 0.01 4
0.05 T T T T T T T T T
7 —_—,— —
0.65 0.70 4 0.75 4
g 060 0.65 1 070 4
3 0.60
5 0.55
g 0.55 1 0.65 4
© o050
0.50 0.60
0.45 0.45 4
0.55 4
T T T T T T T T T
20 40 60 80 20 40 60 80 20 40 60 80
Rank Rank Rank

Fig. 7 MSE and concordance from the simulation study in Sect. 4. The scores are plotted from best to
worst. The number above each plot gives the size of the training set. Note that the plots are not on the same
scale

For the PMF parameterization, we used the log-sum-exp trick

log | > exp(zj) | =y +log [Y expz; —») |
j j

where y = max;(z;), to ensure that we only take the exponential of non-positive
numbers. Hence, by rewriting the loss (11) in terms of ¢ (x), with ¢, 1+1(x) = 0 and
yi = max;(¢;(x;)), we obtain

1 n 1 n m+1
loss = — = Y dilgeq) (%) — il + = Y log | Y explg;(xi) — yi]
L e j=1
1 n m+1
— =Y (—dplog| > explgj(x) — il
i =k (t)+1

For the discrete hazard parametrization, we note that the loss in (7) is written as a sum
over binary cross-entropy terms. This allows us to rely on existing implementations of
binary cross-entropy to ensure numerical stability. In practice, these implementations
use the log-sum-exp trick on the ¢ (x) (the logits).

Finally, for the continuous hazard parametrization, we use existing implementations
of the softplus function which uses a linear function over a certain threshold, meaning
log(1 + exp[z]) =~ z for large values of z. However, we also note that for z & 0, we

@ Springer

Survival prediction with neural networks 735

have that log(1 + z) ~ z. Hence, for ¢,y (x;) < 0 we use that

log (1) (x;) = log[log(1 + exple ;) (Xi) D] A P () (Xi)-

Appendix C Multi-task logistic regression as PMF

Multi-task logistic regression, proposed by Yu et al. (2011), provides a generalization
of the binomial log-likelihood to jointly model the sequence of binary labels ¥; =
I{T* < t;}. This means that ¥ = (yi,..., y») is a sequence with zeros for every
time 7; up to the event time, followed by one’s. Then

exp [Yrmy vk (%)]
1+ exp [v)]

PY =1, ym) [X) = (C.1)

Yu et al. (2011) only consider linear predictors v (x) = x’ 8 «» but this was extended
to a neural network by Fotso (2018). The parameters of 1 (x) are found by minimizing
the negative log-likelihood in (6).

As f(rj|x) = P(Y = (31,..., ym) IX), where yr = 1{k > j}, the expression
in (C.1) can be written as

exp [ka: y Iﬂk(X)] explo; (x)]

T = S o [0] 1+ S explr ol

where ¢;(x) = Y j_ j Vi (x). Hence, the multi-task logistic regression is equivalent
to the PMF in (9), but where ¢ (x) is the (reverse) cumulative sum of the output of
the network v (x) € R™. To the extent of our knowledge, there are no benefits to this
extra cumulative sum. Instead, it simply requires unnecessary computations, and, for
large m, it can cause numerical instabilities.

References

Allison PD (1982) Discrete-time methods for the analysis of event histories. Sociol Methodol 13:61-98

Antolini L, Boracchi P, Biganzoli E (2005) A time-dependent discrimination index for survival data. Stat
Med 24(24):3927-3944

Brown CC (1975) On the use of indicator variables for studying the time-dependence of parameters in a
response-time model. Biometrics 31(4):863-872

Cox DR (1972) Regression models and life-tables. J Roy Stat Soc Ser B (Methodol) 34(2):187-220

Fotso S (2018) Deep neural networks for survival analysis based on a multi-task framework. arXiv preprint
arXiv:1801.05512

Friedman M (1982) Piecewise exponential models for survival data with covariates. Ann Stat 10(1):101-113

Gensheimer MF, Narasimhan B (2019) A scalable discrete-time survival model for neural networks. PeerJ
7:€6257

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

Graf E, Schmoor C, Sauerbrei W, Schumacher M (1999) Assessment and comparison of prognostic classi-
fication schemes for survival data. Stat Med 18(17-18):2529-2545

@ Springer

http://arxiv.org/abs/1801.05512

736 H. Kvamme, @. Borgan

Harrell FE Jr, Califf RM, Pryor DB, Lee KL, Rosati RA (1982) Evaluating the yield of medical tests.] Am
Med Assoc 247(18):2543-2546

Holford TR (1976) Life tables with concomitant information. Biometrics 32(3):587-597

van Houwelingen H, Putter H (2011) Dynamic prediction in clinical survival analysis, 1st edn. CRC Press,
London

Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS (2008) Random survival forests. Ann Appl Stat
2(3):841-860

Katzman JL, Shaham U, Cloninger A, Bates J, Jiang T, Kluger Y (2018) DeepSurv: personalized treatment
recommender system using a Cox proportional hazards deep neural network. BMC Med Res Methodol
18:24

Klein JP, Moeschberger ML (2003) Survival analysis: techniques for censored and truncated data, 2nd edn.
Springer, New York

Kvamme H, Borgan @, Scheel I (2019) Time-to-event prediction with neural networks and Cox regression.
J Mach Learn Res 20(129):1-30

Lee C, Zame WR, Yoon J, van der Schaar M (2018) DeepHit: a deep learning approach to survival analysis
with competing risks. In: Thirty-second AAAI conference on artificial intelligence

Loshchilov I, Hutter F (2019) Decoupled weight decay regularization. In: International Conference on
Learning Representations

Luck M, Sylvain T, Cardinal H, Lodi A, Bengio Y (2017) Deep learning for patient-specific kidney graft
survival analysis. arXiv preprint arXiv:1705.10245

Smith LN (2017) Cyclical learning rates for training neural networks. In: 2017 IEEE winter conference on
applications of computer vision (WACV), pp 464-472

Therneau TM (2015) A Package for Survival Analysis in S. https://CRAN.R-project.org/package=survival,
version 2.38

Tutz G, Schmid M (2016) Modeling discrete time-to-event data. Springer, New York

Yousefi S, Amrollahi F, Amgad M, Dong C, Lewis JE, Song C, Gutman DA, Halani SH, Vega JEV, Brat DJ
et al (2017) Predicting clinical outcomes from large scale cancer genomic profiles with deep survival
models. Sci Rep 7:11707

Yu CN, Greiner R, Lin HC, Baracos V (2011) Learning patient-specific cancer survival distributions as
a sequence of dependent regressors. In: Advances in neural information processing systems, vol 24.
Curran Associates, Inc., pp 1845-1853

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

http://arxiv.org/abs/1705.10245
https://CRAN.R-project.org/package=survival

	Continuous and discrete-time survival prediction with neural networks
	Abstract
	1 Introduction
	2 Discrete-time models
	2.1 The discrete-time survival likelihood
	2.2 Parameterization with neural networks

	3 Continuous-time models
	3.1 Discretization of the time scale
	3.2 Interpolation for continuous-time predictions
	3.3 A piecewise constant continuous-time hazard parametrization

	4 Simulations
	4.1 Simulation setup, hyperparameter tuning, and evaluation
	4.2 Comparison of discrete-time methods
	4.3 Comparison of interpolation schemes
	4.4 Comparison with PC-Hazard
	4.5 Summary of simulations

	5 Experiments with real data
	5.1 Hyperparameter tuning and evaluation
	5.2 Results

	6 Discussion
	Acknowledgements
	Appendix A More on the simulations
	A.1 Discrete-time survival Simulations from logit hazards
	A.2 Additional simulation results

	Appendix B Implementation details
	Appendix C Multi-task logistic regression as PMF
	References

