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In this article, we examine study designs for extending (generalizing or transporting) causal inferences from
a randomized trial to a target population. Specifically, we consider nested trial designs, where randomized
individuals are nested within a sample from the target population, and nonnested trial designs, including composite
data-set designs, where observations from a randomized trial are combined with those from a separately obtained
sample of nonrandomized individuals from the target population. We show that the counterfactual quantities that
can be identified in each study design depend on what is known about the probability of sampling nonrandomized
individuals. For each study design, we examine identification of counterfactual outcome means via the g-formula
and inverse probability weighting. Last, we explore the implications of the sampling properties underlying the
designs for the identification and estimation of the probability of trial participation.

causal inference; generalizability; randomized trials; transportability

Methods for addressing selective study participation (1)
can be used to extend (i.e., generalize or transport (2, 3))
causal inferences from a randomized trial to a target popu-
lation (4–10). The methods require baseline covariate, treat-
ment, and outcome data from persons participating in the
trial and baseline covariate data from nonrandomized indi-
viduals. Estimation of counterfactual outcome means in the
target population may be based on models for the probability
of trial participation (4), the expectation of the outcome
under each treatment among trial participants (8), or both
(6, 10). Prior work on these methods has largely focused on
identifiability conditions and estimation approaches rather
than study design principles; yet, different study designs
determine which counterfactual quantities (i.e., causal esti-
mands) can be identified and have implications for iden-
tifying and estimating the conditional probability of trial
participation.

Two types of study designs that combine data from ran-
domized individuals with data from a sample of nonran-
domized individuals have been used for the explicit goal
of estimating counterfactual outcome means and treatment
effects in a target population of substantive interest: 1) nested
trial designs, in which the randomized trial is embedded in a
sample from the target population (6), and 2) nonnested trial

designs, in which observations from randomized individuals
are combined with a separately obtained sample of nonran-
domized persons from the target population. The sampling
probability of nonrandomized individuals is known in nested
trial designs (5) but unknown in nonnested trial designs (7,
9, 10). In both types of study designs, baseline covariate
data are collected from all randomized individuals and from
sampled nonrandomized individuals; treatment and outcome
data need only be collected from randomized individuals.
Though treatment and outcome data from nonrandomized
individuals can be used to evaluate assumptions or improve
efficiency, they are not necessary for identification and esti-
mation under the assumptions used in this paper or in the
bulk of the related literature (e.g., as reviewed by Lesko et
al. (8)).

In this paper, we show how knowledge about the
sampling of nonrandomized individuals determines which
counterfactual quantities can be identified in each study
design. For each design, we examine identification of
counterfactual outcome means under time-fixed treatments
via the g-formula and inverse probability weighting, and
we explore the implications of the design’s sampling
properties for modeling the probability of trial participa-
tion.
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Figure 1. Sampling designs for studies extending inferences from a randomized trial to a target population. For detailed descriptions of notation,
see the main text. Brief ly, X denotes baseline covariates, S the trial participation indicator, and D the indicator for sampling into the study sample.
The dashed box around D = 0 denotes the fact that covariate data may not be available from this subset and that in nonnested trial designs the
size of the subset may be unknown.

SAMPLING PROPERTIES AND THE OBSERVED DATA

Investigators can specify a set of eligibility criteria that
define an actual population of individuals to whom research
findings would be applicable, in the sense that in principle
we can identify the finite (“real-world”) population of per-
sons who meet the eligibility criteria. For instance, when
designing a randomized trial, the trial eligibility criteria
define an actual population of all trial-eligible individuals
who could be recruited into the trial. Here, as is often done
in statistical work, we view the actual population as a simple
random sample from an (infinite) superpopulation of indi-
viduals (11); we refer to this superpopulation as the target
population. We are interested in counterfactual quantities
that pertain to the target population or to its subsets (e.g.,
defined by trial participation status).

To introduce some notation, let X = (X1, . . . , Xp) denote a
vector of p baseline covariates; A the (time-fixed) treatment
assignment indicator; Y the observed outcome; and S the trial
participation indicator, with S = 1 for randomized individu-
als and S = 0 for nonrandomized individuals (persons who
either are not invited to participate in the trial or are invited
but decline). To capture the notion that some nonrandomized
individuals in the actual population (S = 0) may not be
sampled, let D be an indicator for whether a person in the
actual population is sampled and contributes data to the
analyses, with D = 1 for sampled individuals and D = 0
for nonsampled individuals.

We can now discuss the sampling properties that underlie
nested and nonnested study designs. These properties
describe how the observed study sample relates to the
actual population; the underlying actual population and
(hypothetical) target population are the same across designs.

Figure 1 illustrates the conceptual relationships between
designs, their sampling properties, and the observed data.

In the main text of this paper, we consider simple random
samples, with known or unknown sampling probabilities,
from the actual population or from the nonrandomized sub-
set of the actual population. As we discuss below, our
main results, with minor modifications, hold when the sam-
pling probability is a known function of auxiliary baseline
covariates rather than a known constant (i.e., when we have
random sampling, not simple random sampling). Allowing
the sampling probabilities to depend on auxiliary covariates,
however, does not lead to additional insights regarding study
design (12); for this reason, in the main text, we assume that
the sampling probability does not depend on covariates.

Nested trial designs

We consider 2 variants of the nested trial design, for
situations where 1) a census of the actual population is taken
and 2) the nonrandomized individuals are subsampled.

Census of the actual population. In the first variant of the
nested trial design, the persons contributing data to the anal-
ysis are assumed to be a census of the actual population—
that is,

Pr[D = 1|S = 1] = Pr[D = 1|S = 0] = 1.

Thus, nested trial designs can be viewed as simple random
samples from the superpopulation. In this design, it is com-
mon to define the target population implicitly, based on the
actual population in which the trial is nested. For example, in
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comprehensive cohort studies (13), investigators nest a trial
within a cohort of all persons who met the trial’s eligibility
criteria and were invited to participate in the trial. They
then define the target population as the population from
which cohort members (i.e., the actual population of trial-
eligible individuals invited to participate in the trials) could
have been a simple random sample. Thus, in this design,
investigators need to ensure that the cohort represents the
target population they are interested in; that is, the trial
eligibility criteria need to be broad enough to address the
research question and the individuals invited to participate
in the trial (who form the cohort in which the trial is nested)
need to represent the target population of interest.

Subsampling of nonrandomized individuals. In the second
variant of the design, we collect data from all randomized
individuals in the actual population but only collect baseline
covariate data from a subsample of the nonrandomized indi-
viduals in the actual population, with sampling probability
that is a known constant. The sampling properties can be
summarized as

Pr[D = 1|S = 1] = 1 and

Pr[D = 1|X, A, Y , S = 0] = Pr[D = 1|S = 0] = c,

where c is a known constant, with 0 < c ≤ 1. Note that the
nested trial design with a census of the actual population can
be viewed as a special case of the subsampling design, with
c = 1. Using c < 1 is statistically less efficient than using
c = 1, but it may improve research economy—for example,
if the collection of covariate data among all nonrandom-
ized individuals is expensive or otherwise infeasible (12).
Furthermore, as noted, a variant of the nested trial design
with subsampling allows the selection of nonrandomized
individuals to depend on auxiliary baseline covariates; we
give the sampling properties of this design variant in Web
Appendix 1 (available online at https://doi.org/10.1093/aje/
kwaa270).

Nonnested trial designs

In nonnested trial designs, data from randomized and
nonrandomized individuals are obtained separately. Inves-
tigators assume that data from all randomized individuals
can be combined with data from a simple random sample of
nonrandomized individuals from the actual population, with
a sampling probability that is an unknown constant (e.g.,
see Westreich et al. (7)). The sampling properties can be
summarized as

Pr[D = 1|S = 1] = 1 and

Pr[D = 1|X, A, Y , S = 0] = Pr[D = 1|S = 0] = u,

where u is an unknown constant, with 0 < u ≤ 1. An
example of a nonnested trial design is the composite
data-set design (7, 10). Here, investigators append the
data from a randomized trial to data from a convenience
sample of nonrandomized individuals, often obtained from
routinely collected data sources (e.g., claims or electronic
medical records databases) or prospective cohort studies.

The assumption is that the sample of nonrandomized indi-
viduals is a simple random sample from the population of
nonrandomized individuals (or a subset thereof) to whom
the investigators wish to extend the trial results. This as-
sumption, often unstated, appears to be implicit in all ap-
plied analyses using nonnested designs that we are aware of.

In many applications it is not possible to establish that a
simple random sample of nonrandomized individuals in the
actual population has been taken, and in some cases there
may even exist nonidentifiable overlap between the trial and
the sample of ostensibly nonrandomized individuals from
the actual population. Such overlap would complicate statis-
tical analyses (14), but in most practical situations the impact
is likely to be negligible because the trial and the sample
of the target population are only a small part of the actual
population. In effect, when the sample of nonrandomized
individuals has not been obtained by formal simple random
sampling of the nonrandomized subset of the actual popula-
tion, most investigators appear to be comfortable proceeding
as if the sample had been obtained by such sampling.

A related difficulty in nonnested designs arises when the
nonrandomized individuals are not selected from the entire
nonrandomized subset of the actual population but from a
narrower group. For example, suppose that a randomized
trial takes place in the United States and that the sample
of nonrandomized individuals is obtained by identifying
members of a private health insurance plan who, during
trial enrollment, met the trial eligibility criteria. Clearly,
these nonrandomized individuals do not exhaust the non-
randomized members of the actual population (because of
the existence of other nonoverlapping insurance plans with
trial-eligible members). Such situations can be handled by
the results presented in our paper by redefining S = 0 to
mean “nonparticipant who is a member of the particular
plan” and defining D = 1 for trial participants and eligible
nonparticipants who are members of the particular plan
and contribute data. These changes, however, narrow the
scope of the inferences that can be drawn from the data and
may make the identifiability conditions discussed below less
plausible.

The observed data

In both nested and nonnested designs, we collect data on
baseline covariates, treatment, and outcome from random-
ized individuals; in contrast, as we shall show, only baseline
covariate data are needed from nonrandomized individuals.

More specifically, for nested designs the observed data
consist of realizations of (X, A, Y , S = 1, D = 1) for trial
participants; (X, S = 0, D = 1) for sampled nonrandomized
individuals; and (S = 0, D = 0) for nonsampled nonran-
domized individuals. Because all randomized individuals
are sampled, (D = 1, S = 1) ⇐⇒ (S = 1). No covariate,
treatment, or outcome data are available for nonsampled
nonrandomized individuals (D = 0, S = 0). Note also that
in nested trial designs with a census of the actual population,
the (D = 0, S = 0) subset does not exist.

In nonnested trial designs, we typically do not know the
number of nonsampled nonrandomized individuals; thus, the
observed data consist of realizations only of (X, A, Y , S = 1,
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D = 1) for trial participants and (X, S = 0, D = 1) for sampled
nonrandomized individuals.

COUNTERFACTUAL QUANTITIES AND
IDENTIFIABILITY CONDITIONS

Counterfactual quantities of interest

In order to define the counterfactual quantities (causal es-
timands) of interest, let Ya be the counterfactual (potential)
outcome under intervention to set treatment to a (15, 16). We
are interested in the mean of each of these counterfactual
outcomes in the target population E[Ya] or in the nonran-
domized subset of the target population E[Ya|S = 0]. For
example, E[Ya] is the expected outcome under the strategy
of treating all persons in the target population with treatment
a. It is often scientifically and methodologically interesting
to compare E[Ya|S = 0] with E[Ya|S = 1], to examine
whether the counterfactual outcome mean under treatment
a differs among trial participants and nonparticipants in the
target population (6).

Identifiability conditions

For all study designs, the following identifiability condi-
tions are sufficient to extend inferences from a trial to a target
population (6, 10):

1. Consistency of counterfactual outcomes: Interventions
are well-defined, so that if Ai = a, then Ya

i = Yi for every
individual i. Implicit in this notation is that the offer to
participate in the trial and trial participation itself do not
have an effect on the outcome except through treatment
assignment (e.g., there are no Hawthorne effects (17)) (3,
18).

2. Conditional mean exchangeability among trial partici-
pants: E[Ya|X = x, S = 1, A = a] = E[Ya|X = x,
S = 1] for every a and for every x with positive density
f (x, S = 1) > 0. This condition is expected to hold
because of randomization (marginal or conditional on X).

3. Positivity of treatment assignment in the trial: Pr[A =
a|X = x, S = 1] > 0 for each a and each x with positive
density f (x, S = 1) > 0. This condition is also expected
to hold because of randomization.

4. Conditional mean exchangeability over S: E[Ya|X =
x, S = 1] = E[Ya|X = x] for every a and for every x with
positive density in the target population f (x) > 0. For
binary S, this condition implies the mean transportability
condition E[Ya|X, S = 1] = E[Ya|X, S = 0], provided
both conditional expectations are well-defined.

5. Positivity of trial participation: Pr[S = 1|X = x] > 0
for each x with positive density in the target population
f (x) > 0.

In these conditions, we have used X generically to denote
baseline covariates. It is possible, however, that strict sub-
sets of X are adequate to satisfy different exchangeability
conditions. For example, in a marginally randomized trial,
the mean exchangeability among trial participants holds
unconditionally. Furthermore, to focus on issues related to

selective trial participation, we will assume that there is full
adherence to the assigned treatment and no loss to follow-up.

The identifiability conditions involving counterfactual
variables above (and the identification results in equations
1 and 2, presented below) may be obtained using graphical
causal models (e.g., directed acyclic graphs with selection
nodes (19, 20) or single world intervention graphs (21)
treating trial participation as an intervention (18, 22)). In
this paper, we treat the identifiability conditions as primitive
(i.e., not derived) in order to focus on issues related to study
design, sampling of participants, and statistical modeling.
Such issues have not been adequately addressed in the
generalizability and transportability literature. For example,
a recent review of study design issues for generalizability
and transportability did not identify any work explicitly
discussing the interplay between study design and identifia-
bility or model specification/estimation (23).

Trial eligibility criteria and choice of target population

Now that we have specified the counterfactual quantities
of interest and listed identifiability conditions, we can con-
sider the choice of target population in more detail. As noted
above, the target population should be determined by the
scientific question investigators plan to address. In many
cases, when using the methods described in this paper, it
is sensible to limit the target population to the population
of persons meeting the trial eligibility criteria or to a subset
of that population. To the extent that the variables used to
define the trial eligibility criteria are needed for conditional
mean exchangeability over S to hold, restriction of the target
population to trial-eligible individuals is needed to satisfy
the “positivity of trial participation” condition—persons not
meeting the criteria are not allowed to enter the trial. In some
cases, however, investigators may be able to argue that only
a subset of the variables used to determine trial eligibility
are necessary for conditional mean exchangeability over S to
hold. In such cases, the target population can be broader than
the population of trial-eligible individuals. The essential
requirement is that the distributions of covariates needed for
conditional mean exchangeability should have common sup-
port between the randomized and nonrandomized subsets.

IDENTIFICATION VIA THE G-FORMULA

We begin by considering identification by the g-formula
(24). Using the identifiability conditions listed above, it
is straightforward to show that the counterfactual outcome
mean in the target population (6) can be reexpressed as

E[Ya] = E[E[Y|X, S = 1, A = a]]

=
∫

E[Y|X = x, S = 1, A = a]dFX(x)

≡ ψ(a), (1)

where FX(x) denotes the distribution of X in the target
population.
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The counterfactual outcome mean among nonrandomized
individuals in the target population (10) can be reexpressed
as

E[Ya|S = 0] = E[E[Y|X, S = 1, A = a] | S = 0]

=
∫

E[Y|X = x, S = 1, A = a]dFX|S(x|S = 0)

≡ φ(a), (2)

where FX|S(x|S = 0) denotes the distribution of X among
nonrandomized individuals in the target population (i.e., the
subset with S = 0).

First, we note that both results involve the conditional
expectation of the outcome Y among trial participants
assigned to treatment a, E[Y|X, A = a, S = 1]. Because both
nested and nonnested designs assume that all randomized
individuals are sampled, this expectation is identifiable in
both designs.

Next, we turn our attention to the identification of FX(x)
and FX|S(x|S = 0), which are necessary for ψ(a) and φ(a),
respectively. There are interesting differences between the
designs when it comes to identifying these distributions, and
we consider each design individually below.

Nested trial designs

Census of the actual population. Identification is most straight-
forward in this design, because data are available from all
members of the actual population (both randomized and
nonrandomized) and the actual population is a simple ran-
dom sample from the target population. Thus, FX(x) is
identifiable. Furthermore, in this design, every subset of the
actual population defined on the basis of baseline covariates
or trial participation is a simple random sample from the
corresponding subset in the target population. Thus, the
distribution of covariates among nonrandomized individuals
FX|S(x|S = 0) can also be identified. It follows that all of
the components on the right-hand sides of equations 1 and
2 are identifiable, establishing that all components of ψ(a)
and φ(a) are identifiable.

Subsampling of nonrandomized individuals. For this de-
sign, identification of the marginal distribution of X is slight-
ly more involved because the nonrandomized individuals
contributing data to the analysis are a subsample from the
nonrandomized individuals in the actual population.

By the law of total probability, for binary S,

FX(x) =
1∑

s=0

FX|S (x|S = s) Pr[S = s].

Clearly, FX|S(x|S = s), for s = 0, 1 is identifiable because
the randomized and nonrandomized sampled individuals are
simple random samples of the target population subsets with
S = 1 and S = 0, respectively. Thus, FX|S(x|S = s) =
FX|S,D(x|S = s, D = 1), for s = 0, 1. The only difficulty,
then, is identification of the marginal probability of trial

participation, Pr[S = 1], because Pr[S = 0] = 1−Pr[S = 1].
As we show in Web Appendix 2, under the sampling prop-
erties of the nested trial design with subsampling of nonran-
domized individuals,

Pr[S = 1] =
{

1 + Pr[S = 0|D = 1]

Pr[S = 1|D = 1]
× c−1

}−1

. (3)

The odds of nonparticipation in the trial among sampled

individuals,
Pr[S = 0|D = 1]

Pr[S = 1|D = 1]
, are identifiable; and, as de-

fined above, c is a known constant. It follows that FX(x) is
identifiable and, consequently, ψ(a) is identifiable because
all of the components of the integral on the right-hand side
of equation 1 are identifiable.

Turning our attention to FX|S(x|S = 0), we note that it
is identifiable because the sampled nonrandomized individ-
uals are a simple random sample from the nonrandomized
individuals in the actual population, FX|S(x|S = 0) =
FX|S,D(x|S = 0, D = 1). It follows that φ(a) is identifiable
because all of the components of the integral on the right-
hand side of equation 2 are identifiable. In Web Appendix
3, we extend these results to the case of covariate-dependent
sampling of nonrandomized individuals.

Nonnested trial designs

Using an argument parallel to that for nested trial designs
with subsampling, when the probability of sampling a non-
randomized individual is unknown, the probability of trial
participation, Pr[S = 1], can be expressed in the form of
equation 3, substituting the u for c:

Pr[S = 1] =
{

1 + Pr[S = 0|D = 1]

Pr[S = 1|D = 1]
× u−1

}−1

.

Because, as defined above, u is an unknown constant, FX(x)
is not identifiable, and consequently ψ(a) is also not identi-
fiable.

Turning our attention to FX|S(x|S = 0), we note that
it is identifiable because the nonrandomized individuals
contributing data to the analysis are a simple random sample
from the nonrandomized individuals in the actual popula-
tion (even though the sampling probability is unknown),
FX|S(x|S = 0) = FX|S,D(x|S = 0, D = 1). It follows that
φ(a) is identifiable in nonnested trial designs because all of
the components of the integral in equation 2 are identifiable.

IDENTIFICATION VIA WEIGHTING

There has been considerable recent interest (4–7, 10)
in using weighting methods to identify the counterfactual
outcome means in equations 1 and 2, presumably because
the specification of models for the probability of trial partic-
ipation is often considered a somewhat easier task than the
specification of models for the expectation of the outcome
among trial participants.
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First, consider ψ(a) = E [E[Y|X, S = 1, A = a]], which
we argued is identifiable in nested trials. As is shown in a
previous paper (6), we can reexpress the right-hand side of
equation 1 to use weighting—that is,

ψ(a) = E

[
I (S = 1, A = a) Y

Pr[S = 1|X] Pr[A = a|X, S = 1]

]
, (4)

where I(· ) denotes the indicator function.
Now consider φ(a) = E [E[Y|X, S = 1, A = a]|S = 0],

which we argued is identifiable by the g-formula in both
nested and nonnested trials. As is shown in Dahabreh et al.
(10), we can reexpress the right-hand side of equation 2 to
use weighting—that is,

φ(a) =
E

[
I (S = 1, A = a) Y Pr[S = 0|X]

Pr[S = 1|X] Pr[A = a|X, S = 1]

]

E

[
I (S = 1, A = a) Pr[S = 0|X]

Pr[S = 1|X] Pr[A = a|X, S = 1]

] . (5)

The probability of treatment among trial participants,
Pr[A = a|X, S = 1], is under the control of the investigators
and does not pose any difficulties for identification of either
functional. Now, for each design, we focus our attention
on the conditional probability or the conditional odds of
trial participation, which appear in equations 4 and 5,
respectively.

Nested trial designs

Census of the actual population. Identification of Pr[S =
1|X] in this design is an obvious consequence of the fact that
persons contributing data to the analysis are a simple random
sample from the target population. In other words, because
we have sampled all individuals in the actual population,
which is a simple random sample of the target population,
Pr[S = 1|X] = Pr[S = 1|X, D = 1].

Subsampling of nonrandomized individuals. For this de-
sign, it helps to note that

φ(a) =
E

[
I (S = 1, A = a) Y Pr[S = 0|X]

Pr[S = 1|X] Pr[A = a|X, S = 1]
|D = 1

]

E

[
I (S = 1, A = a) Pr[S = 0|X]

Pr[S = 1|X] Pr[A = a|X, S = 1]
|D = 1

] ,

(6)
which can be verified by multiplying the numerator and
denominator of the right-hand side of the equation by
Pr[D = 1] > 0 and noticing that, by design, (S = 1) ⇐⇒
(S = 1, D = 1). Thus, in this design, as when there is no
subsampling of nonrandomized individuals, we only need to
worry about the identification of Pr[S = 1|X]. As we show
in Web Appendix 3, under the sampling properties of this
design,

Pr[S = 1|X] =
{

1 + Pr[S = 0|X, D = 1]

Pr[S = 1|X, D = 1]
× c−1

}−1

. (7)

In this design, the conditional odds of trial participation

among sampled individuals,
Pr[S = 0|X, D = 1]

Pr[S = 1|X, D = 1]
, are iden-

tifiable, and c is a known constant; thus, Pr[S = 1|X] is
also identifiable. Furthermore, the population odds of trial
participation can be written as

Pr[S = 1|X]

Pr[S = 0|X]
= Pr[S = 1|X, D = 1]

Pr[S = 0|X, D = 1]
× c. (8)

In sum, and as expected based on our results about iden-
tification using the g-formula, the weighting reexpressions
of the functionals of interest are identifiable in nested trial
designs. Furthermore, the probability of trial participation
conditional on covariates, which is useful for studying deter-
minants of trial participation, is also identifiable both when
we have a census of the actual population and when we
subsample the nonrandomized individuals.

Nonnested trial designs

Equation 6 also applies to nonnested trial designs; thus,
we only need to consider the identifiability of Pr[S = 1|X].
We can use an argument parallel to that for nested trial
designs with subsampling to establish that when the sam-
pling probability for nonrandomized individuals is unknown,
the probability of trial participation, Pr[S = 1|X], can be
expressed as

Pr[S = 1|X] =
{

1 + Pr[S = 0|X, D = 1]

Pr[S = 1|X, S = 1]
× u−1

}−1

. (9)

Because, as defined above, u is unknown, the conditional
probability of trial participation, which appears on the right-
hand side of equation 4, is not identifiable; this confirms
our earlier result that ψ(a) cannot be identified in nonnested
trials.

Furthermore, the conditional odds of trial participation
are also not identifiable because they depend on u. In fact,
using equation 8, substituting u for c, we see that the odds
of trial participation in the target population are, up to an
unknown multiplicative constant, equal to the odds of trial
participation among sampled individuals,

Pr[S = 1|X]

Pr[S = 0|X]
= Pr[S = 1|X, D = 1]

Pr[S = 0|X, D = 1]
× u. (10)

We have come to an apparent conflict: The right-hand
sides of equations 5 and 6 involve the conditional odds
of trial participation, a quantity that is not identifiable in
nonnested designs. Yet, we argued in the previous section
that φ(a), which appears on the left-hand sides of equations
5 and 6, is identifiable. The conflict can be easily resolved
by noting that, because both the numerator and the denomi-
nator in equation 5 are multiplied by the unknown constant
u, which cancels out, identification via weighting by the
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inverse of the odds of trial participation is possible (see
Dahabreh et al. (10) for technical details).

Table 1 summarizes the sampling properties and identifi-
cation results for each study design.

ESTIMATING THE PROBABILITY OF TRIAL
PARTICIPATION

In realistic analyses, the dimension of X will be fairly large,
necessitating some modeling assumptions about Pr[S = 1|X]
or Pr[S = 1|X, D = 1] (25). Below we discuss the relation-
ship between study design and model specification and
estimation approaches.

Nested trial designs

Census of the actual population. In this type of nested trial
design, it is straightforward to estimate the probability of
trial participation, Pr[S = 1|X], in the sense that we can use
the model we believe is most likely to be correctly specified
for the target population.

For concreteness, suppose that we are willing to assume a
parametric model, p(X; γ), for the probability of trial partic-
ipation in the target population, Pr[S = 1|X], with γ a finite
dimensional parameter. In the nested-trial designs with a
census of nonrandomized individuals, we typically estimate
the parameters by maximizing the likelihood function

L (γ) =
n∏

i=1

[p (Xi; γ)]Si[1 − p (Xi; γ)]1−Si,

where i = 1, . . . , n and n is the number of persons in
the study (i.e., the actual population). Under reasonable
technical conditions (26), the usual maximum likelihood
methods use a sample-size normalized objective function
that converges uniformly in probability to

�0(γ) = E
[
S log [p (X; γ)] + (1 − S) log [1 − p (X; γ)]

]
.

(11)

For example, when p(X; γ) is a logistic model, �0(γ) is
the large-sample limit of the sample-size normalized log-
likelihood function for logistic regression.

Subsampling of nonrandomized individuals. When we
subsample the nonrandomized individuals in the actual
population, it is not possible to maximize the likelihood
function above, because data are not available from all
nonrandomized individuals in the actual population. A
natural idea is to use equation 7, which provides an explicit
formula for identifying the conditional probability of trial
participation, Pr[S = 1|X], using the probability of trial par-
ticipation among sampled individuals, Pr[S = 1|X, D = 1],
and the sampling probability for nonrandomized individuals,
Pr[D = 1|S = 0].

When modeling the probability of trial participation
among sampled individuals, however, the following diffi-
culty arises: In general, when sampling depends on trial
participation status, the correctly specified model for trial

participation does not necessarily have the same form as the
correctly specified model in the target population. In other
words, when sampling depends on trial participation status,
as it does in the nested trial design with subsampling, the
“true” model for Pr[S = 1|X] does not have the same form
as the “true” model for participation conditional on being
sampled, Pr[S = 1|X, D = 1]. This means that naive esti-
mation of the parameters of the model for trial participation
among sampled individuals (“naive” in the sense that it does
not account for subsampling nonrandomized individuals)
will typically be inconsistent for the population model.

Nevertheless, because the sampling probability of non-
randomized individuals is known, we can use the following
weighted pseudolikelihood function, which uses only data
from sampled individuals (27, 28):

LW(γ) =
n∏

i=1

[p (Xi; γ)]SiDi[1 − p (Xi; γ)][(1−Si)Di]/c,

with c = Pr[D = 1|S = 0]. Weighted maximum likelihood
methods use a sample-size normalized objective function
that converges uniformly in probability to

�W(γ)=E

[
SD log[p(X; γ)]+ (1−S) D

c
log [1−p(X; γ)]

]
,

(12)

which is restricted to sampled individuals (D = 1).
As we show in Web Appendix 4, under the sampling prop-

erties for this design, the large-sample limits of the objective
functions in equations 11 and 12 are equal, �0(γ) = �W0(γ).
It follows that, under reasonable technical conditions (26),
weighted likelihood estimation of γ in the nested trial design
with subsampling of nonrandomized individuals converges
in probability to the same parameter as unweighted regres-
sion in the actual population.

In practical terms, as long as a reasonable parametric
model for the probability of participation can be specified
for the target population, the model parameters can be esti-
mated using weighted maximum likelihood methods (27) on
data from sampled individuals, with individual-level weights
equal to 1 for randomized individuals, S = 1, D = 1; c−1

for sampled nonrandomized individuals, S = 0, D = 1; and
0 for unsampled individuals, D = 0. In Web Appendix 5,
we extend these results to the case of covariate-dependent
sampling of nonrandomized individuals.

Nonnested trial designs

In nonnested trial designs, the weighting approach de-
scribed above is not applicable because the sampling proba-
bility of nonrandomized individuals is unknown. Provided,
however, that the sampling probability does not depend on X
(i.e., the assumed sampling property), we can show that, if
a logistic model for trial participation is correctly specified
in the target population, then a logistic model with the same
functional form is correctly specified in the nonnested trial
design. In fact, the 2 models have the same coefficients but
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different intercepts. To see this, suppose that we are willing
to assume a logistic regression model in the population, such
that

ln
Pr[S = 1|X]

Pr[S = 0|X]
= β0 +

p∑
j=1

βjXj.

Using the result in equation 9 and taking logarithms, we have
that

ln
Pr[S = 1|X]

Pr[S = 0|X]
= ln(u) + ln

Pr[S = 1|X, D = 1]

Pr[S = 0|X, D = 1]
.

Equating the right-hand sides of the last 2 equations, we
obtain

ln
Pr[S = 1|X, D = 1]

Pr[S = 0|X, D = 1]
= β∗

0 +
p∑

j=1

βjXj, (13)

where β∗
0 = β0 − ln(u), a well-known result in the context

of case-referent studies (29). Thus, if a logistic model is cor-
rectly specified in the target population, then a model of the
same functional form is correctly specified in the nonnested
trial design. In fact, the coefficients in the two models are
equal, and only the intercept differs. Because 0 < u ≤
1, β∗

0 ≥ β0: The subsampling of nonrandomized patients
simply results in an intercept that is “shifted” upwards. As
we showed in the section on weighting, the resulting shift in
the odds of participation does not affect identification of the
counterfactual outcome mean in the nonrandomized indi-
viduals, E[Ya|S = 0], which is the parameter of interest in
nonnested trial designs with unknown sampling probability
of nonrandomized individuals.

The above result is also important for estimation of the
model parameters: Combined with the results in the papers
by Prentice and Pyke (30) and Breslow et al. (31), it implies
that the unconstrained and unweighted maximum likelihood
estimator for the logistic model in equation 13, fitted among
sampled individuals, is the efficient estimator for βj, j =
1, . . . , p.

Of course, there is no reason to expect that the population
participation model for Pr[S = 1|X] follows a logistic
form—in fact, substantive knowledge about that model will
often be insufficient to specify any parametric functional
form. Therefore, in high-dimensional settings with large
samples, it will often be a good idea to use more flexible
modeling strategies (e.g., data-adaptive machine learning
methods) to estimate Pr[S = 1|X] or Pr[S = 1|X, D = 1].

DISCUSSION

In this paper, we have presented a unified description
of study designs for extending inferences from randomized
trials to a target population and have shown that commonly
invoked identifiability conditions need to be combined with
the sampling properties of each study design in order to

determine which counterfactual quantities can be identified.
Our approach uses a superpopulation framework, which is a
natural choice for extending trial findings beyond the sample
of randomized individuals (32).

In nonnested trial designs, where the sampling probability
for nonrandomized individuals is unknown, the marginal
counterfactual outcome means in the entire target population
are not identifiable, but the counterfactual outcome means
in the subset of nonrandomized individuals are identifiable.
This restriction may be less severe than it appears: For
most trials, we want to estimate the effect of applying the
interventions to a new population, which can be represented
by a well-chosen sample of nonrandomized individuals (10).
In any case, when available, knowledge of the sampling
probability of nonrandomized individuals can be used to
mitigate these limitations, without requiring the collection
of covariate information from all nonrandomized individ-
uals in the actual population. Thus, in general, nested trial
designs will often be the preferred approach for generalizing
trial findings when it is possible to define and sample the
actual population when a randomized trial is planned. Such
nested trial designs will typically have broad (pragmatic
(33)) eligibility criteria and define the target population
as the population of persons meeting the trial eligibility
criteria. When that is not possible, as is the case with already
completed randomized trials, nonnested trial designs might
be a reasonable alternative. For example, in nonnested trial
designs, the comparison of estimates for the counterfactual
outcome means among randomized (Ê[Ya|S = 1]) and
nonrandomized (Ê[Ya|S = 0]) individuals is of practi-
cal interest: Provided the identifiability conditions hold, if
Ê[Ya|S = 1] ≈ Ê[Ya|S = 0], we may conclude that the
trial results are likely to apply to the population underlying
the sample of nonrandomized individuals (up to sampling
variability); in contrast, if the estimates are different, trial
results may not apply to that population.

We also showed that the different study designs have
implications for identifying and estimating the conditional
probability of trial participation. This probability may be
of inherent interest because it captures aspects of decision-
making related to trial participation (34, 35). We showed
that the probability is identifiable in nested trial designs
but not in nonnested trial designs (e.g., composite data set
designs). Indeed, any reasonable model for the probability
of participation in the population can be identified in nested
trial designs. In nested trial designs with subsampling of
nonrandomized individuals, estimation of model parameters
can be facilitated by the use of weighted estimation, in which
randomized patients are given weight 1 and nonrandomized
patients are given a weight equal to the inverse of the prob-
ability of being sampled among nonrandomized persons
in the actual population. In nonnested trial designs, model
specification is complicated by the fact that, when sampling
depends on trial participation status, the model for the proba-
bility of trial participation among sampled individuals is not
of the same form as the model in the population (the logistic
regression model being a notable exception (27)).

The probability of trial participation in the target pop-
ulation is also important for identification and estimation
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using weighting methods. Our argument that the odds of
participation after selection of nonrandomized individuals
are equal to the odds of participation in the target population
up to an unknown multiplicative constant clarifies how the
validity of estimators when using composite data-set designs
(10) depends critically on the assumed sampling properties
(an issue that had not been fully addressed in earlier work,
such as the paper by Westreich et al. (7)).

Astute readers will have noticed the many connections
between our results and the theory of case-referent (“case-
control”) studies (27–29, 36, 37). Indeed, our approach can
be placed in the case-base paradigm, viewing randomized
individuals as “cases” in a cumulative incidence case-
referent study (36) nested in the “cohort” of the actual popu-
lation. An interesting parallel with case-referent studies: The
difficulties in specifying the population of nonrandomized
individuals that should be sampled in nonnested trial designs
(e.g., composite data-set designs) are similar in nature to the
validity issues of case-referent studies with a secondary base
(38–40).

In this paper, for simplicity, we focused on counterfactual
quantities that are most meaningful for point treatments with
complete adherence and no loss to follow-up. Our results
can be extended to address time-varying treatments using
well-known extensions of the identifiability conditions for
randomized trials (24, 32, 41), without any changes to the
sampling properties or the modeling assumptions about the
probability of trial participation (18). Perhaps, then, the most
consequential causal assumption we required was that the
invitation to participate in the trial and trial participation
itself do not have an effect on the outcome except through
treatment assignment (3, 18). Unless investigators are will-
ing to contemplate more complex study designs involving
multistage data collection about (and possibly randomiza-
tion of) the invitation to participate, trial participation itself,
and treatment assignment (42), our results are best viewed
as applying to trials where the not-through-treatment effects
of the invitation to participate in the trial and of trial partici-
pation are negligible compared with the effects of treatment.
For example, they are applicable to pragmatic randomized
trials embedded in large health-care systems or registries,
where trial procedures other than treatment assignment can
be assumed to be similar to usual medical practice (33, 43,
44).

In conclusion, we have presented a unified description of
different study designs for extending causal inferences from
a randomized trial to a target population and have examined
the implications of each design’s sampling properties for
identifying causal quantities and modeling the probability of
trial participation. We hope that our approach will be useful
to investigators conducting generalizability and transporta-
bility analyses using the designs we described or closely
related variants.
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