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Abstract

Celiac Disease (CD) and Environmental Enteropathy (EE) are common causes of malnutrition and 

adversely impact normal childhood development. CD is an autoimmune disorder that is prevalent 

worldwide and is caused by an increased sensitivity to gluten. Gluten exposure destructs the small 

intestinal epithelial barrier, resulting in nutrient mal-absorption and childhood under-nutrition. 

EE also results in barrier dysfunction but is thought to be caused by an increased vulnerability 

to infections. EE has been implicated as the predominant cause of under-nutrition, oral vaccine 

failure, and impaired cognitive development in low-and-middle-income countries. Both conditions 

require a tissue biopsy for diagnosis, and a major challenge of interpreting clinical biopsy images 

to differentiate between these gastrointestinal diseases is striking histopathologic overlap between 

them. In the current study, we propose a convolutional neural network (CNN) to classify duodenal 

biopsy images from subjects with CD, EE, and healthy controls. We evaluated the performance 

of our proposed model using a large cohort containing 1000 biopsy images. Our evaluations show 

that the proposed model achieves an area under ROC of 0.99, 1.00, and 0.97 for CD, EE, and 

healthy controls, respectively. These results demonstrate the discriminative power of the proposed 

model in duodenal biopsies classification.
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1 Introduction and Related Works

Under-nutrition is the underlying cause of approximately 45% of the 5 million under 

5-year-old childhood deaths annually in low and middle-income countries (LMICs) [1] 

and is a major cause of mortality in this population. Linear growth failure (or stunting) is 

a major complication of under-nutrition, and is associated with irreversible physical and 

cognitive deficits, with profound developmental implications [32]. A common cause of 

stunting in LMICs is EE, for which there are no universally accepted, clear diagnostic 

algorithms or non-invasive biomarkers for accurate diagnosis [32], making this a critical 

priority [28]. EE has been described to be caused by chronic exposure to enteropathogens 

which results in a vicious cycle of constant mucosal inflammation, villous blunting, and 

a damaged epithelium [32]. These deficiencies contribute to a markedly reduced nutrient 

absorption and thus under-nutrition and stunting [32]. Interestingly, CD, a common cause of 

stunting in the United States, with an estimated 1% prevalence, is an autoimmune disorder 

caused by a gluten sensitivity [15] and has many shared histological features with EE (such 

as increased inflammatory cells and villous blunting) [32]. This resemblance has led to 

the major challenge of differentiating clinical biopsy images for these similar but distinct 

diseases. Therefore, there is a major clinical interest towards developing new, innovative 

methods to automate and enhance the detection of morphological features of EE versus CD, 

and to differentiate between diseased and healthy small intestinal tissue [4].

The overview of the methodology used is shown in Fig. 1.

In this paper, we propose a CNN-based model for classification of biopsy images. In 

recent years, Deep Learning architectures have received great attention after achieving 

state-of-the-art results in a wide variety of fundamental tasks such classification [13,18–

20,24,29,35] or other medical domains [12,36]. CNNs in particular have proven to be very 

effective in medical image processing. CNNs preserve local image relations, while reducing 

dimensionality and for this reason are the most popular machine learning algorithm in image 

recognition and visual learning tasks [16]. CNNs have been widely used for classification 

and segmentation in various types of medical applications such as histopathological 

images of breast tissues, lung images, MRI images, medical X-Ray images, etc. [11,24]. 

Researchers produced advanced results on duodenal biopsies classification using CNNs 

[3], but those models are only robust to a single type of image stain or color distribution. 

Many researchers apply a stain normalization technique as part of the image pre-processing 

stage to both the training and validation datasets [27]. In this paper, varying levels of color 

balancing were applied during image pre-processing in order to account for multiple stain 

variations.

The rest of this paper is organized as follows: In Sect. 2, we describe the different data 

sets used in this work, as well as, the required pre-processing steps. The architecture of the 

model is explained in Sect. 4. Empirical results are elaborated in Sect. 5. Finally, Sect. 6 

concludes the paper along with outlining future directions.
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2 Data Source

For this project, 121 Hematoxylin and Eosin (H&E) stained duodenal biopsy glass slides 

were retrieved from 102 patients. The slides were converted into 3118 whole slide images, 

and labeled as either EE, CD, or normal. The biopsy slides for EE patients were from 

the Aga Khan University Hospital (AKUH) in Karachi, Pakistan (n = 29 slides from 10 

patients) and the University of Zambia Medical Center in Lusaka, Zambia (n = 16). The 

slides for CD patients (n = 34) and normal (n = 42) were retrieved from archives at the 

University of Virginia (UVa). The CD and normal slides were converted into whole slide 

images at 40x magnification using the Leica SCN 400 slide scanner (Meyer Instruments, 

Houston, TX) at UVa, and the digitized EE slides were of 20x magnification and shared via 

the Environmental Enteric Dysfunction Biopsy Investigators (EEDBI) Consortium shared 

WUPAX server. Characteristics of our patient population are as follows: the median (Q1, 

Q3) age of our entire study population was 31 (20.25, 75.5) months, and we had a roughly 

equal distribution of males (52%, n = 53) and females (48%, n = 49). The majority of 

our study population were histologically normal controls (41.2%), followed by CD patients 

(33.3%), and EE patients (25.5%).

3 Pre-processing

In this section, we cover all of the pre-processing steps which include image patching, image 

clustering, and color balancing. The biopsy images are unstructured (varying image sizes) 

and too large to process with deep neural networks; thus, requiring that images are split 

into multiple smaller images. After executing the split, some of the images do not contain 

much useful information. For instance, some only contain the mostly blank border region 

of the original image. In the image clustering section, the process to select useful images 

is described. Finally, color balancing is used to correct for varying color stains which is a 

common issue in histological image processing.

3.1 Image Patching

Although effectiveness of CNNs in image classification has been shown in various studies 

in different domains, training on high resolution Whole Slide Tissue Images (WSI) is not 

commonly preferred due to a high computational cost. However, applying CNNs on WSI 

enables losing a large amount of discriminative information due to extensive downsampling 

[14]. Due to a cellular level difference between Celiac, Environmental Entropathy and 

normal cases, a trained classifier on image patches is likely to perform as well as or even 

better than a trained WSI-level classifier. Many researchers in pathology image analysis have 

considered classification or feature extraction on image patches [14]. In this project, after 

generating patches from each images, labels were applied to each patch according to its 

associated original image. A CNN was trained to generate predictions on each individual 

patch.

3.2 Clustering

In this study, after image patching, some of created patches do not contain any useful 

information regarding biopsies and should be removed from the data. These patches have 
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been created from mostly background parts of WSIs. A two-step clustering process was 

applied to identify the unimportant patches. For the first step, a convolutional autoencoder 

was used to learn embedded features of each patch and in the second step we used k-means 

to cluster embedded features into two clusters: useful and not useful. In Fig. 2, the pipeline 

of our clustering technique is shown which contains both the autoencoder and k-mean 

clustering.

An autoencoder is a type of neural network that is designed to match the model’s inputs to 

the outputs [10]. The autoencoder has achieved great success as a dimensionality reduction 

method via the powerful reprehensibility of neural networks [33]. The first version of 

autoencoder was introduced by DE. Rumelhart et al. [30] in 1985. The main idea is that one 

hidden layer between input and output layers has much fewer units [23] and can be used to 

reduce the dimensions of a feature space. For medical images which typically contain many 

features, using an autoencoder can help allow for faster, more efficient data processing.

A CNN-based autoencoder can be divided into two main steps [25]: encoding and decoding.

Om i, j = a ∑
d = 1

D
∑

u = − 2k − 1

2k + 1
∑

v = − 2k − 1

2k + 1
Fmd

1 u, v Id i − u, j − v

m = 1, …, n

(1)

Where F ∈ F1
1 , F2

1 , ..., Fn
1 ,  is a convolutional filter, with convolution among an input 

volume defined by I = {I1, …, ID} which it learns to represent the input by combining 

non-linear functions:

zm = Om = a I ∗ Fm
1 + bm

1 m = 1, …, m (2)

where bm
1  is the bias, and the number of zeros we want to pad the input with is such that: 

dim(I) = dim(decode(encode(I))) Finally, the encoding convolution is equal to:

Ow = Oℎ = Iw + 2 2k + 1 − 2 − 2k + 1 + 1
= Iw + 2k + 1 − 1 (3)

The decoding convolution step produces n feature maps zm=1,…,n. The reconstructed results 

I  is the result of the convolution between the volume of feature maps Z = zi = 1
n and this 

convolutional filters volume F(2)[7,9].

I = a Z ∗ Fm
2 + b 2

(4)
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Ow = Oℎ = Iw + 2k + 1 − 1 − 2k + 1 + 1 = Iw = Iℎ (5)

Where Eq. 5 shows the decoding convolution with I dimensions. The input’s dimensions are 

equal to the output’s dimensions.

Results of patch clustering has been summarized in Table 1 and Fig. 3. Obviously, patches in 

cluster 1, which were deemed useful, are used for the analysis in this paper.

3.3 Color Balancing

The concept of color balancing for this paper is to convert all images to the same color 

space to account for variations in H&E staining. The images can be represented with the 

illuminant spectral power distribution I(λ), the surface spectral reflectance S(λ), and the 

sensor spectral sensitivities C(λ) [5,6]. Using this notation [6], the sensor responses at the 

pixel with coordinates (x, y) can be thus described as:

p x, y = ∫
w

I x, y, λ S x, y, λ C λ dλ (6)

where w is the wavelength range of the visible light spectrum, ρ and C(λ) are three­

component vectors.

R
G
B out

= a
a11 a12 a13
a21 a22 a23
a31 a32 a33

×
rawb 0 0

0 gawb 0
0 0 bawb

R
G
B in

γ

(7)

where RGBin is raw images from biopsy and RGBout is results for CNN input. In the 

following, a more compact version of Eq. 7 is used:

RGBout = αAIw . RGBin
γ (8)

where α is exposure compensation gain, Iω refers the diagonal matrix for the illuminant 

compensation and A indicates the color matrix transformation.

Figure 4 shows the results of color balancing for three classes (Celiac Disease (CD), Normal 

and Environmental Enteropathy (EE)) with different color balancing percentages between 

0.01 and 50.

4 Method

In this section, we describe Convolutional Neural Networks (CNN) including the 

convolutional layers, pooling layers, activation functions, and optimizer. Then, we discuss 

our network architecture for diagnosis of Celiac Disease and Environmental Enteropathy. As 

shown in Fig. 5, the input layers starts with image patches (1000 × 1000) and is connected 
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to the convolutional layer (Conv 1). Conv 1 is connected to the pooling layer (MaxPooling), 

and then connected to Conv 2. Finally, the last convolutional layer (Conv 3) is flattened and 

connected to a fully connected perception layer. The output layer contains three nodes which 

each node represent one class.

4.1 Convolutional Layer

CNN is a deep learning architecture that can be employed for hierarchical image 

classification. Originally, CNNs were built for image processing with an architecture similar 

to the visual cortex. CNNs have been used effectively for medical image processing. In a 

basic CNN used for image processing, an image tensor is convolved with a set of kernels of 

size d × d. These convolution layers are called feature maps and can be stacked to provide 

multiple filters on the input. The element (feature) of input and output matrices can be 

different [22]. The process to compute a single output matrix is defined as follows:

Aj = f ∑
i = 1

N
Ii ∗ Ki, j + Bj (9)

Each input matrix I–i is convolved with a corresponding kernel matrix Ki,j, and summed 

with a bias value Bj at each element. Finally, a non-linear activation function (see Sect. 4.3) 

is applied to each element [22].

In general, during the back propagation step of a CNN, the weights and biases are adjusted 

to create effective feature detection filters. The filters in the convolution layer are applied 

across all three ‘channels’ or Σ (size of the color space) [13].

4.2 Pooling Layer

To reduce the computational complexity, CNNs utilize the concept of pooling to reduce the 

size of the output from one layer to the next in the network. Different pooling techniques are 

used to reduce outputs while preserving important features [31]. The most common pooling 

method is max pooling where the maximum element is selected in the pooling window.

In order to feed the pooled output from stacked featured maps to the next layer, the maps are 

flattened into one column. The final layers in a CNN are typically fully connected [19].

4.3 Neuron Activation

The implementation of CNN is a discriminative trained model that uses standard back­

propagation algorithm using a sigmoid (Eq. 10), (Rectified Linear Units (ReLU) [26] (Eq. 

11) as activation function. The output layer for multiclass classification includes a Softmax 
function (as shown in Eq. 12).

f x = 1
1 + e−x ∈ 0, 1 (10)
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f x = max 0, x (11)

σ z j = ezj

∑k = 1
K ezk

∀j ∈ 1, …, K
(12)

4.4 Optimizor

For this CNN architecture, the Adam optimizor [17] which is a stochastic gradient optimizer 

that uses only the average of the first two moments of gradient (v and m, shown in Eqs. 13, 

14, 15 and 16). It can handle non-stationary of the objective function as in RMSProp, while 

overcoming the sparse gradient issue limitation of RMSProp [17].

θ θ − α
v + ∈m (13)

gi, t = ∇θJ θi, xi, yi (14)

mt = β1mt − 1 + 1 − β1 gi, t (15)

mt = β2vt − 1 + 1 − β2 gi, t2 (16)

where mt is the first moment and vt indicates second moment that both are estimated. 

mt =
mt

1 − β1
t  and vt =

vt
1 − β2

t .

4.5 Network Architecture

As shown in Table 2 and Fig. 6, our CNN architecture consists of three convolution layer 

each followed by a pooling layer. This model receives RGB image patches with dimensions 

of (1000 × 1000) as input. The first convolutional layer has 32 filters with kernel size of (3, 

3). Then we have Pooling layer with size of (5, 5) which reduce the feature maps from (1000 

× 1000) to (200 × 200). The second convolutional layers with 32 filters with kernel size of 

(3, 3). Then Pooling layer (MaxPooling 2D) with size of (5, 5) reduces the feature maps 

from (200 × 200) to (40 × 40). The third convolutional layer has 64 filters with kernel size of 

(3, 3), and final pooling layer (MaxPooling 2D) is scaled down to (8 × 8). The feature maps 

as shown in Table 2 is flatten and connected to fully connected layer with 128 nodes. The 

output layer with three nodes to represent the three classes: (Environmental Enteropathy, 

Celiac Disease, and Normal).

The optimizer used is Adam (see Sect. 4.4) with a learning rate of 0.001, β1 = 0.9, β2 = 

0.999 and the loss considered is sparse categorical crossentropy [8]. Also for all layers, we 
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use Rectified linear unit (ReLU) as activation function except output layer which we use 

Softmax (see Sect.4.3).

5 Empirical Results

5.1 Evaluation Setup

In the research community, comparable and shareable performance measures to evaluate 

algorithms are preferable. However, in reality such measures may only exist for a handful 

of methods. The major problem when evaluating image classification methods is the 

absence of standard data collection protocols. Even if a common collection method existed, 

simply choosing different training and test sets can introduce inconsistencies in model 

performance [34]. Another challenge with respect to method evaluation is being able 

to compare different performance measures used in separate experiments. Performance 

measures generally evaluate specific aspects of classification task performance, and thus do 

not always present identical information. In this section, we discuss evaluation metrics and 

performance measures and highlight ways in which the performance of classifiers can be 

compared.

Since the underlying mechanics of different evaluation metrics may vary, understanding 

what exactly each of these metrics represents and what kind of information they are 

trying to convey is crucial for comparability. Some examples of these metrics include 

recall, precision, accuracy, F-measure, micro-average, and macro-average. These metrics 

are based on a “confusion matrix” that comprises true positives (TP), false positives (FP), 

false negatives (FN) and true negatives (TN) [21]. The significance of these four elements 

may vary based on the classification application. The fraction of correct predictions over all 

predictions is called accuracy (Eq. 17). The proportion of correctly predicted positives to all 

positives is called precision, i.e. positive predictive value (Eq. 18).

accuracy = TP + TN
TP + FP + FN + TN (17)

Precision =
∑l = 1

L TPl

∑l = 1
L TPl + FPl

(18)

Recall =
∑l = 1

L TPl

∑l = 1
L TPl + FNl

(19)

F1 − Score =
∑l = 1

L 2TPl

∑l = 1
L 2TPl + FPl + FNl

(20)
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5.2 Experimental Setup

The following results were obtained using a combination of central processing units (CPUs) 

and graphical processing units (GPUs). The processing was done on a Xeon E5 – 2640 (2.6 

GHz) with 32 cores and 64 GB memory, and the GPU cards were two Nvidia Titan Xp and 

a Nvidia Tesla K20c. We implemented our approaches in Python using the Compute Unified 

Device Architecture (CUDA), which is a parallel computing platform and Application 

Programming Interface (API) model created by Nvidia. We also used Keras and TensorFlow 

libraries for creating the neural networks [2, 8].

5.3 Experimental Results

In this section we show that CNN with color balancing can improve the robustness of 

medical image classification. The results for the model trained on 4 different color balancing 

values are shown in Table 3. The results shown in Table 4 are also based on the trained 

model using the same color balancing values. Although in Table 4, the test set is based on a 

different set of color balancing values: 0.5, 1.0, 1.5 and 2.0. By testing on a different set of 

color balancing, these results show that this technique can solve the issue of multiple stain 

variations during histological image analysis.

As shown in Table 3, the f1-score of three classes (Environmental Enteropathy (EE), Celiac 

Disease (CD), and Normal) are 0.98, 0.94, and 0.91 respectively. In Table 4, the f1-score 

is reduced, but not by a significant amount. The three classes (Environmental Enteropathy 

(EE), Celiac Disease (CD), and Normal) f1-scores are 0.94, 0.92, and 0.87 respectively. The 

result is very similar to MA. Boni et al. [3] which achieved 90.59% of accuracy in their 

mode, but without using the color balancing technique to allow differently stained images.

In Fig. 7, Receiver operating characteristics (ROC) curves are valuable graphical tools for 

evaluating classifiers. However, class imbalances (i.e. differences in prior class probabilities) 

can cause ROC curves to poorly represent the classifier performance. ROC curve plots 

true positive rate (TPR) and false positive rate (FPR). The ROC shows that AUC of 

Environmental Enteropathy (EE) is 1.00, Celiac Disease (CD) is 0.99, and Normal is 0.97.

As shown in Table 5, our model performs better compared to some other models in terms of 

accuracy. Among the compared models, only the fine-tuned ALEXNET [27] has considered 

the color staining problem. This model proposes a transfer learning based approach for 

the classification of stained histology images. They also applied stain normalization before 

using images for fine tuning the model.

6 Conclusion

In this paper, we proposed a data driven model for diagnosis of diseased duodenal 

architecture on biopsy images using color balancing on convolutional neural networks. 

Validation results of this model show that it can be utilized by pathologists in diagnostic 

operations regarding CD and EE. Furthermore, color consistency is an issue in digital 

histology images and different imaging systems reproduced the colors of a histological slide 

differently. Our results demonstrate that application of the color balancing technique can 

attenuate effect of this issue in image classification.
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The methods described here can be improved in multiple ways. Additional training 

and testing with other color balancing techniques on data sets will continue to identify 

architectures that work best for these problems. Also, it is possible to extend the model to 

more than four different color balance percentages to capture more of the complexity in the 

medical image classification.
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Fig. 1. 
Overview of methodology
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Fig. 2. 
Structure of clustering model with autoencoder and K-means combination
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Fig. 3. 
Some samples of clustering results - cluster 1 includes patches with useful information and 

cluster 2 includes patches without useful information (mostly created from background parts 

of WSIs)
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Fig. 4. 
Color balancing samples for the three classes
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Fig. 5. 
Structure of convolutional neural net using multiple 2D feature detectors and 2D max­

pooling
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Fig. 6. 
Our convolutional neural networks’ architecture
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Fig. 7. 
Receiver operating characteristics (ROC) curves for three classes also the figure shows 

micro-average and macro-average of our classifier
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Table 1.

The clustering results for all patches into two clusters

Total Cluster 1 Cluster 2

Celiac Disease (CD) 16, 832 7, 742 (46%) 9, 090 (54%)

Normal 15, 983 8, 953 (56%) 7, 030 (44%)

Environmental Enteropathy (EE) 22, 625 2, 034 (9%) 20, 591 (91%)

Total 55, 440 18, 729 (34%) 36, 711 (66%)
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Table 2.

CNN architecture for diagnosis of diseased duodenal on biopsy images

Layer (type) Output shape Trainable parameters

1 Convolutional layer (1000, 1000, 32) 869

2 Max pooling (200, 200, 32) 0

3 Convolutional layer (200, 200, 32) 9, 248

4 Max pooling (40, 40, 32) 0

5 Convolutional layer (40, 40, 64) 18, 496

6 Max pooling (8, 8, 64) 0

8 dense 128 524, 416

10 Output 3 387
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Table 3.

F1-score for train on a set with color balancing of 0.001, 0.01, 0.1, and 1.0. Then, we evaluate test set with 

same color balancing

Precision Recall f1-score Support

Celiac Disease (CD) 0.89 0.99 0.94 22,196

Normal 0.99 0.83 0.91 22, 194

Environmental Enteropathy (EE) 0.96 1.00 0.98 22, 198
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Table 4.

F1-score for train with color balancing of 0.001, 0.01, 0.1, and 1.0 and test with color balancing of 0.5, 1.0, 1.5 

and 2.0

Precision Recall f1-score Support

Celiac Disease (CD) 0.90 0.94 0.92 22, 196

Normal 0.96 0.80 0.87 22, 194

Environmental Enteropathy (EE) 0.89 1.00 0.94 22, 198
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Table 5.

Comparison accuracy with different baseline methods

Method Solve color staining problem Model architecture Accuracy

Shifting and reflections [3] No CNN 85.13%

Gamma [3] No CNN 90.59%

CLAHE [3] No CNN 86.79%

Gamma-CLAHE [3] No CNN 86.72%

Fine-tuned ALEXNET [27] Yes ALEXNET 89.95%

Ours Yes CNN 93.39%
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