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Abstract

Single-cell RNA sequencing (scRNA-Seq) is an emerging strategy for characterizing immune cell populations. Compared to
flow or mass cytometry, scRNA-Seq could potentially identify cell types and activation states that lack precise cell surface
markers. However, scRNA-Seq is currently limited due to the need to manually classify each immune cell from its
transcriptional profile. While recently developed algorithms accurately annotate coarse cell types (e.g. T cells versus
macrophages), making fine distinctions (e.g. CD8+ effector memory T cells) remains a difficult challenge. To address this,
we developed a machine learning classifier called ImmClassifier that leverages a hierarchical ontology of cell type. We
demonstrate that its predictions are highly concordant with flow-based markers from CITE-seq and outperforms other tools
(+15% recall, +14% precision) in distinguishing fine-grained cell types with comparable performance on coarse ones. Thus,
ImmClassifier can be used to explore more deeply the heterogeneity of the immune system in scRNA-Seq experiments.
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Introduction
Single-cell RNA sequencing (scRNA-Seq) has emerged as a pow-
erful technique to catalog cell types [1–3], including immune
cells, that play critical roles in a wide range of diseases. In cancer,
they have been shown to impact survival, drug resistance and
evolution [4, 5]. However, annotation of the cells based on their
transcriptional profiles remains a challenge [6, 7] due both to
the diversity of cell types as well as ambiguous distinctions
along the developmental lineage and activation states [8]. That
is, while myeloid and lymphoid cells have drastically different
transcriptional profiles and are trivial to distinguish, the differ-
ences within each lineage are more subtle. For instance, specific
types of T cells are difficult to identify [9].
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Currently, the most commonly used approach to annotate
cell types is to start with an unsupervised clustering algorithm
(like t-SNE [10] or UMAP [11]) to group cells with similar profiles,
and then to manually inspect each cluster for the expression
of marker genes that distinguish specific cell types [12]. While
conceptually straightforward, using these markers is challeng-
ing in practice due to poor expression or dropout [13, 14], low
conservation of markers across studies [15], ambiguity of mark-
ers [16], lack of reliable markers [17] and transcriptional sim-
ilarity of cell types [18]. Further, cell type annotations are not
yet easily transferred between different datasets, and therefore,
each dataset needs to be manually annotated by experts with
an understanding of both immunology and the idiosyncrasies
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of scRNA-Seq data. As a final complication, cell type annotation
is an iterative procedure where the clustering influences the
immune cell classifications, which then reveals discrepancies
(e.g. a memory T cell cluster that contains both CD4+ and CD8+
T cells) that need to be resolved by refining the clusters (e.g. by
clustering with different genes) [19].

To simplify and automate the process of identifying cell
types, several bioinformatics methods have recently been
developed. Correlation-based methods such as scmap [20]
and SingleR [21] correlate the query cells to a predefined
set of reference cell types and assign the label of the type
with maximum correlation. Hierarchy-based methods such as
Garnett [22] and CHETAH [23] construct a reference cell type
hierarchy and search for the optimal cell type from a generic
root node to increasingly more specific types. CellAssign [24]
utilizes a Bayesian statistical framework to model cell types,
marker gene expression and other covariates such as processing
batches. SCINA [25] trained a semi-supervised model that adopts
an expectation–maximization algorithm using predefined
gene signatures. SciBet [26] used an E-test to select cell type
markers from training datasets and constructed pretrained
models to predict query cells with maximum likelihood esti-
mation. While these methods have been successful and some
quickly adopted into scRNA-Seq pipelines, approaches with
improved ability in identifying fine-grained cell types are still
needed.

To increase prediction accuracy on fine-grained cell types, we
have developed a method that includes an explicit knowledge-
based and hierarchical model of immune cell types. ImmClassi-
fier (Immune cell Classifier) integrates the biology of immune
cells from a hierarchical ontology and synthesizes heteroge-
neous reference datasets using a two-step machine learning
and deep learning process. Using each reference dataset, the
first step trains a random forest classifier to assign probabilities
according to the cell types of the dataset, which preserves the
intra-dataset cell type relations and avoids batch effects when
pooling the cells from different reference datasets. To resolve
the differences in reference annotations, cell types from all
reference datasets were mapped to a unified and nonredun-
dant cell ontology hierarchy. The second step employs a deep
learning approach to integrate numerous reference datasets and
directly learn the cell ontology hierarchy, assigning the optimal
annotation based on the distribution of probabilities across the
hierarchy. This enables ImmClassifier to synthesize cell type
assignments across reference datasets. Evaluating on a number
of independent scRNA-Seq datasets and against CITE-Seq, Imm-
Classifier accurately classified and outperformed existing meth-
ods over a range of immune cells collected from different tissues.
ImmClassifier is available as a Docker container at https://githu
b.com/xliu-uth/ImmClassifier.

Materials and methods
ImmClassifier

An outline of ImmClassifier is shown in Figure 1a. ImmClassifier
employs a machine learning paradigm that takes as input a
vector of the expression of n genes of a cell and returns an
m length vector of the probabilities that the cell is from one
of the m cell types. However, it also deviates from a classi-
cal machine learning setup to handle the complexity of the
immune cell types and resultant idiosyncrasies in the training
sets. Because no single training set includes all desired cell
types, multiple ones must be integrated. Furthermore, the cell

type labels are frequently inconsistent, using not only different
labels, but also labeling at different granularities of the cell type
hierarchy. For example, Zheng et al. [27] classified T cells into
αβ and γ δ T cells, Azizi et al. [8] , Hay et al. [28] and Oetjen
et al. [29] classified T cells as CD4+ and CD8+ T cells and
Zilionis et al. [19] labeled T cells by numeric cluster ID, without
an explicit cell type. To resolve these differences, ImmClassi-
fier takes a stepwise approach where independent classifiers
are developed for each training set, and the outputs for each
training set are resolved by a final classifier that determines
the ultimate cell type assignment. Specifically, the input goes
through a random forest classifier for each training set (cur-
rently, seven). The output matrices are concatenated and pro-
cessed by 10 independently trained deep neural network (DNN)
classifiers so that a robust estimate of the average performance
can be estimated. The mean and standard deviation of the scores
for each query cell in each cell type were calculated and pro-
jected to a cell ontology hierarchy. The cell type with maximum
entropy change, relative to its child nodes, was assigned to each
query cell.

Reference datasets

To address the heterogeneity of immune cell types and sequenc-
ing platforms, seven independent scRNA-Seq datasets covering a
wide range of cell types, sources and sequencing platforms were
used for training (Table S1). Seven independent test datasets
were used. Each reference dataset was divided into a training
set and a test set. The reference datasets are normalized to
logarithm of counts per million reads (log2 CPM). Nonimmune
cells were excluded.

Dataset-specific classification

Feature genes are obtained for each reference dataset. If the
cluster-associated marker genes are provided by the original
publication, the top 20 marker genes are used, since this was pre-
viously shown to work well across a number of algorithms [30] .
Otherwise, the cell type markers are called by Seurat [31] using
the gene expression count and provided cell type annotations.
To account for dropout in scRNA-Seq data, only genes expressed
in the query dataset are used. To reduce the bias introduced by
cluster size, a balanced training set is generated by randomly
selecting 500 cells per cell type (without replacement for abun-
dant cell types (>1000 cell) and with replacement for rare cell
types (<1000 cell)). Batch correction is performed between the
query dataset and a reference dataset on feature genes using
ComBat [32]. The original cell type labels from the reference
dataset were used as the target variable. A random forest classi-
fier is trained using default parameters and evaluated for each
reference dataset using MLR [33].

Hierarchical immune cell annotations

To integrate annotations and resolve differences across datasets,
we developed a hierarchical set of cell types (Figures 1b, S1 and
Table S2). The cell types are found from Ontobee [34] (matching
based on names and marker genes) and organized using the
EBI Cell Ontology [35]. In this hierarchy, the top or root node
represents the coarsest cell type, and successive levels describe
increasingly finer ones. More precisely, child nodes are related to
their parents via ‘is-a’ relationships. This provides a framework
to synthesize annotations from the reference datasets provided
at different levels of granularity. Using this hierarchy, the 171
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Figure 1. ImmClassifier Architecture. (a) ImmClassifier takes a matrix containing the gene expression of immune cells from a single-cell RNA-Seq experiment (far

left). Using feature genes pre-calculated from multiple training datasets, ImmClassifier predicts the probability that each cell corresponds to a cell type annotated

in the original training datasets using random forest models (mid left). Here, ‘DS #1’ refers to the first training dataset. This probability matrix is further converted

to a hierarchical cell type probability matrix using DNN classifiers. The mean and standard deviation of probabilities from the DNN models is incorporated into a

cell ontology hierarchy. Traversing the cell ontology hierarchy, the cell type with maximum entropy change is assigned. (b) Depiction of the cell types derived from

the EBI Cell Onotology to enable machine learning probabilities. Types of immune cells are represented according to granularity, from coarse cell types at the root, to

fine-grained ones in the leaf nodes. There are 37 cell types in all. (c) Each flat cell type is converted to hierarchical cell type based on the path from root to the flat cell

type. The hierarchical cell type is encoded in a 37-bit binary vector by marking the flat cell types on the path 1 and 0 otherwise. The binary vector is used as a target

in the DNN training and output in prediction.
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cell types (including redundancies) from the seven reference
datasets are unified to a set of 37 nonredundant and hierarchical
cell types (Figure S1).

Integrating annotations using a DNN

We predict the types in the hierarchy as a multi-class classifi-
cation problem, leveraging the ability of DNNs to learn complex
structure [36]. Cells were subsampled per cell type to avoid the
dominance by cell number (Table S3). For each cell, the input
layer takes the concatenation of the probability vectors from
the dataset-specific classifiers and the output layer returns
a vector of 37 probabilities associated with hierarchical cell
types (Figure 1c). The position of each cell type in the hierarchy
is encoded as a 37-bit vector that traces the path from the
cell type to the root. We performed 3-fold cross-validation to
evaluate the hyper-parameters (Figure S2). Based on the cross-
validation, the number of nodes in hidden layers were set to
200, 400 and 200, respectively, and the dropout rate is 0.2, a
topology that worked well in the training set (Figure S2a). The
DNN is implemented as a multi-label multi-class classification
model using keras [37] and tensorflow [38]. We used 10 trained
DNN classifiers (epochs = 5 and batch_size = 4096) with identical
hyper-parameters to estimate the mean and standard deviation
of the probabilities for the cell types. To assess the impact of the
number of classifiers on the accuracy, we tested classifiers with
1–10 DNNs by cross-validation on the training dataset (Figure S2b).
The F1 score increased with the number of DNNs and reached a
plateau at about five.

Hierarchical cell type assignment

The deep level classes are more ambiguous and harder to dis-
tinguish. Reflecting this uncertainty, the predicted probabilities
of the correct cell type drop drastically deeper down the hierar-
chy. However, despite the lower absolute probabilities, they can
still distinguish the correct cell type, and thus are still helpful.
Therefore, rather than choosing the cell type with the highest
probability (which will favor the top of the hierarchy), the task
is to choose a cell type that has a reasonably high probability for
its depth. To accomplish this, we compare the probabilities of
each cell type against those of its siblings (on the same level),
and select the sibling with the highest probability. This yields
a set of cell types across the hierarchy that has relatively high
probability for their depth. Then, to choose the best cell type
among those, intuitively, we desire the one that has the highest
probability relative to its descendants. We found empirically
that this can be quantified using the change in entropy, which
has an advantageous property in that it favors cell types where
the descendants have probabilities close to zero. In detail, for
each node (cell type) c on the cell type hierarchy, the entropy is
calculated as [39, 40, 41, 42]:

E(c) = −p(c) ∗ log
(
p(c

)
) − (

1 − p(c)
) ∗ log

(
1 − p (c)

)

where p is the mean probability of that the query cell belongs to
cell type c from the 10 DNN models above. Entropy is 0 when p
equals to 0, by definition.

We calculated the entropy change as:

�E (c) = E(c) −
∑

vεdesc(c)
E(v)

where c is the cell type and desc(c) is the set of child nodes of
c. To penalize for leaf nodes, we applied a pseudo child with
probability equal to the mean of probability across the 37 cell
types to each leaf node when the entropy change is calculated.
To break ties in ranking, the cell type with the smallest ratio of
standard variation to mean is chosen.

Cell type prediction tools

We ran SingleR [43] using default parameters, except using
normalize.gene.length = T when analyzing data with full length
transcript sequencing. We ran Garnett [22] in extended mode
using the hsPBMC pretrained classifier. We ran the SCINA
[25] R package using its pre-compiled immune cell signatures
from RCC patients. We generated SciBet [26] annotations
online using its pre-compiled 30 major human cell types.
The ImmClassifier annotation was generated using default
parameters. Annotations were mapped across algorithms, as
shown in Table S4.

UMAP clustering and alluvial plots

The spatial coordinates of the cells were obtained using UMAP
for each of the four test datasets (brca3p, brca5p, hcc and
pbmc68k in Table S5). The UMAP clustering of test datasets was
performed using BETSY [44]. For dataset brca3p, brca5p and
hcc, the top 500 most variable genes were used for PCA. Top
1000 most variable genes were chosen for dataset pbmc68k.
Top 10 principle components, the nearest 50 neighbors and
resolution = 0.8 were used to generate the tSNE-plots. Alluvial
plots were generated using ggalluvial [45].

Results
ImmClassifier predicts immune cell populations

We developed a computational tool ImmClassifier to annotate
immune cells in gene expression data (Methods, Figure 1).
We evaluated the performance of ImmClassifier on three test
datasets (not included in the training) [18, 46, 47]. We first
calculated the recall and precision and used F1 score, which
is the weighted average of precision and recall to demonstrate
the overall performance. We began by analyzing the microarray
profiles of purified cell populations, which lacks some of the
technical challenges, such as dropout, that would be seen in
the scRNA-Seq data. In this situation, ImmClassifier recovered
12 out of 15 original cell types and distinguished CD4 from
CD8 T cells accurately, recovering 100% of CD4 T cells and
92% of CD8 T cells. 81% of the cells identified under the CD4 T
hierarchy were CD4 T cells in the original annotation (Figure 2a).
A more challenging situation was seen in the myeloid lineage,
where there was less overall coverage in the reference datasets.
None of the five eosinophil samples were identified exactly as
eosinophils, although three were correctly placed in the myeloid
lineage (monocytes and dendritic cells). It is likely that greater
coverage of this cell type will be needed to improve its accuracy.

To assess its ability to classify scRNA-Seq data, we ran Imm-
Classifier on tumor-infiltrating immune cells from two distinct
cancer types. ImmClassifier achieved an overall precision of 85%
and 82% (Figure 2b and c). Again, the highest rate of misclassi-
fication was made across closely related lineages. 30% of the
macrophages were predicted to be dendritic cells (Figure 2c),
which highlights the challenges in distinguishing closely related
cell types.
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Figure 2. ImmClassifier predicts immune cell types. These heatmaps compare the cell types from the original publication (rows) to those inferred by ImmClassifier

(columns). The color represents the recall and precision score (as a percent) of each original cell type predicted by ImmClassifier. Recall and precision scores no less

than 20 are labeled. Three datasets tested are (a) purified immune populations sequenced by microarray platform [18]. (b) SKCM [46]. The Other row includes a small

number of cells predicted to cell types not included the original annotated ones. (c) HNSCC [47]. The Other row includes a small number of cells predicted to cell

types not included the original annotated ones. Since ImmClassifier has finer annotation granularity than the original annotation, for the purpose of comparison, the

annotation terms of equivalent granularity to the original annotation were used.

To assess the performance of ImmClassifier using existing
tools as baseline, we also tested two recent tools SCINA [25] and
SciBet [26] that can accept normalized expression data as input
since only normalized expression data are available for the three

test datasets. We chose SCINA as it was shown to have the overall
best performance in a comparison of 22 methods [30], and SciBet
as it was a recently developed approach that benchmarked well
against prior methods. Here, both SCINA and SciBet showed less
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concordance with original publication than ImmClassifier in all
three datasets (Figures 2 and S3). In addition, SCINA left 95%
plasma cells unlabeled (Figure S3b), while SciBet falsely assigned
3, 5 and 1 nonimmune cell types to the three immune datasets
(Figure S3).

ImmClassifier better recovers fine-grained immune cell
types

To further determine whether the performance we observe is
comparable to related methods, we compared ImmClassifier
against Garnett (extended mode) [22], SingleR [21], SCINA [25]
and SciBet [26], which are commonly used representatives for
the hierarchy- and correlation-based methods. We applied each
method to four scRNA-Seq datasets from three independent
publications and visualized the predictions using UMAP cluster-
ing. These four datasets cover a variety of sequencing specifica-
tions including InDrop 3′ sequencing, 10X 5′ sequencing, 10X 3′

sequencing, Smart-Seq2 Full-length (Table S5). In addition, those
datasets covered a wide range of immune populations, collected
from cancer patients and healthy donors.

We first quantified the performance of those methods by
recall and precision for four different depths across our cell hier-
archy (Figure 3a). (Finer cell types are at greater depth). Across all
conditions, recall and precision decrease with increasing depth,
reflecting the difficulty in distinguishing closely related cell
types. For coarse cell types (e.g. myeloid versus lymphoid cells)
(depth 1), all methods performed well with ImmClassifier, and
SingleR achieved over 95% performance overall. However, the
performance dropped with finer types (depth 4) (e.g. central ver-
sus effector memory T cells). ImmClassifier achieved an average
precision of 88%, 76%, 62% and 30% for depths 1–4, respectively.
At depths 1–2, the recall was comparable to that of SingleR,
with only a +4% difference (Figure 3b). However, at depths 3–4,
the recall was improved by +15%. The difference in precision
followed a similar pattern, with a +3% difference at depths 1–
2, and a +14% at depths 3–4. Thus, while all methods performed
well with coarse cell types, ImmClassifier was considerably more
accurate at higher depths, although challenges still remain.

We also compared the methods with respect to (1) spatial
concordance with original annotation, (2) frequency of matched
and mismatched cell types to the original annotation and (3)
the distance between the centroids of the predicted and original
cell types. We used a dataset comprised of a complex mixture
of 12 immune cell types, including lymphoid and myeloid cells
collected from four tissues [8]. Here, ImmClassifier achieved a
higher mean recall and precision across all cell types (62.4%
and 57.3%) than SingleR (44.9% and 54.8%), Garnett (28.7% and
42.3%) and SciBet (54.4% and 20.2%) with high visual concor-
dance to original annotations in a UMAP plot (Figure 4a). SCINA
(49.2% and 72.5%) has a higher mean precision than ImmClas-
sifier on the labeled cells, however, SCINA left the 49% of query
cells unlabeled (Figure 4a). Overall, ImmClassifier, SingleR and
Garnett have higher concordance with the original publication
than SCINA and SciBet. To assess the overall similarity of the
expression profiles of each predicted cell type, we averaged the
expression profiles of all cells of each type and computed the
Euclidean distance between the averaged profiles with those
of the original cells (Figure 4b). This revealed that the overall
profiles of the cell types from ImmClassifier were most similar
to those of the original data type. Furthermore, ImmClassifier
could recover 11 of the 12 cell types, in contrast to SingleR (eight
cell types, Figure 4b and c), Garnett (six cell types), SCINA (seven
cell types) and SciBet (five cell types). Notably, ImmClassifier

was able to distinguish a mast cell population (70% recall, 61%
precision), which was missed by the other methods (Figure 4a, c).
However, all methods failed to identify the cluster of NKT cells.
This cell type was missing from the ImmClassifier training set,
and both ImmClassifier and SingleR annotated them as a mix of
NK cells and T cells (Figure 4c). Nevertheless, this demonstrates
ImmClassifier’s ability to capture a broader range of cell types,
and thus more accurately recapitulate the complexity of the
immune cell types.

ImmClassifier can predict cell types annotated by
immunophenotyping

A limitation in the prior evaluation datasets is that the cell
types were annotated manually based on the gene expression,
and thus could suffer from errors due to the difficulties in
extracting or interpreting the profiles of each cell or cluster of
cells. Therefore, to further evaluate ImmClassifier, we compared
the predictions on CITE-seq datasets, where the identities of
cells are annotated based on cell surface protein markers that
are co-captured simultaneously with the transcriptomes. We
applied ImmClassifier and SingleR on a CITE-seq dataset [3]
comprised of 5559 cells from the peripheral blood of a healthy
individual. We predicted the cell types from the gene expression
profiles using ImmClassifier and SingleR, and compared against
the annotation determined by the expression of cell surface
protein markers in the original publication. This revealed that
ImmClassifier and SingleR were both able to dissect major cell
types (Figure 5a).

Next, we evaluated the ability of the algorithms to distin-
guish CD4+ from CD8+ T cell. We started by partitioning the
cells based on CD4 and CD8 protein expression into CD4 + CD8-,
CD4-CD8+, CD4 + CD8+ and CD4-CD8- groups. When compared
against the gene expression of CD4 and CD8, only 37% CD4+ and
90% CD8+ T cells can be categorized using the RNA expression
of CD4 and CD8 alone due to high rates of dropout. 98% CD4+
and 62% CD8+ T cells were correctly assigned using SingleR.
However, using ImmClassifier, 98% CD4+ and 95% CD8+ T cells
were correctly categorized (Figure 5b).

Besides categorizing CD4+ and CD8+ T cells, it is also
important to distinguish fine T cell types. In [3], T cells were
gated by cell surface markers CD62L and CD45RA into effector
memory T cells re-expressing CD45RA (EMRA), naïve, central
memory (CM) and effector memory (EM) phenotypes. We
calculated the percentage of cells predicted by ImmClassifier
that were identical to the gated annotation. CD4 + TEMRA cells
were not categorized since they were not found in the training
datasets of ImmClassifier. In five out of seven fine-grained
T cell types including CD4 + T naïve, CD4 + TEM, CD4 + TCM,
CD8 + naïve and CD8 + TEM, the majorities of cells (53%, 53%,
65%, 69% and 62%) were consistent with the gated annotation
(Figure 5c).

Finally, we compared the recall and precision of ImmClassi-
fier with SingleR on these fine-grained T cell types (Figures 5
and S4). ImmClassifier achieved +18% mean recall and +17%
mean precision over SingleR and had a better distinction of all
four fine-grained CD8 cell types. In summary, the evaluation
of ImmClassifier on CITE-seq further validates its capacity to
dissect fine-grained T cell types.

Discussion
Despite the need for improved annotations of immune cells in
scRNA-Seq data, it remains a challenging problem, in particular
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Figure 3. Classification accuracy at different annotation granularities. (a) These boxplots show the recall and precision score across cell types, organized by depth.

Depth 1 includes CD34+, M and L; depth 2 includes Dendritic, Macrophage, Monocyte, Neutrophil, Mast, T, NK, B; depth 3 includes CD4 + T, CD8+ T, mDC, pDC and depth

4 includes CD4 + Tn, CD4 + Tcm, CD4 + Tem, CD4 + Tex, CD4+ Treg, CD4+ Tfh, CD8 + Tn, CD8 + Tcm, CD8 + Tem, CD8 + Tex and MAIT. (b) This table shows the average

of performance ImmClassifier compared to Garnett and SingleR. The median value of F1 score across different cell types at each depth for each method was calculated.

The difference of median F1 score (�SR, �GN) between ImmClassifier and Garnett and SingleR, respectively, was calculated. Comparisons in which ImmClassifier has

higher accuracy are shown in red, and those with lower accuracy are blue.

for cells closely related in the developmental lineage. To address
this challenge, the use of a cell type hierarchy has emerged as
a critical component in the latest cell type annotation tools.
For example, while Garnett is hierarchical, it uses a pairwise

classification strategy that does not consider information across
the overall ontology, which has been shown in other contexts to
improve accuracy [48, 49]. This is in contrast to ImmClassifier,
which uses a deep learning framework to model the whole
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Figure 4. Visualization of brca3p dataset by different annotation methods. For visualization, abundant cell populations (cell number > 200) were subsampled to 200

per cell type. The mapping IDs of cell types between different annotations is listed in Table S4. If the annotation method produces a finer annotation than the original

one, the annotation terms of equivalent granularity were used. (a) UMAP plots colored by annotation method. In the first row (left to right), the panels are colored by

ImmClassifier, SingleR, Garnett and SCINA. In the second row (left to right), panels are colored by SciBet, original publication and after random shuffling. (b) Boxplots

of the Euclidean distance between centroids of predicted annotations and original annotations. P-values are by Wilcoxon test. The significance of P-values is shown as
∗∗ (<0.01), ∗∗∗ (<0.001) and ∗∗∗∗ (<0.0001). (c) Alluvial plots connect the original annotated cell types to cell types annotated by ImmClassifier (left) and SingleR (right).

hierarchy and assign the probabilities considering information
across all cell types simultaneously, which appears to improve
the performance at deeper levels of granularity.

The main advantage of ImmClassifier over existing tools
is the breadth and accuracy of the predictions across the
range of cells, in particular the improvements seen in fine-
grained cell types. While an understanding of the coarse
populations of immune cells is a clear first step, knowing the

fine-grained identities (such as CD4+ versus CD8+ T cells) is
critical for understanding how the immune system is actually
functioning. While the prediction power on fine-grained cell
types is not yet perfect, we hope that this study impels the devel-
opment of datasets and algorithms that can achieve this goal.
As another limitation of this approach, ImmClassifier cannot
detect new and intermediate cell types. ImmClassifier is trained
on known cell types and will assign a cell of an unobserved

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab039#supplementary-data
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Figure 5. Evaluation of ImmClassifier on CITE-seq data. (a) UMAP plots colored by cell type predictions. The UMAP coordinates are from the original publication. From

left to right, the panels are colored by gated annotation (cell surface protein marker) in the original publication, predictions from ImmClassifier and predictions from

SingleR. (b) Scatterplot of gated T cells in the original publication colored by CD4 and CD8 RNA expression (left panel). The percentage of CD4 + CD8- T cells that have

positive CD4 RNA read count is labeled in red. The percentage of CD4-CD8+ T cells that have positive CD8 RNA read count is labeled in blue. Scatterplot of gated T

cells in the original publication colored by ImmClassifier (middle panel) and SingleR (right panel). The percentage of CD4 + CD8- T cells that have has been predicted

to be CD4+ T cells by ImmClassifier/SingleR is labeled in red. The percentage of CD4-CD8+ T cells that have been predicted by CD8+ T cells by SingleR/ImmClassifier

is labeled in blue. (c) Visualization of the prediction of fine-grained T cells. CD4 and CD8 T cells were gated into EMRA, naïve, EM and CM immunophenotypes in the

original publication. Top panel: density plots of the gated CD4 + T and CD8 + T cells in the original publication. Bottom panel: scatterplots of the cells in each predicted

cell type by ImmClassifier and SingleR. The precision of each fine-grained T cell population is labeled at the corresponding quadrant. The cells in the scatterplots are

colored by gating in the original publication. (d) Heatmap showing the recall and precision of ImmClassifier and SingleR prediction of the fine-grained T cells.
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type to its closest known reference cell type. This limitation will
need to be addressed in future work. To allow identification of
intermediate cell types, the continuous distribution of probabili-
ties that ImmClassifier generates in its intermediate step may be
informative. But perhaps most importantly, as well-annotated
scRNA-Seq datasets grow, new reference cell types may be
integrated naturally within the architecture of ImmClassifier.

We anticipate that the performance of ImmClassifier will
continue to increase as additional high-quality datasets become
available. Indeed, our results demonstrate the need for a
greater quantity and quality of annotated immune cell dataset,
especially with fine-grained cell types, to train this and other
classifiers. The ImmClassifier framework is scalable to new
reference datasets, with the most difficult step in mapping
the original annotations to the cell hierarchy. We anticipate
that ImmClassifier will be most useful in experimental settings
that require accurate, comprehensive and robust immune cell
annotation.

Key Points
• In silico cell annotation can overcome the limitations of

traditional methods such as flow or mass cytometry.
• We developed a new computational tool called Imm-

Classifier to annotate immune cells in single-cell RNA-
Seq data at a fine-grained level.

• ImmClassifier leverages the known cell hierarchy and
is trained on large-scale single-cell RNA-seq datasets
via deep learning.

• Using CITE-Seq and single-cell RNA-Seq datasets as
gold standards, ImmClassifier outperforms other tools
in predicting fine-grained cell types.

Supplementary data

Supplementary data are available online at Briefings in
Bioinformatics.

Data Availability Statement

ImmClassifier, the scripts and data required to reproduce
this work are available at https://github.com/xliu-uth/I
mmClassifier.
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