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Sleep monitoring may provide markers for future Alzheimer’s disease; however, the relationship between sleep
and cognitive function in preclinical and early symptomatic Alzheimer’s disease is not well understood. Multiple
studies have associated short and long sleep times with future cognitive impairment. Since sleep and the risk of
Alzheimer’s disease change with age, a greater understanding of how the relationship between sleep and cogni-
tion changes over time is needed. In this study, we hypothesized that longitudinal changes in cognitive function
will have a non-linear relationship with total sleep time, time spent in non-REM and REM sleep, sleep efficiency
and non-REM slow wave activity.
To test this hypothesis, we monitored sleep-wake activity over 4–6 nights in 100 participants who underwent
standardized cognitive testing longitudinally, APOE genotyping, and measurement of Alzheimer’s disease bio-
markers, total tau and amyloid-b42 in the CSF. To assess cognitive function, individuals completed a neuropsycho-
logical testing battery at each clinical visit that included the Free and Cued Selective Reminding test, the Logical
Memory Delayed Recall assessment, the Digit Symbol Substitution test and the Mini-Mental State Examination.
Performance on each of these four tests was Z-scored within the cohort and averaged to calculate a preclinical
Alzheimer cognitive composite score. We estimated the effect of cross-sectional sleep parameters on longitudinal
cognitive performance using generalized additive mixed effects models. Generalized additive models allow for
non-parametric and non-linear model fitting and are simply generalized linear mixed effects models; however, the
linear predictors are not constant values but rather a sum of spline fits.
We found that longitudinal changes in cognitive function measured by the cognitive composite decreased at low
and high values of total sleep time (P50.001), time in non-REM (P5 0.001) and REM sleep (P50.001), sleep effi-
ciency (P50.01) and 51 Hz and 1–4.5 Hz non-REM slow wave activity (P50.001) even after adjusting for age, CSF
total tau/amyloid-b42 ratio, APOE e4 carrier status, years of education and sex. Cognitive function was stable over
time within a middle range of total sleep time, time in non-REM and REM sleep and 51 Hz slow wave activity, sug-
gesting that certain levels of sleep are important for maintaining cognitive function.
Although longitudinal and interventional studies are needed, diagnosing and treating sleep disturbances to opti-
mize sleep time and slow wave activity may have a stabilizing effect on cognition in preclinical or early symptom-
atic Alzheimer’s disease.
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Introduction
Deposition of amyloid-b as insoluble parenchymal plaques and
intracellular accumulation of aggregated, hyperphosphorylated
tau as neurofibrillary tangles throughout the neuropil are key
steps in the pathogenesis of Alzheimer’s disease that lead to syn-
aptic and neuronal loss, cognitive dysfunction and eventual de-
mentia.1,2 Tau hyperphosphorylation (p-tau) is an early step in
tau-mediated neurodegeneration. Amyloid PET scans show depos-
ition of amyloid as insoluble fibrillar amyloid-b deposits (i.e. amyl-
oid-positive). The concentration of amyloid-b42 in the CSF
decreases with amyloid deposition and is also a marker of amyloid
status.3 Amyloid PET scans show increasing amounts of amyloid
deposition while an individual is still cognitively normal, although
CSF total tau (t-tau) begins to increase.4–6 Tau PET scans, which
show paired helical filament pathology, only become positive
many years after amyloid PET scans become positive, and there
are already decreases in CSF amyloid-b42 and increases in t-tau
and p-tau around the time that clinical symptoms appear.7,8

Although soluble amyloid-b42, p-tau and t-tau in human CSF are
biomarkers for early (amyloid-b42) and increasing (t-tau and p-tau)
amyloid deposition, the CSF t-tau/amyloid-b42 ratio is associated
with increased amyloid deposition in the brain4 and is superior to
single biomarkers at predicting the risk of clinical decline and con-
version to dementia.9

Recent work supports a role for sleep disturbances as markers
for and/or potential cause(s) of Alzheimer’s disease pathology.10

The risk of developing both Alzheimer’s disease and sleep disturb-
ance increases with age.11,12 During normal ageing, multiple meas-
ures of sleep change, including decreased sleep efficiency,
increased night-time awakenings, decreased sleep spindles and
increased time in non-REM (NREM) sleep stage 1 or drowsiness.13

Furthermore, sleep measures, such as time spent in NREM stage 3
sleep, change with age and sex,13 making their relationships to fu-
ture Alzheimer’s disease risk difficult to define. Sleep disorders,
such as obstructive sleep apnoea and restless legs syndrome, re-
sult in sleep disturbance and are age-associated.14,15 Although
controlling for preclinical Alzheimer’s disease markedly attenu-
ates the commonly held notion of diminishing cognitive perform-
ance as a function of age alone,16 poor sleep has been associated
with worse cognitive performance in older adults.17

Prior work delving into the relationship between sleep duration
and future risk of cognitive performance have shown inconsistent
results.18–20 For instance, a study of 1844 females aged 70–81 years

who completed baseline cognitive assessments and were retested
2 years later were found to have worse cognitive decline over time
if their self-reported sleep duration was 45 h/night compared to
7 h/night; females who reported sleeping 59 h/night did not ex-
perience cognitive decline.21 In contrast, a cross-sectional study of
3212 individuals aged 560 years found that those individuals who
self-reported sleeping 511 h/night were found to have poor cogni-
tive function compared to participants who reported sleeping 7 h/
night.22 Multiple studies have also shown that both shorter and
longer sleep duration are associated with decreased cognitive per-
formance.23,24 For example, a cross-sectional study of 1115 individ-
uals aged 560 years found that both self-reported short (56 h/
night) and long (48 h/night) sleep durations were associated with
cognitive impairment.25 These studies were performed in older
adults with 510 years of follow-up. Recent work in middle-aged
adults followed for up to 25 years found that short sleep duration
was associated with an increased risk of dementia.26

There is an increasing recognition that the relationship be-
tween cognition, Alzheimer’s disease risk factors and biomarkers
for Alzheimer’s disease is non-linear. For instance, rates of amyl-
oid and tau accumulation in the brain change with both age and
apolipoprotein E4 (APOE e4) allele carrier status. CSF p-tau levels
increase in APOE e4 non-carriers from an age of �55 years and plat-
eau at �75 years, whereas APOE e4 carriers show a linear increase
in CSF p-tau starting at an age of �50 years.27 Another study
reported that the relationship between longitudinal memory per-
formance and blood pressure is non-linear and varies with age, de-
pending on the baseline blood pressure.28

The differing results from studies of sleep duration and risk of
cognitive impairment may be due to a non-linear relationship be-
tween total sleep time and cognition. A meta-analysis of nine co-
hort studies involving 22 187 participants with longitudinal
cognitive assessments and both self-reported sleep duration and
that objectively measured with actigraphy found that the relation-
ship between sleep duration and the risk of cognitive dysfunction
showed a U-shaped dose-response relationship with the lowest
risk of cognitive impairment occurring in those with a sleep dur-
ation of 7–8 h/day.29 A second meta-analysis of 11 cross-sectional
and seven prospective cohort studies of 97 264 participants also
found that both short and long self-reported sleep durations were
associated with increased cognitive impairment.30

Sleep has been proposed as a potential marker for Alzheimer’s
disease pathology that could be non-invasively monitored to as-
sess the risk of future Alzheimer’s disease or track responses to

Sleep and cognitive performance are non-linear BRAIN 2021: 144; 2852–2862 | 2853



interventions during clinical trials. Since both sleep and
Alzheimer’s disease risk change with age and potentially interact,
a greater understanding of how sleep and cognition change with
age and at different stages of Alzheimer’s disease pathology is
needed. Previous studies have primarily relied on self-reported
total sleep time and other sleep measures. Furthermore, measures
of sleep quality such as sleep efficiency and NREM slow wave ac-
tivity (SWA) have been associated with Alzheimer’s disease path-
ology31–33 and cognitive function.34–36

Participants in previous studies of sleep and cognition have not
been well characterized for Alzheimer’s disease biomarkers or
genetic risk factors for Alzheimer’s disease such as their APOE e4
carrier status. In this study, we hypothesized that longitudinal
changes in cognitive function will have a non-linear relationship
with total sleep time, time spent in NREM and REM sleep, sleep ef-
ficiency, and NREM SWA. To test this hypothesis, we objectively
monitored sleep-wake activity with a single-channel EEG device
over 4–6 nights in 100 participants who also underwent standar-
dized annual cognitive testing, genotyping for APOE e4 status and
measurement of CSF Alzheimer’s disease biomarkers.

Materials and methods
Participants

Data from 100 community-living participants enrolled in longitu-
dinal studies at the Knight Alzheimer Disease Research Center
(ADRC), Washington University in St. Louis, were used.
Participants were included if they had completed at least 4 nights
of single-channel EEG monitoring, one lumbar puncture for CSF
analysis, genotyping for APOE e4 status and two or more neuro-
psychological testing visits. All individuals participating in Knight
ADRC studies undergo annual clinical and cognitive assessments
by a clinician. Clinical Dementia Rating (CDR) is used in longitudin-
al studies and clinical trials for staging dementia in general and in
dementia due to Alzheimer’s disease.37 For this analysis, partici-
pants were either classified as cognitively normal (CDR 0), or cog-
nitively impaired (CDR 4 0). All but one of the cognitively impaired
participants were only mildly impaired (CDR 0.5). At the Knight
ADRC, the standard protocol is to access the CDR annually. The
CDR and other neuropsychological tests have been very stable
tools for assessing the stage and degree of impairment in demen-
tia over many years in our cohort.38 This study was approved by
the Washington University in St. Louis Institutional Review Board
and each participant provided signed informed consent.

Preclinical Alzheimer Cognitive Composite

Individuals completed a neuropsychological testing battery at
each clinical visit that included the Free and Cued Selective
Reminding Test (FCSRT), the Logical Memory Delayed Recall Test
from the Wechsler Memory Scale–Revised, the Digit Symbol
Substitution Test (DSST) from the Wechsler Adult Intelligence
Scale–Revised and the Mini-Mental State Examination (MMSE).
These tests were administered and scored by experienced psycho-
metrists. Performance on each of these four tests was Z-scored
within the cohort and averaged in order to calculate a Preclinical
Alzheimer Cognitive Composite (PACC) score.39

Sleep monitoring and EEG power analysis

Sleep monitoring was performed as previously described.40 To
briefly review, sleep was recorded longitudinally in all participants
at home for up to 6 nights using sleep logs, actigraphy (Actiwatch
2, Philips Respironics) and a single-channel EEG device worn on

the forehead (Sleep Profiler, Advanced Brain Monitoring). Average
total sleep time, time in NREM sleep stages 2 and 3 (time in NREM),
time in REM sleep, sleep efficiency and 51 Hz and 1–4.5 Hz NREM
SWA were used in all analyses. Sleep efficiency was calculated
based on the lights off and lights on times for the single-channel
EEG studies and were corroborated with sleep logs. Single-channel
EEG sleep studies were visually scored by registered polysomno-
graphic technologists using criteria adapted from the standard
American Academy of Sleep Medicine criteria.41 Nights were
excluded if 410% of the recording was artefactual or if the bed and
rise times did not match the sleep log and/or actigraphy. All partic-
ipants needed at least 4 nights of single-channel EEG monitoring
that met these criteria to be included. Time in NREM sleep stages 2
and 3 were combined, because we found this has a higher level of
agreement with polysomnography.41 NREM SWA was calculated
for each single-channel EEG study using MATLAB (MathWorks,
Natick, MA), and the average NREM SWA was used in the analysis.
As previously described,41 a band-pass (two-way least-squares fi-
nite impulse response) filter between 0.5 and 40 Hz was applied to
the single-channel EEG data. Spectral analysis was performed in
consecutive 5-s epochs (Welch method, Hamming window, no
overlap). SWA power was calculated by averaging the power in the
frequency bins of 0.5–1.0 Hz and 1.0–4.5 Hz. To semi-automatically
remove artefactual epochs, power in the 20–30 and 0.5–4.5 Hz
bands for each electrode across all epochs of a recording were dis-
played. The operator (B.P.L.) then selected a threshold between the
95 and 99.5% threshold of power to remove artefactual epochs.
The data were then natural log-transformed to normalize the data.

CSF biomarkers

CSF was collected under a standardized protocol.42 After fasting
overnight, participants underwent a lumbar puncture at 8 a.m.,
when 20–30 ml of CSF was collected by gravity drip into a 50-ml
conical tube using a 22-gauge atraumatic Sprotte spinal needle,
gently inverted to disrupt potential gradient effects and centri-
fuged at low speed to pellet any cellular debris. Samples were ali-
quoted (500 ll) in polypropylene tubes and stored at –80�C until
analysis. CSF amyloid-b42, t-tau and p-tau 181 were measured as
previously described using an automated electrochemilumines-
cence immunoassay (Elecsys on the cobas e 601 analyzer, Roche).42

Statistical analysis

For demographic variables at the time of sleep monitoring, group
differences between cognitively normal (CDR 0) and impaired (CDR
4 0) participants were compared using t-tests for continuous vari-
ables and chi-square tests for categorical variables. We then used
generalized additive mixed effects models43,44 to estimate the ef-
fect of cross-sectional total sleep time, sleep efficiency, time in
NREM sleep, time in REM sleep and 51 Hz and 1–4.5 Hz NREM SWA
on longitudinal cognitive performance measured by the PACC
scores. Generalized additive models are powerful tools that allow
for non-parametric and non-linear model fitting in the context of
frequentist statistics. A generalized additive model is simply a
generalized linear mixed effects model; however, the linear predic-
tors are not constant values but rather a sum of spline fits.
Generalized additive models have been used in sample sizes 4
10045–47 and 100–20048–50 to study non-linear relationships in neu-
rodegenerative and cardiovascular diseases. We included an indi-
vidual participant identifier as a random effect since these were
longitudinal data. Generalized additive models implemented in
the R Package mgcv44 apply basis functions as predictors.

For each of the generalized additive models in this analysis, we
fit splines to age at PACC score completion, the sleep parameter of
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interest (total sleep time, time in NREM sleep, time in REM sleep,
sleep efficiency or NREM SWA) and the individual random effect
where the PACC score was the dependent variable of interest. In

these analyses, we included APOE e4 status, sex (referenced to fe-
male), years of education, age at sleep study participation, esti-
mated Alzheimer’s disease pathology measured by the CSF t-tau/

Figure 1 Overview of data collection. Sleep monitoring was performed over 4–6 nights in all participants. CSF was collected within 41 year of sleep
monitoring and CDR measured 42 years of sleep monitoring. Participants underwent annual cognitive assessments before and after sleep monitor-
ing to generate PACC scores.

Table 1 Participant characteristics

Cognitively normal
CDR = 0
(n = 88)

Cognitively impaired
CDR 4 0
(n = 12)

P-value

Age at sleep study, years, mean (SD) 75.23 (4.99) 78.27 (5.61) 0.054
Sex, number of males (%) 43 (48.9) 6 (50.0) 1.000
Years of education, mean (SD) 16.67 (2.36) 16.58 (2.07) 0.903
APOE e4 status: n APOE e4 + (%) 29 (33.0) 5 (41.7) 0.785
Race 0.431

More than one (%) 1 (1.1) 0 (0.0)
African American (%) 10 (11.4) 0 (0.0)
Caucasian (%) 77 (87.5) 12 (100.0)

Total sleep time, h, mean (SD) 6.32 (0.77) 6.47 (0.84) 0.546
Sleep efficiency, %, mean (SD) 79.33 (8.50) 76.40 (9.60) 0.273
51 Hz NREM SWA, lV2/Hz, mean (SD) 59.85 (46.4) 66.57 (45.8) 0.651
1–4.5 Hz NREM SWA, lV2/Hz, mean (SD) 17.63 (10.80) 18.70 (10.30) 0.757
AHI, number of respiratory events/h of monitoring time (%) 0.156

None (55) 33 (37.5) 6 (50.00)
Mild (5–15) 39 (44.3) 5 (41.7)
Moderate (15–30) 15 (17.0) 0
Severe (430) 1 (1.1) 1 (8.3)

PLMI, number of leg movements/h of monitoring time (%) 0.003
None (515) 48 (54.5) 1 (8.3)
Low (15–45) 17 (19.3) 7 (58.3)
High (445) 23 (26.1) 4 (33.3)

T-tau/amyloid-b42 ratio, n (%) 0.007
Amyloid-negativea 55 (62.5) 2 (16.7)
Amyloid-positivea 33 (37.5) 10 (83.3)

Years between PACC assessments 1.15 1.12 0.725
Number of PACC assessments (SD) 5.89 (3.00) 4.75 (3.77) 0.236
Years of follow-up (SD) 5.49 (3.37) 4.07 (3.80) 0.180

Comparisons were made by unpaired t-test. AHI = apnoea-hypopnea index; APOE e4 + = apolipoprotein E e4-positive status; PLMI = periodic limb movement index; SD =

standard deviation.
aT-tau/amyloid-b42 cut-point for amyloid status = 0.211.42
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CSF amyloid-b42 ratio within 1 year of sleep monitoring and CDR
within 2 years of sleep monitoring as covariates. An overview of
the timing of data collection is shown in Fig. 1. The CDR was
included in the model, because it is the gold standard for overall
clinical and cognitive status in patients with Alzheimer’s disease
and allows for overall stage of Alzheimer’s disease to be controlled
for in the models. Moreover, the CDR does not use cognitive scores
and is the marker often used as the primary outcome in clinical tri-
als. Although the CDR is the gold standard for clinical and cogni-
tive status, the use of biomarkers and neuropsychological testing
helps to supplement the diagnosis. The CSF t-tau/amyloid-b42 ratio
is a marker for amyloid pathology and future risk of cognitive im-
pairment, because once an individual starts to accumulate amyl-
oid and the ratio increases, they will eventually progress to
symptomatic Alzheimer’s disease.4,51 A generalized form of this
model is shown as Equation 1, where s() indicates that a spline fit
was applied. The distributions of both age at PACC and sleep par-
ameter of interest were assumed to be Gaussian.

PACC � s Age at PACCð Þ þ s Sleep Parameter
� �

þ s Individual Random Effect
� �

þAPOEe4 statusþ Sex
þ Years of Educationþ Age at Sleep Study

þ CSF
t-tau

Amyloid-b42
þ CDR (1)

The maximum number of knots for each spline fit was limited to
four to minimize overfitting. The number of knots specifies the di-
mension of the basis function used to represent the smoothing
parameter and was selected using an iterative backfitting algo-
rithm. Cyclic cubic regression splines were used for smoothing the
age at PACC and sleep parameter predictors, and ridge penalties
were used for smoothing random effects. We used generalized
cross-validation for smoothing parameter estimation. We also per-
formed generalized linear models with the same covariates as
used in the generalized additive models: sleep parameter, CDR,
CSF t-tau/amyloid-b42, age at sleep study, age at PACC, APOE e4 sta-
tus, sex and education. Generalized linear models account for the
dependencies among the longitudinal measurements. All model
variables were treated as fixed effects with random intercepts and
slopes to accommodate individual variation. All analyses were per-
formed using R.

Data and material availability

All of the data that support the findings of this study are available
from the corresponding author upon reasonable request. All code
associated with this analysis is freely available from the corre-
sponding author upon reasonable request.

Results
Participant characteristics

Table 1 shows the demographic and clinical characteristics of
cognitively normal (CDR 0) and cognitively impaired (CDR 4 0)
participants at the time of sleep study monitoring. There were no
significant differences in the CDR 0 and CDR 4 0 groups with regard
to age, sex, years of education, APOE e4 status, race, total sleep time,
sleep efficiency, NREM SWA, apnoea-hypopnoea index (measure of
sleep apnoea), years between PACC assessments, number of PACC
assessments, or years of follow-up. CDR 4 0 participants had sig-
nificantly more participants with a periodic limb movement index
4 15 (measure of periodic leg movements during sleep) than CDR 0
participants. Twelve individuals (12%) had a baseline CDR of 0.5 or
greater. A single individual had a baseline CDR of 1.0. No individuals
progressed from CDR 0 to 0.5 or from 0.5 to 1.0 during the follow-up
window, and participants had on average 4–5 years of follow-up
(Table 1) with a range of 2–12 years (Supplementary Fig. 1). Most par-
ticipants (78%) underwent cognitive assessments that crossed the
date of sleep monitoring, 22% undertook these before the date of sleep
monitoring, while none underwent them after the date of sleep moni-
toring. A detailed comparison between the baseline and final
PACC scores, including individual component assessments, can be
found in Supplementary Tables 1 and 2. As expected, a greater per-
centage of CDR 4 0 participants showed greater evidence of
Alzheimer’s disease pathology as measured by the CSF t-tau/amyloid-
b42 ratio. The unadjusted relationship between PACC scores and age is
shown in Fig. 2. The change in longitudinal PACC scores was in the
range –1 to 1 for the majority of participants, but a subset of partici-
pants 470 years of age showed greater decreases in PACC perform-
ance over time.

Figure 2 Distribution of longitudinal PACC scores by age. Spaghetti plots of the PACC scores are shown for each participant at the age when testing
was performed. Overall, cognitive performance on the PACC was relatively stable between –1 and 1 for the majority of participants. A subset of partic-
ipants who were 470 years of age at baseline showed more rapid decline in PACC performance.
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Sleep and longitudinal cognitive performance are
non-linear

To assess the relationship between sleep and longitudinal changes
in cognitive performance, we performed generalized additive mod-
els of total sleep time, sleep efficiency, time in NREM stage 2 and 3,
time in REM, 51 Hz and 1–4.5 Hz NREM SWA with longitudinal
PACC scores, age at the time of cognitive testing, age at the time of
sleep monitoring, sex, CDR score within 2 years of sleep monitor-
ing, APOE e4 status, CSF t-tau/amyloid-b42 ratio and years of educa-
tion. We found that the longitudinal PACC performance varied
with the value of each sleep parameter. For total sleep time, sleep
efficiency, time in NREM stage 2 and 3, time in REM, and NREM
SWA, both the sleep parameter and age at PACC were found to
have significant spline fits in the fully adjusted model. CDR, CSF t-
tau/amyloid-b42 ratio and sex (male effect) showed a significant in-
verse relationship with longitudinal PACC scores for all models.
Age at the sleep study visit and APOE e4 + status had positive lin-
ear relationships with PACC scores in all models. Years of educa-
tion was not significant in any model (Tables 2 and 3, Figs 3A, C, E,
F and 4A and C).

The estimated spline functions for total sleep time, sleep effi-
ciency, time in NREM, time in REM, and NREM SWA showed bi-
modal distributions. For instance, total sleep times of 54.5 h and
46.5 h were associated with worse cognitive performance over
time (Fig. 3B). However, there was no change in PACC after adjust-
ing for the model covariates in between these total sleep dura-
tions (i.e. the 95% confidence intervals are not above or below
zero change in PACC performance over time). Although sleep effi-
ciency was non-linearly related to longitudinal PACC perform-
ance, the 95% confidence intervals crossed zero (i.e. no significant
change in PACC scores over time) except between 60–65% where
PACC performance decreased �–0.1 (Fig. 3D). Both time in NREM
and time in REM sleep showed an inverse U-shaped relationship
with change in PACC scores over time (Fig. 3F and H). NREM SWA
(1–4.5 Hz) was similar to sleep efficiency with 95% confidence
intervals crossing zero, but low and high 51 Hz NREM SWA was
related with worsening PACC performance of �–0.2 (Fig. 4B and
D). These findings suggest that total sleep time, time in NREM,
time in REM, and 51 Hz NREM SWA are more sensitive measures
for longitudinal PACC performance than sleep efficiency or 1–
4.5 Hz NREM SWA.

Table 2 Generalized additive models of the relationship between longitudinal PACC scores and total sleep time, sleep efficiency,
NREM stage 2 and stage 3 and REM sleep

Generalized additive models

Total sleep time Sleep efficiency NREM stages 2 and 3 REM

Spline fit EDF EDF EDF EDF
Sleep parameter 2.377*** 2.808** 2.6100674*** 1.6478***

Age at PACC 2.836*** 2.821*** 2.8406516*** 2.7936***

Participant ID 1.118 � 10–3 9.09 � 10–2 4.752 � 10–4 0.2533

Covariate Estimate 95% CI Estimate 95% CI Estimate 95% CI Estimate 95% CI

CDR –1.592*** –1.903, –1.281 –1.551*** –1.880, –1.222 –1.589*** –1.913, –1.266 –1.423*** –1.744, –1.101
CSF t-tau/amyloid-b42 –1.171*** –1.500, –0.843 –1.047*** –1.386, –0.708 –1.140*** –1.476, –0.804 –1.108*** –1.445, –0.770
Age at sleep study 0.038*** 0.022, 0.055 0.025** 0.008, 0.042 0.037*** 0.019, 0.054 0.026** 0.009, 0.042
APOE e4 + 0.146* 0.027, 0.266 0.135* 0.011, 0.258 0.167** 0.048, 0.287 0.179** 0.059, 0.299
Sex (male effect) –0.236*** –0.343, –0.129 –0.181** –0.290, –0.073 –0.177** –0.288, –0.066 –0.231*** –0.338, –0.123
Education (years) 0.006 –0.018, 0.030 0.012 –0.014, 0.038 0.007 –0.018, 0.032 0.008 –0.017, 0.033
Intercept –2.600*** –3.938, –1.261 –1.593* –3.023, –0.163 –2.537*** –3.927, –1.147 –1.658* –3.033, –0.284

n = 100; dependent variable = PACC. EDF = effective degrees of freedom.

*P5 0.05, **P5 0.01, ***P50.001.

Table 3 Generalized additive models of the relationship between longitudinal PACC scores and 51 Hz NREM SWA and 1–4.5 Hz
NREM SWA

Generalized additive models

Ln (51 Hz NREM SWA) Ln (1–4.5 Hz NREM SWA)
Spline fit EDF EDF
Sleep parameter 2.55368** 2.8279655**

Age at PACC 2.84824*** 2.8507198***

Participant ID 0.06847 2.473 � 10–4

Covariate Estimate 95% CI Estimate 95% CI

CDR –1.384*** –1.702, –1.065 –1.365*** –1.681, –1.048
CSF t-tau/amyloid-b42 –0.879*** –1.224, –0.534 –0.925*** –1.269, –0.581
Age at sleep study 0.026** 0.009, 0.043 0.023** 0.006, 0.040
APOE e4 + 0.131* 0.011, 0.252 0.155* 0.035, 0.274
Sex (male effect) –0.240*** –0.360, –0.121 –0.223*** –0.343, –0.103
Education, years 0.001 –0.024, 0.026 –0.007 –0.032, 0.018
Intercept –1.635* –3.006, –0.263 –1.272 –2.639, 0.094

n = 100; dependent variable = PACC. EDF = effective degrees of freedom.

*P5 0.05, **P5 0.01, ***P50.001.
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To test if generalized additive models best fit our data, we used
linear mixed effects models adjusted for the same covariates to
test if a linear function describes the relationship between longitu-
dinal PACC and total sleep time, sleep efficiency, time in NREM
stage 2 and 3, time in REM, and 51 Hz and 1–4.5 Hz NREM SWA.
Total sleep time was found to have an inverse relationship with
longitudinal PACC (Supplementary Table 3). In addition to total
sleep time, CDR, CSF t-tau/amyloid-b42 ratio, and sex (male effect)
were also significant. Sleep efficiency, time in NREM stage 2 and 3,
time in REM, 51 Hz NREM SWA, and 1–4.5 Hz NREM SWA, however,
were not significant using a generalized linear model although

CDR, CSF t-tau/amyloid-b42 ratio, and sex remained significant
(Supplementary Tables 3 and 4).

To understand how each of the four cognitive tests that com-
prise the PACC change with two representative sleep measures
(total sleep time and 51 Hz NREM SWA), we included the MMSE,
FCSRT, DSST, and Logical Memory tests as the dependent variable
in our generalized additive models (Supplementary Tables 5–8).
Total sleep time showed a similar association with the MMSE,
FCSRT, and Logical Memory Test as with the PACC, but the DSST
did not. NREM SWA 51 Hz was also significantly related to the
FCSRT, DSST, and Logical Memory Test but not the MMSE. To test

Figure 3 Longitudinal PACC performance and sleep time are non-linearly related. In 100 participants, generalized additive models found that the as-
sociation of longitudinal PACC performance with total sleep time, sleep efficiency, time in NREM stage 2 and stage 3 sleep, and REM sleep was non-
linear after adjusting for APOE e4-positive status, age at cognitive test, age at sleep monitoring, education, sex (male effect), CSF t-tau/amyloid-b42

and CDR. For the models of total sleep time (A), sleep efficiency (C), time in NREM stage 2 and 3 sleep (E), and time in REM sleep (G), the estimated
marginal effect on longitudinal PACC performance (i.e. change in PACC score over time) is shown for each of the covariates. The estimated smoothed
spline function of total sleep time in the fully adjusted model shows that a total sleep time 54.5 h and 46.5 h was associated with worse PACC per-
formance over time (B). For sleep efficiency (D), PACC performance was generally unchanged over time. Time spent in NREM stage 2 and 3 (F) and in
REM sleep (H) showed inverse U-shaped relationships with longitudinal PACC performance.
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if the four cognitive tests that make up the PACC are linearly asso-
ciated with sleep, we included the MMSE, FCSRT, DSST, and
Logical Memory tests as the dependent variable in our generalized
linear models (Supplementary Tables 9–12). We found that the
total sleep time was inversely related to FCSRT and Logical
Memory tests, but not MMSE or DSST; 51 Hz NREM SWA was not
linearly associated any individual cognitive test.

Discussion
In this study, we observed that the relationship between cross-sec-
tional measures of total sleep time, time in NREM stage 2 and 3,
time in REM, and 51 Hz NREM SWA and cognitive function over
time, as assessed by the PACC, was non-linear. This relationship
was seen even after adjusting for multiple potential confounders
that can affect sleep and cognition, including age, CSF markers of
Alzheimer’s disease pathology, APOE e4 allele carrier status, years
of education and sex. These findings have important implications
for using sleep to track the risk of developing cognitive impairment
in the clinic or in response to an intervention in a clinical trial.
Furthermore, these results support the suggestion that sleep
measures have an optimal middle range where PACC scores are
stable and suggest targets for sleep interventions to help maintain

cognitive function in individuals at risk of developing Alzheimer’s
disease. We also found that the Logical Memory Test, a story mem-
ory test, was significantly associated with both total sleep time
and 51 Hz NREM SWA. The MMSE, a general cognitive test, was
associated with total sleep time while the DSST, a test of multiple
cognitive functions, was associated with 51 Hz NREM SWA. The
FCSRT, a word list test of episodic memory, was associated with
both total sleep time and 51 Hz NREM SWA. Further research is
needed to determine if specific sleep measures are associated with
longitudinal changes on specific neuropsychological tests.

Our study supports previously reported associations between
increased risk of cognitive impairment and both short and long total
sleep time. Furthermore, time spent in both NREM and REM sleep
showed similar non-linear relationships suggesting that the rela-
tionship between total sleep time and cognitive function is not due
to increases or decreases in specific sleep stages. However, future
studies are needed to test this hypothesis. Unlike prior studies that
used self-reported total sleep time, we objectively assessed total
sleep time over multiple nights using a single-channel EEG device
that compares favourably to polysomnography.41 Comparing our
findings to previous work for cut-offs of short and long total sleep
time must account for different methods used to measure sleep dur-
ation. We have recently shown in our cohort that self-reported total
sleep time is �1 h longer than that measured by the single-channel

Figure 4 Longitudinal PACC performance and NREM SWA are non-linearly related. In 100 participants, generalized additive models found that the as-
sociation of longitudinal PACC performance with NREM SWA was non-linear after adjusting for APOE e4-positive status, age at cognitive test, age at
sleep monitoring, education, sex (male effect), CSF t-tau/amyloid-b42 and CDR. For the models of 1–4.5 Hz NREM SWA (A) and 51 Hz NREM SWA (C),
the estimated marginal effect on longitudinal PACC performance (i.e. change in PACC score over time) is shown for each of the covariates. The esti-
mated smoothed spline function of ln (1–4.5 Hz NREM SWA) in the fully adjusted model shows a non-linear relationship with PACC performance gen-
erally unchanged over time (B). Ln (51 Hz NREM SWA) showed inverse U-shaped relationships with longitudinal PACC performance (D).
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EEG device on the same night.52 Fewer studies have investigated the
relationship between cognitive performance and sleep duration
measured by polysomnography.53–55 In those studies, participants
were monitored with polysomnography for only 1 night in either a
sleep lab or at home, which may not have represented a typical
night of sleep. In contrast, all participants in our study had sleep-
wake activity measured by single-channel EEG for 4–6 nights at
home, which more likely represented how each participant typically
sleeps. The single-channel EEG is recorded from electrodes placed
on the forehead, however, and provides more limited monitoring of
sleep-wake activity compared with polysomnography.

The estimated marginal effect of total sleep time, time in NREM,
and time in REM on PACC performance was approximately –0.2 to –
0.3 at the shortest and longest sleep times. In the generalized addi-
tive model, this was less than the estimated marginal effect of CDR
and CSF t-tau/amyloid-b42 (–1.0 to –1.5), greater than the effects of
APOE e4 status and education, but similar to age and sex. Although
longitudinal PACC scores and total sleep time had a significant in-
verse relationship with the simpler linear model, we think a non-
linear model better explains findings reported in the literature.

The estimated marginal effect of low and high 51 Hz NREM
SWA on longitudinal PACC performance was approximately –0.2,
less than the effect of CDR (–1.5) and CSF t-tau/amyloid-b42 (–0.5 to
–1.0) in our model but comparable to age and sex. Longitudinal
PACC scores and NREM SWA were not significantly associated in
the linear model, suggesting that the non-linear model more ac-
curately represents these relationships. The 1–4.5 Hz NREM SWA
had a smaller marginal effect on PACC performance than the
51 Hz NREM SWA, supporting the suggestion that 51 Hz slow
oscillations as a critical marker of cognitive function.

Decreased NREM SWA is correlated with poor cognitive perform-
ance34 and Alzheimer’s disease pathology.32,33 Increased SWA may
be a marker of cortical dysfunction in Alzheimer’s disease.
Disturbed neuronal activity in early preclinical Alzheimer’s disease,
resulting in excitation/inhibition imbalance with neuronal hyperex-
citability and hypersynchrony, is hypothesized to connect structural
Alzheimer’s disease brain pathology with cognitive dysfunction.56–58

For instance, resting EEG studies have shown increases in SWA
within individuals with cognitive impairment and early Alzheimer’s
disease59,60 and resting state theta-delta hypersynchrony has also
been correlated with both amyloid and tau pathology.61 Although
our participants showed no evidence of seizure activity, clinically si-
lent focal interictal discharges and seizures in the hippocampus
have been reported in mildly impaired patients with Alzheimer’s
disease.62 Patients with focal epilepsy and evidence of neuronal
hyperexcitability (e.g. interictal spikes, seizures) have increased
NREM SWA and reduced daytime learning compared to control par-
ticipants.63 This example suggests how occult hyperexcitability may
increase NREM SWA and decrease cognitive performance. Moreover,
individuals with REM sleep behaviour disorder, a parasomnia that
predicts later occurrence of synucleinopathies such as Parkinson’s
disease, have increased NREM SWA compared to controls,64 suggest-
ing that similar findings may be seen in the early stages of other
neurodegenerative diseases. Future studies with high density EEG
are needed in individuals at different stages of Alzheimer’s disease
to characterize sleep’s effect on longitudinal cognitive performance,
including assessment of sleep spindles, 51 Hz NREM slow waves,
slow oscillation-spindle coupling that have been shown to decouple
with age65 and Alzheimer’s disease66 and regional differences.

Decreased sleep efficiency is a marker of poor sleep quality and
is associated with worse cognitive function.35,36 Higher sleep effi-
ciency is consistent with higher sleep quality. The estimated mar-
ginal effect of sleep efficiency on longitudinal PACC scores was
minimal and suggested that sleep efficiency 565% was associated
with minimally decreased cognitive performance. These are minor

effects compared to total sleep time and NREM SWA. Longitudinal
PACC scores and sleep efficiency were not significantly associated
in the linear model.

Our cohort is richly characterized for genetic risk factors and
biomarkers for Alzheimer’s disease that were not available for pre-
vious studies and thus allow us to compare the effect of total sleep
time, sleep efficiency, time in NREM stage 2 and 3, time in REM,
51 Hz and 1–4.5 Hz NREM SWA on cognitive performance relative
to other factors such as CDR or CSF t-tau/amyloid-b42. These
results suggest that a certain range of total sleep time and 51 Hz
NREM SWA are important for maintaining cognitive function.
Participant cognitive performance on the PACC decreased outside
of this middle or optimal range. The clinical significance of this
cognitive change is unclear. A recent paper compared PACC per-
formance in amyloid-negative and amyloid-positive cognitively
normal participants enrolled in three large Alzheimer’s disease co-
hort studies.67 Based on the separation between cognitively unim-
paired individuals and early mild cognitive impairment, the
authors concluded that 1 SD on the PACC (i.e. one point of add-
itional decline in amyloid-positive participants compared to amyl-
oid-negative participants) could be taken as an approximate
benchmark for clinically meaningful decline for interventional tri-
als involving preclinical or presymptomatic Alzheimer’s disease
(e.g. cognitively normal amyloid-positive). Given that our cohort is
88% cognitively unimpaired and there are known practice effects
with the PACC,68 a marginal effect of sleep on PACC performance
ranging from –0.2 to –0.3 is clinically significant; further, this esti-
mated marginal effect is comparable to age in our models, the
greatest risk factor for Alzheimer’s disease. The effect of sleep effi-
ciency is small, however, and is likely not clinically significant. An
exciting possibility from this study is that diagnosing and treating
sleep disturbances, such as sleep apnoea or insomnia, to optimize
sleep duration and NREM SWA may have a stabilizing effect on
cognition in preclinical or early symptomatic Alzheimer’s disease.

However, many unanswered questions remain. We need to
understand if there are differences in the optimal characteristics of
sleep needed to preserve cognitive function and the optimal charac-
teristics of sleep needed to prevent Alzheimer’s disease pathology,
and if these relationships change with stage of Alzheimer’s disease.
Also, colinear or linked factors may affect both sleep and cognitive
decline. We have already discussed that sleep changes with age and
sex, but this is likely an issue with other Alzheimer’s disease risk
factors. For example, APOE e4 has been associated with increased
duration of NREM stage 3 sleep in cognitively normal older adults.69

Yet, APOE e4 is also associated with increased risk of amyloid path-
ology that is associated with decreased sleep efficiency.31 A major
limitation of this study is that cognitive assessments were longitu-
dinal and preceded the cross-sectional sleep monitoring in 22% of
participants. Both interventional studies and observational studies
with longitudinal sleep and cognitive assessments are needed to see
how the trajectories of different sleep parameters, especially total
sleep time and 51 Hz NREM SWA, are related to the trajectory of
cognitive performance.

Acknowledgements
We are indebted to the participants for their contributions to this
study.

Funding
This study was supported by the following grants from the
National Institutes of Health: P01 AG03991, P01 AG026276, P30
AG066444, K76 AG054863, UL1 TR000448, KL2 TR000450, R01

2860 | BRAIN 2021: 144; 2852–2862 B. P. Lucey et al.



AG052550, and R01 AG057680. A Physician Scientist Training
Award from the American Sleep Medicine Foundation and support
from the Roger and Paula Riney Fund and the Daniel J. Brennan,
MD Fund. The funding sources had no role in the study design,
data collection, management, analysis, interpretation of the data
or manuscript preparation.

Competing interests
B.P.L. consults for Merck and Eli Lilly; J.W. is currently employed at
Bayer; J.C.M. is funded by NIH grants P30 AG066444; P01AG003991;
P01AG026276 and U19 AG032438. Neither J.C.M. nor his family
owns stock or has equity interest (outside of mutual funds or other
externally directed accounts) in any pharmaceutical or biotechnol-
ogy company. D.M.H. co-founded and is on the scientific advisory
board of C2N Diagnostics. D.M.H. consults for Genentech, Idoria,
Merck and Denali. Washington University receives research grants
to the laboratory of D.M.H. from C2N Diagnostics and NextCure.
J.H. is an advisory board member for Roche, Lundbeck and Takeda.
A.H.B., E.C.L., C.D.T., J.S.M., O.H.B. and B.M.A. declare that they
have no competing interests.

Supplementary material
Supplementary material is available at Brain online.

References
1. Bateman RJ, Xiong C, Benzinger TL, et al.; Dominantly Inherited

Alzheimer Network. Clinical and biomarker changes in domin-
antly inherited Alzheimer’s disease. N Engl J Med. 2012;367(9):
795–804.

2. Jack CR, Knopman DS, Jagust WJ, et al. Tracking pathophysio-
logical processes in Alzheimer’s disease: An updated hypothet-
ical model of dynamic biomarkers. Lancet Neurol. 2013;12(2):
207–216.

3. Fagan AM, Mintun MA, Mach RH, et al. Inverse relation between
in vivo amyloid imaging load and cerebrospinal fluid Amyloid-
beta-42 in humans. Ann Neurol. 2006;59(3):512–519.

4. Fagan AM, Mintun MA, Shah AR, et al. Cerebrospinal fluid tau
and ptau(181) increase with cortical amyloid deposition in cog-
nitively normal individuals: Implications for future clinical tri-
als of Alzheimer’s disease. EMBO Mol Med. 2009;1(8-9):371–380.

5. Fagan AM, Shaw LM, Xiong C, et al. Comparison of analytical
platforms for cerebrospinal fluid measures of b-amyloid 1-42,
total tau, and p-tau181 for identifying Alzheimer disease amyl-
oid plaque pathology. Arch Neurol. 2011;68(9):1137–1144.
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