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Abstract: Artificial neural networks (ANN) and data analysis (DA) are powerful tools for supporting
decision-making. They are employed in diverse fields, and one of them is nanotechnology; for exam-
ple, in predicting silver nanoparticles size. To our knowledge, we are the first to use ANN to predict
liposome size (LZ). Liposomes are lipid nanoparticles used in different biomedical applications that
can be produced in Dean-Forces-based microdevices such as the Periodic Disturbance Micromixer
(PDM). In this work, ANN and DA techniques are used to build a LZ prediction model by using the
most relevant variables in a PDM, the Flow Rate Radio (FRR), and the Total Flow Rate (TFR), and the
temperature, solvents, and concentrations were kept constant. The ANN was designed in MATLAB
and fed data from 60 experiments with 70% training, 15% validation, and 15% testing. For DA, a
regression analysis was used. The model was evaluated; it showed a 0.98147 correlation coefficient
for training and 0.97247 in total data compared with 0.882 obtained by DA.

Keywords: artificial neural networks; micromixer; liposome; data analysis

1. Introduction

A liposome is a vesicle frequently made of phospholipids and cholesterol [1]. Li-
posomes are used in different applications such as transfection [2], drug delivery [3],
chemotherapy [4], cosmetics [5], and many others. Mechanical dispersion [6], solvents
dispersion [7], and detergent removal [8] are different methods that exist to produce li-
posomes, but microfluidic micromixers were previously demonstrated to be robust and
scalable methods of making size-controlled liposomes [9].

Liposome size (LZ) is an important factor in efficient cancer drug delivery [10]. That
is why being able to determine the size of the liposomes before manufacturing them would
allow for a lean process [11].

Data analysis (DA) tools were previously used to predict LZ fabricated by micromix-
ers [9,12–14]. The models considered LZ as a dependent variable of the Flow Rate Ratio
(FRR) and Total Flow Rate (TFR). The implementation of an artificial neural network
(ANN) could allow for the development of more accurate models [15]. Artificial Intelligent
strategies have become a common tool for pharmaceutical research [16]. ANN works as a
“Universal algebraic function” that contemplates noise from experimental data [17], which
can help predict the liposome size, finding patterns and relationships between the two data
inputs. Comparative studies of both techniques are required to determine the one with the
best performance [18].
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Currently, there is no ANN-based model for the prediction of LZ; however, this
technique was previously used successfully in the prediction of silver nanoparticles [19,20],
droplet size in microfluidic devices [21], or the identification of operating parameters in
microfluidic devices [22–24].

The Periodic Disturbance Mixer (PDM) is a micromixer designed for liposome pro-
duction based on Dean forces. This device has a polynomial equation that estimates LZ
using the FRR and TFR [14].

In this work, we compared the LZ prediction model based on a DA versus ANN two-
layer feed-forward network, known as Fitnet [25], in a PDM when temperature, geometry,
solvents, and lipids are constants, and the FRR and TFR are variables. We demonstrated that
the ANN method had a higher regression number and a lower MSE than the DA model.

2. Materials and Methods
2.1. Experimental Setup

To compare analyses between DA and ANN models successfully, the experimental
setup used in “Surface Response Based Modeling of Liposome Characteristics in a Periodic
Disturbance Mixer” was preserved. It consisted of PDM devices and three syringe pumps
(2 Harvard Apparatus 11 plus 70-2212, 1 Norm-Ject 10 mL). One syringe pump is for the
lipid-ethanol mixture; the second is for the MilliQ water; and the last one is for ethanol
just for channel cleaning. Each syringe was connected using a 0.22 µm filter and tubing,
as shown in Figure 1. The PDM was placed on the hot plate at 70 ◦C. The final mixture
was collected, on the hot plate too, from the outlet in 4-mL scintillation vials prepared with
MiliQ water for a final lipid concentration of 0.1 mg/mL for each sample. Samples were
cooled down to room temperature, then stored at 4 ◦C.
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Figure 1. Experimental setup [26].

The lipid mixture consisted of 1,2-dimyristoyl-sn-glycerol-3-phosphocholine (DMPC),
cholesterol, and diacetyl phosphate (DHP) at a molar radio 5:4:1 and all diluted in ethanol
with a final concentration of 5 mM.

2.2. Data Recollection

The FRR and TFR were selected according to preceding work [14]. The first step was
designed with Design of Experiment (DoE) and response surface methodology strategies,
taking into consideration micromixer operation conditions and equipment restrictions. All
the experiments were between 3 to 18 mL/h for the TFR and 1 to 12 mL/h for the FRR.

The size distribution by the intensity and polydispersity index (PDI) were measured by
Dynamic Light Scattering (DLS) equipment, Zetasizer Nano S90 (Malvern, Worcestershire,
United Kingdom). To obtain statistically significant results for liposome size, the LZ was
obtained by the average of three independent measurement repetitions per sample.

2.3. Prediction Models

The liposome size prediction model based on DA techniques was previously sup-
ported [9,13]. It consisted of a reduced quadratic surface response model, Figure A1, based
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on the Central Composite Circumscribed Rotatable (CCCR) design, fitted using the TFR
and FRR as independent variables of 29 samples. TFR2 and TFR*FRR were not considered
because of non-probabilistic significance. The DA model is shown in Equation

LZ = 236.3− 26.95FRR− 4.437TFR + 1.573(FRR)2 (1)

For AI, a prediction model was used with the ANN, two-layer feed-forward network
with sigmoid hidden neurons (hidden layer) and linear output neurons (output layer)
(Figure 2). It consisted of 2 input and 1 output variables (Table 1), with 60 samples
(Figures A2 and A3). A total of 70% of data were used for training, 15% for validation, and
finally 15% for testing. This ANN was programmed in MATLAB using the nnstart toolbox.
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Figure 2. Schematic diagram demonstrating the model architecture of ANN prediction model.

Table 1. Variables of the ANN.

Variables Units Meaning

FRR (input) - The flow rate ratio is the fraction of flow between the water
phase and solvent/lipid phase [27].

TFR (input) ml/h The total flow rate is the sum of flow between the water
phase and solvent/lipid phase [28].

LZ (output) nm The liposome size is the average of three independent
measurement repetitions of size distribution by intensity.

The flow chart of Figure 3 shows the process used to program the ANN prediction
model; the first step consisted of importing input and output data in the workspaces; then,
with the nftool command, the ANN algorithms (Fitnet) were accessed. The second step
was to select the inputs and targets of the ANN from the workspace’s variables, and the
third step was to select the percentage of data for training, validation, and test from the
whole dataset. The fourth step was the determination of the neurons’ number in the hidden
layer. Finally, the sixth step was the training where Levenberg–Marquardt was chosen
as the training algorithm. If the regression coefficient was satisfactory, then the network
parameters were stored, and if not, the ANN architecture was retrained.
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3. Results and Discussions
3.1. ANN Prediction Model

The LZ prediction model was developed in MATLAB with nftool. A heuristic approach
was used to select the best training, validation, and testing parameters. The data used are
shown in Table A1. A total of 42 data were employed for training, 9 for validation, and 9
for the test. All data were randomly selected.

The two layers of the ANN consisted of the hidden layer with 10 neurons and the
output layer with a single neuron. The number of neurons in the hidden layer was selected
based on the seed neurons’ number according to Equation (2) [16,29]:

N◦ o f neurons =
√

1 + 8n− 1
2

(2)

where n is the number of samples.

N◦ o f neurons =
√

1 + 8 ∗ 60− 1
2

=

√
1 + 480− 1

2
=

√
481− 1

2
=

20.9
2

= 10.4 (3)

The training process was made with 10 neurons in the hidden layer. The ANN was
retrained until it had a total regression number close to 1.

Figure 4 is the MATLAB Training progress report. In this window, it is possible to
know all of the ANN characteristics and performances.
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The performance analysis of the ANN is based on the correlation coefficient (R) and
Mean Square Error (MSE). R is a statistic measurement of the relationship between variables
and their association with each other and is given for the next Equation (4) [30].

R =
∑(xi − x)(yi − y)√

∑(xi − x)2 ∑(yi − y)2
(4)

where R is the correlation coefficient, xi values of the x-variable in a sample, x mean of the
values of the x-variables, yi values of the y-variable in a sample, y mean of the values of
the x-variables.

The MSE is used to determine how close a regression line is to the measured data. A
MSE value close to 0 indicates that the model fits with the data [31]. Table 2 shows the
performance analysis, and Figure 5 has the plots of the data and the model line.

MSE =
1

Number o f sample ∑ Square errors (5)

Table 2. MSE and R coefficient for training, validation, and testing.

MSE R

Training 156.7893 0.98147
Validation 290.50693 0.97436

Testing 328.40462 0.95059
All - 0.97247
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The square error is defined in the next Equation (6).

Square error = (Real value− f orecast)2 (6)

Figure 6 is the histogram of the errors between target values and predicted values
after training the ANN. On this graphic, the y-axis represents the number of samples from
the dataset, and the x-axis is divided into 20 bins. The width of each bar represents the most
common type of error, and it was calculated by the Equation (7), and in the case of our
ANN was 4.2965 nm [19].

Width =
Maximum error−minimum error

20
(7)

Width =
34.06− (−51.87)

20
=

85.93
20

= 4.2965nm (8)

The best validation performance was recorded during epoch number 8 (Figure 7. An
epoch is referred to as one cycle over the complete training dataset [32]). In this case,
Figure 8 demonstrates that errors are repeated three times after epoch number 8, and the
process is stopped at epoch 11.
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The code generated for the ANN is in Appendix C.

3.2. DA Prediction Model

According to Lopez [10], the performance of the LZ model was evaluated by R2,
R2-adjusted, and R2-predicted. R2 values’ range is from 0 to 1, where 0 indicates that
the model does not describe the process, and 1 shows that all data are on the regression
line [21]. The adjusted R2 is a variant of R2 that has been adjusted for the number of
forecasters in the model. R2-adjusted increases if the new term improves the model more
than it would be expected by chance. It decreases when a forecaster improves the model
by less than expected by chance. R2-predicted is used to indicate if the regression model
predicts responses that have a good performance for new observations [33].

This model had R2 = 78.89%, R2-ajusted = 76.35%, and R2-predicted = 70.20%.

3.3. Comparation Models

The models were evaluated by R. For the DA model was used the R multiple (B1),
and for ANN model all data R. Table 3 shows a better R for the ANN model with 0.97247
versus 0.7401 for DA model.

Table 3. Regression coefficient comparation between DA and ANN models.

Model R

DA 0.8882
ANN 0.97247

3.4. Experimental Validation

After obtaining the two prediction models, five sets of the FRR and TFR were randomly
selected for the experimental validation of the models, where the exclusion criterion was:
having the same operation condition. The experimental corroboration samples were carried
out with the same protocol for the collection of data from the models and characterized in
the same equipment. The MSE was used to evaluate the performance of the two models.
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Table 4 shows the MSE of external validation for the ANN and DA models. The square
error was calculated for each measurement. The MSE was calculated with Equation (5),
and the value obtained for the ANN model was 1.057, and 373.44 for DA model.

Table 4. Experimental validation performances using ANN and DA model.

Sample Frr Tfrr
mL/h

Measurement
LZ nm

ANN
LZ nm

Square
Error

DA
LZ nm

Square
Error

1 10.40 5.20 120.2 121.02 0.674 103.083 292.99
2 12.02 10.5 73.8 74.988 1.412 92.99 368.26
3 6.5 10.5 77.24 78.980 3.030 80.995 14.100
4 5 18.0 64.7 64.288 0.169 61.009 13.623
5 3.3 3.1 199.1 199.08 0.000 164.774 1178.27

MSE 1.057 MSE 373.44

According to Table 4, the MSE obtained with the eternal validation data was 373.44 for
the DA model compared with 1.057 obtained for the ANN model. According to the MSE
evaluation criteria, the ANN had a closer MSE to 0 with 1.057, meaning that the model fits
better to the data than the DA model with 373.44. Therefore, this result is consistent with
that obtained through R.

4. Conclusions

This comparative study aimed to find out whether the DA or ANN was the most
efficient method to estimate LZ. Previous research showed that ANNs were the most
favorable option for predicting the size of silver nanoparticles. This study confirmed that
the ANN was the better approach than the DA for predicting LZ.

The external validation data showed that the MSE in the ANN model was 1.057
contrasted with 373.44 obtained in the DA model. Using R, the DA model showed 0.8884
versus 0.97247 shown by the ANN model in all data.

This work is the first step to complete a universal model as it shows that the training
of an ANN improves the regression coefficient compared to DA processes, which allows us
to suppose that by expanding the number of variables that are involved in the generation
of the model, it can improve its performance and also generalize it.

To generate a universal model, it is important to have an adequate database with the
different micromixers currently designed, as well as the type of lipids, solvents, temper-
atures, flow rates, and mixing percentages to design a complex neural network that is
capable of taking all the variables of the systems and thus be able to determine the size of
the liposome generated with the given specifications.

Currently, the use of micromixers for the mass production of liposomes has not been
implemented. However, when contrasted with an equation that allows one to know the
size of the liposome with the given conditions, it could help to promote this technology as
one of the most viable by not requiring expensive laboratory equipment.

Author Contributions: Conceptualization, I.O., V.N., I.S. and S.C.-L.; methodology, I.O. and R.R.L.;
software, I.O.; validation, I.O. and R.R.L.; formal analysis, I.O.; investigation, I.O. and R.R.L.; re-
sources, V.N. and I.S.; data curation, I.O.; writing—original draft preparation, I.O.; writing—review
and editing, I.O., V.N., I.S. and S.C.-L.; visualization, I.O. and R.R.L.; supervision, V.N., I.S. and
S.C.-L.; project administration, I.O.; funding acquisition, V.N. and I.S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: https://doi.org/10.3390/Micromachines2021-09549.

Acknowledgments: This work was supported by CONACyT (859557), Concordia University, and ÉTS.

Conflicts of Interest: The authors declare no conflict of interest.

https://doi.org/10.3390/Micromachines2021-09549


Micromachines 2021, 12, 1164 10 of 14

Appendix A

Micromachines 2021, 12, x FOR PEER REVIEW 10 of 14 
 

 

Acknowledgments: This work was supported by CONACyT (859557), Concordia University, and 
ÉTS. 

Conflicts of Interest: The authors declare no conflict of interest. 

Appendix A 

 
Figure A1. Surface Response Model: The graphical representation of the model generated from DA 
techniques is shown. 

Appendix B 

Table A1. Liposome size of the 60 samples used in ANN modeling. 

Sample Frr Tfrr 
ml/h 

LZ 
nm Sample Frr Tfrr 

ml/h 
LZ 
nm 

1 10.40 15.80 67.52 31 8.7 3.1 225.8 
2 10.40 5.20 133.5 32 5.5 8.0 130 
3 2.60 5.20 119.4 33 8.7 12.9 123.3 
4 2.60 15.80 86.48 34 5.5 8.0 157.3 
5 6.50 10.50 81.81 35 2.3 12.9 201.9 
6 10.40 15.80 62.1 36 8.7 3.1 211.6 
7 12 18 62.12 37 2.3 3.1 217 
8 2.60 5.20 122.4 38 2.3 12.9 168 
9 2.60 15.80 88.74 39 5.5 8.0 115.3 
10 6.50 10.50 72.23 40 5.5 8.0 115.1 
11 10.40 15.80 52.71 41 5.5 8.0 115.8 
12 10.40 5.20 110.4 42 5.5 8.0 121.1 
13 2.60 5.20 131.6 43 8.7 3.1 164.3 
14 2.60 15.80 90.27 44 8.7 12.9 133.1 
15 6.50 10.50 77.18 45 5.5 8.0 129.7 
16 6.50 3.00 133.5 6 2.3 3.1 184.4 
17 1 10.50 190.7 47 2.3 3.1 199.1 
18 6.50 18.00 66.63 8 5.5 8.0 168.4 
19 12.02 10.50 75.09 49 5.5 8.0 172 
20 6.50 3.00 120.7 50 2.3 12.9 211.8 
21 1 10.50 197 51 5.5 8.0 153 
22 6.50 18.00 57.14 52 5.5 1.0 248.5 
23 12.02 10.50 74.14 53 10.0 8.0 129.4 
24 6.50 10.50 73.81 54 5.5 1.0 282.2 

Figure A1. Surface Response Model: The graphical representation of the model generated from DA
techniques is shown.

Appendix B

Table A1. Liposome size of the 60 samples used in ANN modeling.

Sample Frr Tfrr
mL/h

LZ
nm Sample Frr Tfrr

mL/h
LZ
nm

1 10.40 15.80 67.52 31 8.7 3.1 225.8
2 10.40 5.20 133.5 32 5.5 8.0 130
3 2.60 5.20 119.4 33 8.7 12.9 123.3
4 2.60 15.80 86.48 34 5.5 8.0 157.3
5 6.50 10.50 81.81 35 2.3 12.9 201.9
6 10.40 15.80 62.1 36 8.7 3.1 211.6
7 12 18 62.12 37 2.3 3.1 217
8 2.60 5.20 122.4 38 2.3 12.9 168
9 2.60 15.80 88.74 39 5.5 8.0 115.3

10 6.50 10.50 72.23 40 5.5 8.0 115.1
11 10.40 15.80 52.71 41 5.5 8.0 115.8
12 10.40 5.20 110.4 42 5.5 8.0 121.1
13 2.60 5.20 131.6 43 8.7 3.1 164.3
14 2.60 15.80 90.27 44 8.7 12.9 133.1
15 6.50 10.50 77.18 45 5.5 8.0 129.7
16 6.50 3.00 133.5 6 2.3 3.1 184.4
17 1 10.50 190.7 47 2.3 3.1 199.1
18 6.50 18.00 66.63 8 5.5 8.0 168.4
19 12.02 10.50 75.09 49 5.5 8.0 172
20 6.50 3.00 120.7 50 2.3 12.9 211.8
21 1 10.50 197 51 5.5 8.0 153
22 6.50 18.00 57.14 52 5.5 1.0 248.5
23 12.02 10.50 74.14 53 10.0 8.0 129.4
24 6.50 10.50 73.81 54 5.5 1.0 282.2
25 6.50 3.00 116 55 5.5 8.0 123.9
26 1 10.50 199.7 56 5.5 8.0 125.5
27 6.50 18.00 52.14 57 5.5 15.0 139
28 1 18 170.8 58 1.0 8.0 334.4
29 7 18 66.83 59 5.5 8.0 149.2
30 8.7 12.9 129.7 60 5.5 8.0 123.6
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Calculation of R Multiple for the DA Model

R is also calculated as the square root of the coefficient of determination (R2). This
coefficient has a value between 0 and 1 [34].

R =
√

R2 =
√

0.7889 = 0.8882 (A1)

Appendix C

The MATLAB code used to predict Liposome size with the FRR and TFR is the following:
function [Y,Xf,Af] = NNF(X,~,~)
%MYNEURALNETWORKFUNCTION neural network simulation function.
% Input 1
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x1_step1.xoffset = [0.98;1];
x1_step1.gain = [0.181159420289855;0.105263157894737];
x1_step1.ymin = −1;
% Layer 1
b1 = [2.2573853979793150337;−1.4046714885651678806;−0.06359410449612903915;2.

4008609171923636083;−4.4499579001366207365;−2.1788007408023939426;1.93364197251293
90113;1.5637078772026233864;3.1849009565352139894;−3.9614189749061110568];

IW1_1 = [−0.13325121336401893335 5.2173462914386723455;5.4213832360022484735
−1.4835535160204569305;−1.5555047045296084285 −0.2443457973733824673;−1.300268092
8841963137 3.7318380950631935278;−4.4848684284470383687 3.9942795789850293886;−4.01
23400901236037086−0.30723043350150791575;0.62332724735082822853−1.73498564390165
57719;−10.160464649116889291−0.81073858216054561776;−3.2670487431816437329−4.768
3452983060288233;−2.5036559886036706679 −2.5286182815795008594];

% Layer 2
b2 = 0.66271782412591195843;
LW2_1 = [1.1438804226171266354 0.37704234783574158696 2.1235959889470081841

−1.2879092489544090583−1.1746725602152801038−0.016734561333196285027−1.13472445
92438969768 −0.53324023662588582173 0.11886571077459864854 0.58852216120455558279];

% Output 1
y1_step1.ymin = −1;
y1_step1.gain = 0.00708566569829236;
y1_step1.xoffset = 52.14;
% ===== SIMULATION ========
% Format Input Arguments
isCellX = iscell(X);
if ~isCellX

X = ;
end
% Dimensions
TS = size(X,2); % timesteps
if ~isempty(X)

Q = size(X,1); % samples/series
else

Q = 0;
end
% Allocate Outputs
Y = cell(1,TS);
% Time loop
for ts=1:TS

% Input 1
X = X′;
Xp1 = mapminmax_apply(X,x1_step1);
% Layer 1
a1 = tansig_apply(repmat(b1,1,Q) + IW1_1*Xp1);
% Layer 2
a2 = repmat(b2,1,Q) + LW2_1*a1;
% Output 1
Y = mapminmax_reverse(a2,y1_step1);
Y = Y′;

end
% Final Delay States
Xf = cell(1,0);
Af = cell(2,0);
% Format Output Arguments



Micromachines 2021, 12, 1164 13 of 14

if ~isCellX
Y = cell2mat(Y);

end
end
% ===== MODULE FUNCTIONS ========
% Map Minimum and Maximum Input Processing Function
function y = mapminmax_apply(x,settings)
y = bsxfun(@minus,x,settings.xoffset);
y = bsxfun(@times,y,settings.gain);
y = bsxfun(@plus,y,settings.ymin);
end
% Sigmoid Symmetric Transfer Function
function a = tansig_apply(n,~)
a = 2/(1 + exp(−2*n)) − 1;
end
% Map Minimum and Maximum Output Reverse-Processing Function
function x = mapminmax_reverse(y,settings)
x = bsxfun(@minus,y,settings.ymin);
x = bsxfun(@rdivide,x,settings.gain);
x = bsxfun(@plus,x,settings.xoffset);
end
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