Skip to main content
. 2021 Oct 19;21(20):6936. doi: 10.3390/s21206936

Table 3.

Results achieved by varying input pooling size of the HYPER-RETINO system.

No. Architecture SE% SP% ACC% PR% MCC% F1% AUC E
1 6-P-ND-M 91.5 89.5 90 89.3 61 88 0.89 0.64
2 6-P-D-A 89.2 88.1 88 89.2 58 87 0.88 0.67
3 7-P-ND-M 87.3 86.5 86 87.3 57 86 0.87 0.69
4 7-P-D-A 86.4 85.2 85.4 86.4 55 85 0.86 0.72
5 8-P-ND-M 84.1 83.5 83.1 84.1 54 84 0.84 0.74
6 8-P-D-A 80.6 79.1 79.3 80.6 53 81 0.80 0.76
7 9-P-ND-M 78.7 76.5 77.5 78.7 51 79 0.78 0.78
8 9-P-D-A 75.5 74.6 74.4 75.5 48 75 0.75 0.80
9 10-P-ND-M 73.3 72.5 72.1 73.3 46 72 0.73 0.83
10 10-P-D-A 72.2 71.1 71.6 72.2 45 71 0.72 0.85

-P-ND-M: Pooling-no dropout-maximum layers, -P-D-A: Pooling-dropout-Average layers, MCC: Matthews correlation coefficient, SE: Sensitivity, SP: Specificity, F1: F1 score, ACC: Accuracy, E: Training errors and AUC: Area under the receiver operating curve.