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Abstract: Sphingolipids are a class of lipids acting as key modulators of many physiological and
pathophysiological processes. Hydroxylation patterns have a major influence on the biophysical
properties of sphingolipids. In this work, we have studied the mechanism of action of hydroxylated
lipids in sphingomyelin synthase (SMS). The structures of the two human isoforms, SMS1 and SMS2,
have been generated through neural network supported homology. Furthermore, we have elucidated
the reaction mechanism that allows SMS to recover the choline head from a phosphocholine (PC) and
transfer it to ceramide, and we have clarified the role of the hydroxyl group in the interaction with
the enzyme. Finally, the effect of partial inhibition of SMS on the levels of PC and sphingomyelin
was calculated for different rate constants solving ordinary differential equation systems.

Keywords: SMS; 2—hydroxy oleic acid; metadynamics

1. Introduction

Sphingolipids are key molecules in regulating the cell cycle, apoptosis, angiogenesis,
stress, and inflammatory responses. Sphingomyelin (SM) is an important structural com-
ponent of biological membranes and one of the endpoints of sphingolipid synthesis. With
phosphatidylcholine (PC), SM is one of the most abundant phospholipids in biological
membranes. It is found in high concentrations in the outer leaflet of the plasma membrane,
where it plays important structural roles. Sphingomyelin is synthesized primarily in the
Golgi apparatus and then transported to all other biological membranes. It is produced by
sphingomyelin synthase (SMS) in Golgi [1] and hydrolyzed to ceramide by five different
sphingomyelinases. The structural diversity and the cellular topology allow ceramide
to exert multiple effects and be metabolized into other bioactive sphingolipids. Some
diseases that involve the sphingomyelin cycle include cancer, inflammation, atheroscle-
rosis, diabetes, and some rare diseases [2–4]. The type and composition of sphingolipids
modulate the biophysical properties of membranes [5–7], which can be organized into
two-dimensional domains. Membrane properties determined by the specific type and
abundance of sphingolipids allow biological membranes to adapt to temperature, pH, and
membrane tension changes [8,9]. For example, the presence of SM increases the stiffness
and compactness of the plasma membrane (PM) [10,11]. In mammalian membranes, the
SMs with different acyl chains, together with unsaturated phospholipids and cholesterol,
can be used by the cell to refine the lateral structure of the membranes [12,13].

Several authors have suggested that changes in membrane properties promoted by
the composition of sphingolipids can trigger cell signaling [14]. However, the link between
physical properties and cell signaling is complicated because of the many components and
the characteristic dynamics of membranes [15]. Sphingolipids are central in determining
the physical state of membranes and turn out to be bioactive molecules [16].

SM can be hydrolyzed to ceramide by alkaline, acidic, or neutral sphingomyelinases
in the plasma membrane and other cellular compartments because the total amount of SM
is normally more than 10 times the amount of total ceramide in the cell [17], hydrolysis of a
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small percentage of SM results in large changes in ceramide levels. Ceramide generated by
this pathway is further degraded into sphingosine. The sphingolipid pathway is highly
branched and interconnected. The same enzyme activities are represented by different
enzymes in different organelles, interconverting one bioactive species into others, but these
bioactive lipids can also be transported from one compartment to another. Misregulation
of a sphingolipid enzyme can lead to the accumulation or depletion of one or more sph-
ingolipid species in a specific organelle [18]. Intracellular sphingolipid accumulation or
altered cellular signaling may induce a pathological condition [19–21]. One of the isoforms
of SMS, SMS2, is also found in the plasma membrane. Both forms can also catalyze the
reverse reaction (SM to ceramide) [22].

SMSs are virtually present in all tissues, and SMS1 appears to be responsible for most
of the SMS activity in most cells [23]. The two isoforms share 57% sequence identity and
are conserved in mammals [23,24]. SMS1 contains a sterile alpha motif (SAM), involved
in protein–protein interaction, which is not present in SMS2. SMSs are related to the
lipid phosphatase (LPP) family, with six transmembrane regions with N- and C-terminals
exposed in the cytosol [10]. Although SMS requires PC as the headgroup donor to form
SM, overexpression or knockdown of SMS primarily affects sphingolipid levels (SM and
ceramide) without notable changes in PC levels [25,26]. Although diacylglycerol (DAG)
can be rapidly reincorporated into the PC, some studies suggest that SMS-derived DAG
can trigger localized cellular responses, such as protein kinase D (PKD) translocation in the
Golgi [25].

As SMS and sphingomyelinases are linked to multiple diseases, some authors pre-
dict [17] that more drugs targeting the SM cycle will be developed in the future.

An additional feature in all classes of sphingolipids shared with other ceramides
related phospholipids is the possibility of being hydroxylated [27]. Sphingolipid hydrox-
ylation, either in the acyl chain or the long-chain base (LCB), i.e., in the backbone of
the sphingolipid [28–30] can also affect membrane lipid packing and regulation of G-
protein [31]. Hydroxylation patterns have a major influence on the biophysical properties
of sphingolipids, as illustrated, for example, by the significant difference in the disordered
gel-liquid phase transition temperature (Ld) when comparing similar sphingolipids with
different hydroxylation patterns [32,33]. More important, perhaps, is the influence of
hydroxylation in the interaction between sphingolipids and the surrounding membrane
containing other lipid components, i.e., ester-bound glycerophospholipids and even sterols.
Recently, important studies of membrane interaction with non-sphingolipid compounds
containing OH groups have been reported [34].

Sphingolipids containing 2-hydroxylated fatty acids (2OHFA) are present in most
organisms [32] and are important components of a subset of mammalian sphingolipids [35].
The enzyme FA2H (fatty acid 2-hydroxylase) is a hydroxylase that introduces a hydroxyl
group into the 2-position of fatty acids [36].The 2-hydroxy fatty acids are found almost
exclusively as N-acyl chains within the ceramide fraction of various sphingolipids [37].
FA2H is stereospecific to produce (R)-2-hydroxy fatty acids [38]. 2-Hydroxylation occurs
during de novo synthesis of ceramide and is catalyzed by fatty acid 2-hydroxylase [35]. In
mammals, all six isoforms of CerS (Ceramide synthases) can use 2-hydroxy acyl-CoA as
substrates to synthesize 2OHFA-dihydroceramide [39]. In addition, galactosylceramide
synthase has been shown to have a strong preference for 2OHFA ceramide over non-
hydroxylated ceramide [40].

The influence of hydroxylation can be more investigated by comparing how hydroxy-
lated, and non-hydroxylated lipids interact with related enzymes.

Unfortunately, not much data exists on SMS1 and SMS2 [41], and this work aims
to address this paucity. Even less is known about how hydroxylated lipids may interact
with SMS. The mechanism of action of the two isoforms of SMS will be illustrated, and
the change in free energy in the intermediate stages will be estimated. Defining the
intermediate stages allows clarification of the role of hydroxylation on the alpha carbon in
Cer, PC, and SM chains.
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2. Materials and Methods
2.1. Structure Prediction and Validation

SMS1 is formed by 413 residues. It can be organized into three parts: two cytosolic
fragments (N- and C-terminal) and the transmembrane portion. SMS2 is formed by
365 residues, and the main difference with SMS1 is the lack of the SAM domain. The
sequences in fasta format were downloaded from the Uniprot database (for human SMS1
code Q86VZ5, for human SMS2 code Q8NHU3). Sequence alignment of the two isoforms
was provided by Clustal Omega multiple sequence alignment program [42]. The tertiary
structure was predicted by the de novo structure prediction based on Folden modeling
suite [43]. The algorithm uses a deep residual neural network to predict the inter-residue
distance and orientation distributions of the input sequence. The models of the two
isoforms of SMS with the best TM-score were validated by PROCHEK v.3.5 web server [44].
We used WHAT IF [45], a widely used program for structure validation, to compare the 3D
structure of SMS1 built in this work with our previous work. For more details about the
quality of the structures, see Table S1 in the Supplementary Materials.

2.2. Binding Site Definition

The conservation string was obtained by the Consurf database [46], a server for
identifying structurally important residues in protein sequences. The conservation string
ranges from 9 for very conserved residues to 1 for no conserved amino acids, as described
in ref. [47].

The Waterscope tool [43] was set with a cuboid simulation cell of 5 Å around the
receptor. The coordinates of each atom of the receptor were fixed, and the system was
neutralized with NaCl at a concentration of 0.9%. The charges were assigned at pH 7.0
with the force field AMBER15IPQ [48]. Water molecules were modelled Tip3P with a
density of 0.997 g/mL [49]. We have used the Berendsen thermostat at 298 K with the
integration time steps for intramolecular forces every 1.25 fs. After the neutralization
phase of the system, we have performed a 50 ns molecular dynamics simulation using the
SolventProbe Yasara’s barostat. We have monitored the changes in H-bond patterns that
water molecules, which are less than 4 Å away from the receptor, make throughout the
dynamics at 50,000 fs intervals.

2.3. Molecular Docking

We used molecular docking to collect the geometry of the complex SMS1 and SMS2
with the natural substrates and the hydroxylated analogs. The simulations were performed
using Autodock VINA [50] in the YASARA Structure package [51] and with the software
Yada [47]. The use of these two software permits to reach a consensus both in pose
geometry and energy calculation. The selected force field was AMBER14 [52] for both
software. With Autodock VINA, the ligands were independently docked 250 times with
5 receptor ensembles with alternative high-scoring solutions of the side chain rotamer
network. The simulation cell was defined around the key residue Tyrosine 223 for SMS1
and Tyr167 for SMS2. The results were clustered with a RMSD of 5.0 Å. With Yada, we used
the same total blind docking procedure described in our previous works [53,54]. We have
chosen 250 independent runs per hotspot (the barycenter of proximal conserved residues)
in a box 20 Å larger than the receptor.

We have considered the natural substrates of the SMS enzyme, PC, SM, Cer and DAG,
and their hydroxylated forms for a total of 12 ligands (Figure 1).
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Figure 1. Chemical structures of the ligand set. (a) 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC), (b) hy-
droxylated PC with 2ROHOA (2ROHPC), (c) hydroxylated PC with 2SOHOA (2SOHPC), (d) N-oleoyl-D-erythro-
sphingosylphosphorylcholine (SM), (e) hydroxylated SM with 2ROHOA (2ROHSM), (f) hydroxylated SM with 2SO-
HOA (2SOHSM). (g) (S)-1-hydroxy-3-(palmitoyloxy)propan-2-yl oleate (DAG), (h) hydroxylated DAG with 2ROHOA
(2ROHDAG), (i) hydroxylated DAG with 2SOHOA (2SOHDAG), (j) ceramide N-((2S,3R,E)-1,3-dihydroxyoctadec-4-en-2-
yl)oleamide (Cer), (k) hydroxylated Cer with 2ROHOA (2ROHCer), (l) hydroxylated Cer with 2SOHOA (2SOHCer).

In detail, the ligands docked on both isoforms were: 1-palmitoyl-2-oleoyl-sn-glycero-
3-phosphocholine (PC), hydroxylated PC with 2ROHOA (2ROHPC), hydroxylated PC
with 2SOHOA (2SOHPC), N-oleoyl-D-erythro-sphingosylphosphorylcholine (SM), hy-
droxylated SM with 2SOHOA (2SOHSM), hydroxylated SM with 2ROHOA (2ROHSM).
Additionally, we have considered the phosphorylated form of the protein indicated as
SMS1-P and SMS2-P. We modified the tyrosine 223 in SMS1 by adding the phosphocholine
group to the sidechain. We did the same for the tyrosine 167 in SMS2. We used these
activated forms of the target to perform the docking with the natural substrates of SMS
enzyme, such as DAG and Cer. In detail, the ligands docked on both isoforms were: (S)-1-
hydroxy-3-(palmitoyloxy)propan-2-yl oleate (DAG), hydroxylated DAG with 2ROHOA
(2ROHDAG), hydroxylated DAG with 2SOHOA (2SOHDAG), ceramide N-((2S,3R,E)-1,3-
dihydroxyoctadec-4-en-2-yl)oleamide (Cer), hydroxylated Cer with 2ROHOA (2ROHCer),
hydroxylated Cer with 2SOHOA (2SOHCer). To prevent damages to the initial model, all
systems were minimized by running combined steepest descent and simulated annealing
keeping the backbone atoms of the receptor fixed. The binding energy was calculated for
the ligand object in YASARA with the AMBER14 force field [52].

We calculated the binding energy of the 12 ligands embedded in a PC membrane. PC
lipid bilayer was used as the model. Each monolayer of the membrane consisted of 60 lipids.
An initial periodic simulation cell (X = 80.25 Å, Y = 79.11 Å, Z = 90.15 Å) was built around
the entire complex. The molecular dynamics simulations (MD) were performed using
the software YASARA Structure 21.6.16 [51]. The charges were assigned at physiological
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conditions (pH 7.4). We used AMBER14 as a force field with long-ranged PME potential
and a cutoff of 8.0 A. The simulation box was filled with Tip3P water, choosing a density
of 0.997 g/mL. The system was neutralized with NaCl at a concentration of 0.9%. The
membranes were equilibrated during 250 ps. The simulation was then initiated at 298 K
and integration time steps for intramolecular forces every 1.25 fs. The simulation snapshots
were saved at regular time intervals of 100 ps. The total simulation time was 100 ns.

The binding energy of the PC molecule was calculated as the average of the binding
energy of 8 PC lipids dipped in the membrane formed by 120 PC residues. For hydroxy-
lated PC with S configuration (2SOHPC) and R configuration (2ROHPC), 8 residues of a
membrane of 120 PC lipids were replaced by the corresponding hydroxylated PC analogs.
The same step was followed for DAG, Cer, and SM (and their corresponding hydroxylated
analogs). All involved structures were minimized by running combined steepest descent
and simulated annealing by fixing the backbone atoms of the aligned residues to avoid
potential damage to the initial model. The MD simulation was performed for all new
systems. The binding energy was calculated for each molecule as described above.

2.4. Molecular Dynamics Simulations

We analyzed the structural stability of the protein–ligand complexes through molec-
ular dynamics simulations. The docked poses of protein–ligand complexes were used
as input structures, and each complex was prepared by the system setup option in the
Desmond module [55]. First, the protein–ligand complexes were pre-processed using the
Protein Preparation Wizard in Maestro 2021-1 suite obtained through Desmond academic
license. The missing hydrogens were added, bond orders were assigned, and the protein
was minimized using the OPLS3e force field [56]. Next, the simulation system was pre-
pared using the system builder wizard. The systems were centered in an orthorhombic
box with the edges 10 Å away from the protein in all directions. The solvated model of
a complex was prepared by selecting PC (300 K) as a membrane model. The orientation
of SMS1 and SMS2 in membranes was predicted by using the OPM web server [57]. The
tilt angle was very similar between the two proteins (23 ± 1◦ for SMS1 and 25 ± 1◦ for
SMS2). The system was solvated in an orthorhombic box (Tip3P model) and neutralized
with Na+ and Cl− ions. The salt concentration was set as 0.15 M to maintain physiological
conditions. The MD simulations were conducted with the periodic boundary conditions in
the NPT ensemble using the OPLS3 force field. The temperature and pressure were kept
at 300 K and 1013 bar, respectively, using Langevin temperature coupling and isotropic
scaling. The operation was followed by a 30 ns NPT production run. The MD simulations
were analyzed to monitor the ligand atom interactions with the protein residues and the
protein interactions with the ligand throughout the simulation.

2.5. Metadynamics Simulations

We used the phosphorylated form of SMS (SMS1-P and SMS2-P) embedded in a
POPC membrane for metadynamics simulations. We employed GPU accelerated Desmond
software on an NVIDIA GeForce GTX 980 graphic card, using Langevin chain thermostat
and barostat. A combination of two collective variables (CVs) that describes the ceramide
(and hydroxylated analogues) movement in the binding site of the phosphorylated protein
was defined. For the distance CVs, the Gaussian width was set to 0.05 Å. The starting height
of the Gaussian potential was set to 0.03 kcal/mol, and the Gaussians were deposited every
0.09 ps. The simulations were performed at 300 K and 1.013 bar pressure. RESPA integrator
was used with a time step of 2.0 fs. For coulombic interactions, short-range cutoff radius
was defined at 9 Å. No positional restraints were specified for any of the atoms. The
trajectory frames were recorded at an interval of 20 ps for a simulation time of 30 ns. The
simulations were visualized in Maestro suite [4]. Analysis of the trajectory was performed
using Simulation Event Analysis of Maestro and Visual Molecular Dynamics.
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2.6. Reconstruction of the SMS Pathway

This study reconstructed a simplified SM synthesis network by integrating the sphin-
gomyelin biosynthesis pathway, as shown in Figure S1 in the Supplementary Materials.
Interactions between components were represented as elemental chemical reactions in the
SimBiology toolbox of MATLAB (2021a) [58] using the Systems Biology Markup Language
(SBML) machine language.

Complex biological systems such as the sphingolipids network can be viewed as a sys-
tem of chemical reactions that can be analyzed mathematically using ordinary differential
equations (ODEs), which is the most common simulation approach used in computational
systems biology. ODEs help determine time-dependent changes, i.e., time series data of
signaling protein concentrations and protein complexes and thus associated dynamics [59].
The network was numerically simulated using the Stiff Deterministic ODE15s solver (Sim-
Biology toolbox) that generates first-order nonlinear ordinary differential equations for
each node, thus defining the mathematical structure of the model. Then, the model was
exported as an SBML file to generate the time series data.

3. Results and Discussion
3.1. Structure Prediction and Validation: The Two Isoforms Show a High Homology Sequence

The two main isoforms of SMS, SMS1 and SMS2, share important sequence homology
except for the SAM (sterile alpha motif) domain, a cytosolic domain present only in
isoform 1. SMS1 consists of a sequence of 413 residues, whereas SMS2 consists of 365 amino
acids. The TM portion (SMS1 131–353—SMS2 74–294) has a percentage sequence similarity
of 74.55%.

In our previous work [24], we built the structure of SMS1 by homology modeling.
However, improvements in deep learning-based folding algorithms have obtained much
more accurate three-dimensional structures in recent years due to improvements in deep
learning-based folding algorithms. The tertiary structures of the two isoforms of SMS were
predicted using the Folden software in the SMP modeling suite [43]. The 3D models were
subjected to the PROCHECK server, where Ramachandran plot statistics were generated.

For SMS1, the output showed 93.9% residues in the most favored region, 5.2% residues
in the additional allowed region, 0.3% residues in the generously allowed regions and 0.6%
residues in disallowed regions (Figure S2 in the Supplementary Materials). For SMS2, the
output showed 90.3% residues were present in the most favored region, 8.1% residues in
the additional allowed region, 0.6% residues in the generously allowed regions and 0.9%
residues in disallowed regions (Figure S3 in the Supplementary Materials).

The two SMS isoforms showed a sequence homology percentage of 62.07% over
the entire structure (Table S2 in the Supplementary Materials), but the cytosolic portions
are less conserved than the transmembrane portion. Therefore, we compared only the
transmembrane portion. In agreement with the Phobius ref prediction, for SMS1 we
selected 222 residues from residue E131 to residue Q353, and from residue E75 to residue
E297 was selected for SMS2 (see Tables S3 and S4). In detail, the two transmembrane
portions shared 91.9% of fully conserved residues and residues with strongly similar
properties (Table S5 in the Supplementary Materials). Using docking and molecular
dynamics studies, we have tried to define whether these slight differences could affect the
type of interactions in the binding site.

3.2. Binding Site Identification: The Transmembrane Portion Contains the Binding Site

We hypothesized that the most conserved portions in the two proteins played a
crucial role in the enzyme’s activity. We used Consurf [46] to estimate the evolutionary
conservation of amino acid positions in a protein-based phylogenetic relationship between
homologous sequences [60]. The magenta-colored regions in Figure 2a,b are the most
conserved regions between the two proteins and indicate the highest probability for the
binding site.
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It is possible to identify more accurately an active site by monitoring the movement
of water molecules during molecular dynamics. For a ligand to interact with a receptor,
the water molecules present in the binding site must be moved away. A dedicated tool,
Waterscope [43], calculates several physicochemical parameters of water molecules, such
as their diffusivity and intrinsic entropy. The residues at the water molecules that will
have a greater entropic benefit in the bulk passage are those most likely to reside at the
binding site.

As shown in Figure 2c, the core of the transmembrane portion corresponds to the
location of low mobility water molecules. Stationary molecules in the transmembrane
localize the catalytic site in this portion. Remarkably, the portion highlighted with a blue
surface (Figure 2c) matches the highly conserved transmembrane portion displayed in
Figure 2a,b. The SAM domain is also a catalytic domain, but SMS mutants with deletion of
the SAM domain from SMS1 showed no significant impact on SMS catalytic activity [61].
Therefore, we concentrated on the transmembrane portion. The enzyme is immersed
in a reservoir of lipids that can be processed. The natural substrates of SMS, PC and
SM are poorly soluble molecules in water and can only access the membrane-immersed
portions of the enzyme. The membrane components can easily reach the binding site in the
transmembrane portion by moving freely through the membrane.

3.3. Study of the Mechanism of the Reaction: Tyrosine Is a Key Residue

Molecular docking allows a rough estimation of binding energies and definition of
ligand interactions with receptors. We used software Autodock VINA [50] and Yada [47]
to get a consensus assessment. Autodock VINA represents one of the most popular
software for molecular docking. Yada is a docking software that combines structural and
phylogenetics data to perform the investigation.

Analyses were conducted on both isoforms. The best docked pose of each complex was
used as the input structure for molecular dynamics (MD) simulations. The two isoforms
were embedded in a POPC membrane.

Molecular dynamics trajectory analysis for isoform 1 revealed a contact for 99% of the
time between Tyr223 and the phosphate group of the substrate. This permits a nucleophilic
attack of the hydroxyl group of tyrosine 223 to the phosphorus atom of the PC molecule.
Thus, the DAG molecule can move away from the active site after O-P bond formation and
diffuse into the membrane (Figure 3).
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Figure 3. The hypothesis of the first step of the mechanism for SMS enzyme. The reaction starts with a nucleophilic attack
of the hydroxyl group of a tyrosine in the binding site to the phosphorus atom of a PC molecule. The result is the formation
of DAG and phosphorylation of the enzyme.

In addition, the presence of a water molecule completes a cyclic network by hydrogen
bonding to the Tyr223 and the phosphate group of PC (see also Figure 4), and can assist the
nucleophilic substitution on phosphatidylcholine.
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Figure 4. A closeup of the interactions between PC and key residues at the binding site in SMS1 (a). Two-dimensional
interaction map of ligand-protein contacts for SMS1/PC (b) and SMS2/PC (c).

Trajectory analyses indicate the role of two other residues, the Tyr280 and His 285,
in anchoring the phosphocholine head to the target (Figure 4a). Tyr167 plays a similar
role of Tyr223 in SMS2. In the SMS2 isoform, Phe224 is responsible for anchoring the
phosphocholine head.

The immobilization of the phosphocholine head allows the release of DAG and the
access of Cer in the catalytic site.
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The two isoforms show no obvious differences in the type and duration of the interac-
tions they establish with the PC. In both cases, the presence of tyrosine is pivotal to maintain
continuous contact with the phosphocholine head (Figure 4b,c). These interactions last for
more than 90.0% of the simulation time.

3.4. Free Energy Profile: Hydroxylated Ceramide Is the Better Substrate of SMSs

All molecules involved in the conversion of PC into SM have been docked to the
receptors. The fatty acid (FA) chains chosen were palmitic and oleic, representing the two
most common FA found in human plasma membranes. The estimation of the binding
energy, although not accurate in absolute value, allows us to reconstruct the energy profile
of the reaction. The structures obtained were minimized, and the binding energy of
each molecule was calculated (for more details on the systems’ building, see the section
“Molecular docking” in the Materials and Methods section).

The SMS enzyme activities are schematized in Figure 5. PC is the natural substrate of
SMS, and it can move freely in the membrane (1) to reach the enzyme’s catalytic site (2).
The phospholipid head is transferred from the PC to a tyrosine (Tyr223 for SMS1 and
Tyr167 for SMS2), leading to the formation of DAG and phosphorylated SMS enzyme
(indicated as SMS-P) (3). Then, the DAG leaves the binding site heading into the mem-
brane (4). The second substrate is also a component of cell membranes. Ceramide (Cer)
moves from the membrane (5) to the catalytic site of the activated form of the enzyme (6).
The phosphocholine head is transferred to ceramide to form SM (7). Restoration of the
unphosphorylated form of SMS is completed with SM moving into the membrane (8).
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Figure 5. Overview of the SMS reaction steps. In step (1), one of the PC molecules was highlighted. In step (2), the PC at the
binding site of the SMS enzyme is observed. The transfer of the phosphocholine head to the tyrosine of the enzyme forms a
modified tyrosine shown in magenta in step 3. The removal of the phosphocholine head from the PC generates DAG (3).
Thus, it is free to move through the membrane (4). In steps 5 and 6, ceramide moves from the membrane (5) to the SMS (6).
The transfer of the phosphocholine head from the modified tyrosine to Cer generates SM (7), followed by its release into the
membrane (8).

To study the energy pattern of this reaction, we analyzed three different systems.
The first system represents the non-hydroxylated substrates (Figure 6a). In detail, the
box in Figure 6a shows the sum of the binding energy of PC and Cer in the membrane
(PC + Cer) m (∆G = −21.7 kcal/mol) and the sum of the energy of binding of DAG and SM
in membrane (DAG + SM)m (∆G = −26.6 kcal/mol). The m as a subscript in parentheses
indicates substrates immersed in a POPC membrane. The second system hypothesizes
the incorporation of 2-hydroxy oleic acid (2OHOA) into the PC substrate, at C2 in the R
configuration (2ROHPC) and in the S configuration (2SOHPC) (Figure 6b,c). The presence
of hydroxyl group at C2 of PC leads to hydroxylated DAG (2ROHDAG and 2SOHDAG,
respectively) and non-hydroxylated SM. In the third system, we started with hydroxylated
ceramides (Figure 6d,e). Hydroxylated ceramides produce two hydroxylated SM (in R and
S configuration). The values of ∆∆G are calculated as the difference between the binding
energy of the DAG, SM pair, and the PC, Cer pair immersed in a POPC membrane.
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We observed that for non-hydroxylated substrates, the equilibrium of the reaction is
shifted toward DAG and SM with an energy difference ∆∆G = −4.9 kcal mol−1. Hydrox-
ylation of PCs leads to less stable systems. The presence of hydroxyl in ceramide shifts
the balance toward products by approximately 0.6–0.9 kcal mol−1. The stereochemistry of
hydroxylation has only a negligible effect. 2OHOA administration has been observed to
increase SM levels in the cell [62,63]. Based on our findings, the increase in SM levels is
consistent with the incorporation of 2OHOA into ceramide. This suggests a possible role
for ceramide synthase that will be investigated in an upcoming paper.

The differences between the two SMS isoforms can be similarly investigated by calcu-
lating the binding energies in steps 2, 3, 6, and 7, as shown in Figure 5 for non-hydroxylated
and hydroxylated lipids on C2. In detail, we compared the binding energies of PC and SM
in complex with SMS (SMSx/PC and SMSx/SM, respectively) and the binding energy of
the phosphorylated isoform (SMSx-P) in complex with Cer and DAG (SMSx—P/Cer and
SMSx—P/DAG, respectively) (Figure 7).
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The SMS-catalyzed reaction leading to the formation of SM and DAG involves several
intermediate states. First, the PC must bind to SMS (SMSx/PC), lose the phosphocholine
head with the formation of a covalent bond (SMSx—P/DAG), and depart transformed
into DAG. A second non-covalent binding event is then required in which Cer enters the
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active site (SMSx—P/Cer), acquires the choline group that was bound to the enzyme, and
departs as SM (SMSx/SM). The covalent binding between SMS and choline should not
be counted because, overall, it does not contribute to the change in energy of the system.
Figure 7 shows the difference in binding efficiency between products and reactants in the
receptor. The equilibrium energy values indicated an energy preference of the interaction
of the products with the receptor and were used to derive the kinetic constants used in the
section. Interesting was that the potential production of a hydroxylated SM is energetically
favored, especially for isoform 1 (with a ∆∆G value of −4.0 kcal mol−1 for the stereoisomer
R and −4.2 kcal mol−1 for the stereoisomer S). The energetically favored interaction of
hydroxylated ceramides prompted us to investigate the role of hydroxylated ceramides in
the transfer of the phosphocholine group from SMSx-P to ceramide.

We used the phosphorylated form of SMS with choline groups covalently bonded to
Tyr223 and Tyr167, respectively (indicated as SMS1—P and SMS2—P). The enzymes are
fully embedded in a POPC membrane. The binding free energy (∆G) of the molecules in
complex with SMS was calculated using metadynamics.

Metadynamics allows a reconstruction of the free energy profile as a function of two
collective variables that describe the movement of the ceramide (and hydroxylated analogs)
in the binding site of the phosphorylated protein. We chose as collective variables (CVs)
two distances. CV1 is the distance between the phosphorous of the modified tyrosine
residue (Tyr223 for SMS1 and Tyr167 for SMS2) and the oxygen atom of the ceramide
(atom O5), and CV2 is the distance between the oxygen atom in the P=O group of the
modified tyrosine and the oxygen atom of the hydroxyl group of the sphingosine chain
(see Figure S4).

The minima location observed for non-hydroxylated ceramide confirms the mecha-
nism proposed in SMS1 and SMS2 (Figure 8). The isoform SMS1-P is the enzyme with
the best binding affinity for ceramide (of −9.33 kcal/mol, Figure 8a), showing two energy
minima in the proximity of the key residue identified in this work. On the other hand,
isoform SMS2—P has a higher binding affinity for the hydroxylated form of the natural
substrate (of −9.52 kcal/mol, Figure 8e).
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The metadynamics results have two important consequences. First, the presence of a
hydroxyl group allows effective binding (i.e., at a position and distance useful for choline
group transfer) to SMS2 (see Figure 8e,f). Indeed, the presence of a hydroxyl group in the R
configuration in ceramide leads to the formation of a hydrogen bond with the carbonyl
backbone of the isoleucine Ile 207. This interaction frees up space for a water molecule to
replace the OH group of the ceramide in the tyrosine 167 binding to the choline head (see
Figure S5). The activation of SMS2, which is primarily located in the plasma membrane,
results in an increase in the rate of PC→SM conversion and a modulating effect on the
physical state of the plasma membrane. It is well known that the composition of the plasma
membrane plays a key role in controlling the functionality of numerous proteins [6,7,64].

Second, the effective binding of hydroxylated ceramide on SMS2 can be modeled by
an increase in the rate constant of the reaction that transforms Cer into SM. The effect on
sphingolipid levels is investigated below using ordinary differential equations.

3.5. The SMS Pathway

The results described above suggest an increase in the reaction rate by which SM yields
the choline group to the enzyme. To evaluate the effects of increasing the kinetic constant,
we conducted a pharmacodynamic analysis. Reaction mechanisms have been studied for
several decades. However, in drug discovery, they are often surprisingly neglected when
interpreting the results of molecular docking or molecular dynamics. Since Copeland’s
work on residence time [65], the kinetic aspects of ligand–receptor interaction have gained
some popularity. Still, system chemistry has no place in the design of new drugs. This leads
many researchers to use models of action inadequate and not supported by a satisfactory
statistical analysis.

In the SMS example, the overall reaction is the following:

PC + Cer
kon→
←
ko f f

DAG + SM (1)

That should be modeled in (at least) two stages as follows:

PC + SMS
k1→
←

k−1

SMSP + DAG (2)

and

Cer + SMSP
k2→
←
k−2

SMS + SM (3)

The equilibrium constant is calculated as the ratio of concentrations of products to
reactants, but this is seldom achieved because the system is continuously fed from outside.
The rate constants for all intermediate stages can be estimated by calculations. Their
importance is inversely proportional to their magnitude because the rate of a series of
processes cannot be greater than the slowest step. A ligand capable of modifying the
kinetics constant of the slow step can significantly affect the concentrations of the species
present. As we have seen through metadynamics, a hydroxyl group in 2ROHCer suggests
an increase of kon. Though the actual value cannot be accurately determined, we can test
the hypothesis that 2ROHCer might alter the levels of SM and DAG, Cer, and PC.

In the example shown in this work, we considered an equilibrium constant K = 0.35
for the overall reaction of Equation (1). The value is a reasonable guess based on literature
analysis [63,66,67], and it simply serves as a check on the functioning of the network
described below.

The velocity coefficients are initially set to k1 = 0.1, k−1 = 0.2, k2 = 1, k−2 = 1.43. These
values, obtained from an estimate of the energy of the activated state, are consistent with
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the equilibrium constant of the reaction in Equation (1). The overall kon and koff constants
are related to these by the relations:

kon = min{ k1, k2 . . . . kn } (4)

ko f f = min{ k−1, k−2 . . . . k−n } (5)

Once the rate constants are fixed, the concentrations at equilibrium are determined.
In Figure 9, we started from a percent composition of 25% for the four species, and the
concentrations evolve until the relationship expressed by the equilibrium constant is
satisfied. To simulate the different binding of 2ROHCer as observed in Figure 8e, we
increase the k2 to 2. The new concentrations are radically different, and we observe a
significant increase in SM and DAG (Figure 9).
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As can be clearly seen in Figure 9, the better binding of 2ROHCer, and consequently
a higher k2 constant, leads to a decrease in PC and Cer levels and an increase in SM and
DAG levels. This analysis allows us to clarify the role of 2OHOA in the recovery of lipid
homeostasis. Experimental data, although sometimes contradictory, indicate a change in
SM and PC levels after 2OHOA addition. Some work [62,63] suggests an increase in SM
levels and decreased PC levels. This observation immediately suggested SMS as a potential
target of 2OHOA. Docking, per se, offers no indication of the actual interaction of a ligand
with a receptor, and merely estimates the geometry and intensity of the interaction. The
binding of free 2OHOA is significantly lower than that of, e.g., hydroxylated ceramide.
Therefore, there is no indication nor computational nor experimental, that free 2OHOA
can exist in a cell. Instead, theoretical data indicate enzymes that incorporate fatty acids
such as ceramide synthase as possible targets of 2OHOA. The interaction of SMS with the
most common sphingolipids was evaluated. As already shown, hydroxylated ceramide
is allocated in a position not suitable for choline head recovery. A higher k2 rate constant
leads to increased SM and DAG levels in plasma membrane. In this sense, the 2OHOA
behaves as if it was an activator of SMS. These findings are also in line with the proposed
working model of Ou et al. [68] that suggests the requirement of DAG on the plasma
membrane for activation of protein kinase C δ (PKCδ) nuclear translocation.
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4. Conclusions

The 3D structures of SMS1 and SMS2 have been refined and used for computational
investigation, and the binding site of both SMS1 and SMS2 was found in the transmembrane
region. We have found a key tyrosine involved in the SMS mechanism (Tyr223 for SMS1 and
Tyr167 for SMS2). This was demonstrated by molecular dynamics that also showed a water
molecule in the catalytic area, assisting the nucleophilic attack on the phosphocholine.

We determined the energy profile of the PC→SM transformation and defined the
intermediate steps in both SMS1 and SMS2.

An interesting difference between SMS1 and SMS2 towards the hydroxylated species
appears from the metadynamics results. We showed that hydroxylated ceramide, especially
in the R configuration, is largely favored in the interaction with SMS2. As SMS2 is mainly
localized in the plasma membrane, our results suggest a possible role of some hydroxylated
species in the homeostasis of lipid composition. In addition, the role of 2OHOA can also be
investigated with respect to its incorporation into ceramide.

In this work, structural, thermodynamic, kinetic, and system aspects have been com-
bined to provide a comprehensive view of the action of the SMS and the possible role
of 2OHOA. Much more can be done by extending the network to other receptors and
lipid species. Advances in lipidomics and computational calculations make it possible to
simulate the system-wide effect of ligand–receptor binding in real-time. Conversely, the
presence of experimental data allows for identifying new potential targets for diseases
related to lipid metabolism. Data in the literature confirm the production of hydroxylated
R-acyls by the stereospecific enzyme FA2H. Our results suggest a possible role for an-
other enzyme, ceramide synthase, in incorporating 2OHOA (particularly in the R form)
into ceramide.

These findings pave the way for a better understanding of the role of 2OHOA and,
more generally, hydroxylated sphingolipids in the mechanisms controlling autoimmunity
in healthy individuals.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/membranes11100787/s1, Figure S1: Graphical representation of modeled reactions; Figure S2:
Ramachandran plot for SMS1 showing the presence of amino acid residues in favored, allowed, and
outlier regions; Figure S3: Ramachandran plot for SMS2 showing the presence of amino acid residues
in favored, allowed, and outlier regions; Table S1: Summary of the quality of SMS1 structure; Table S2.
Multiple Sequence alignment for the whole sequences of hSMS1 and hSMS2; Table S3: Prediction
of sp|Q86VZ5|SMS1_HUMAN; Table S4: Prediction of sp|Q8NHU3|SMS2_HUMAN; Table S5.
Multiple Sequence alignment for the transmembrane portion sequences of hSMS1 (residues from
131 to 353) and hSMS2 (residues from 75 to 297); Figure S4 Atoms chosen as CV for metadynamics
simulations for the SMS1 system; Figure S5 Ligand interaction diagram of Ceramide (on the left) and
2ROHCer (on the right) in complex with SMS2P.
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