Skip to main content
. 2021 Oct 23;94:102008. doi: 10.1016/j.compmedimag.2021.102008

Table 2.

Comparative performance metrics of the different deep learning networks performing classification of pneumonia, TB, COVID-19, and healthy cases. Boldface indicates the best metric among the networks.

DXR1 dataset: pneumonia and healthy
Metric DenResCov-19 DenseNet-121 ResNet-50 Inception-V3
Recall (%) 98.12 97.80 97.71 93.32
Precision (%) 98.31 94.62 95.01 90.10
AUC-ROC (%) 99.60 99.10 98.95 92.80
F1 (%) 98.21 96.27 96.34 91.68
DXR2 dataset: COVID-19, pneumonia and healthy
Metric DenResCov-19 DenseNet-121 ResNet-50 VGG-16
Recall (%) 89.38 83.54 83.53 99.83
Precision (%) 85.28 77.45 73.35 33.38
AUC-ROC (%) 96.51 93.2 92.39 50.07
F1 (%) 87.29 80.37 78.11 49.51
DXR3 dataset: COVID-19, pneumonia, tuberculosis and healthy
Metric DenResCov-19 DenseNet-121 ResNet-50 VGG-16
Recall (%) 59.28 57.71 56.66 66.53
Precision (%) 79.56 74.87 74.00 26.53
AUC-ROC (%) 91.77 89.49 92.12 53.11
F1 (%) 68.09 65.17 64.17 38.00
DXR4 dataset: COVID-19, pneumonia, tuberculosis and healthy
Metric DenResCov-19 DenseNet-121 ResNet-50 VGG-16
Recall (%) 69.7 62.70 62.00 93.69
Precision (%) 82.90 79.35 78.60 27.17
AUC-ROC (%) 95.00 91.00 93.21 54.99
F1 (%) 75.75 70.07 69.51 42.13