Skip to main content
. 2021 Oct 19;21(20):6927. doi: 10.3390/s21206927
Algorithm 1 HARNAS Search Algorithm for Neural Architectures
Input: Search space (e.g., hyperparameters including layers and blocks), fitness value (F), npopulation, nepochs
  Output: Best identifying network (IN*) of the Pareto optimal set.
  • 1:

    Initialize the population networks (PNs);

  • 2:

    for each i[1,npopulation] do

  • 3:

      for each j[1,PNs] do

  • 4:

        Train INj for nepochs;

  • 5:

      end for

  • 6:

      Update PNs with F with the EAs;

  • 7:

    end for

  • 8:

    return(PN)i=ngenerations