Skip to main content
. 2021 Oct 19;26(20):6318. doi: 10.3390/molecules26206318

Table 7.

Modelling performance of PLSDA and SVM classifiers built from one concentration and applied to other concentrations (deposited on STS) using 3500–2600 cm−1.

Applied to 10 OD 1 OD 0.1 OD
Built from LVs OA MCC Sen Spe OA MCC Sen Spe OA MCC Sen Spe
PLSDA 10 OD 10 100% 1.00 1.00 1.00 91% 0.83 0.98 0.84 75% 0.50 0.98 0.40
1 OD 6 87% 0.77 1.00 0.75 95% 0.91 0.95 0.95 82% 0.62 0.94 0.62
0.1 OD 7 73% 0.46 0.72 0.73 89% 0.79 0.85 0.93 93% 0.85 0.95 0.90
SVM 10 OD - 100% 1.00 1.00 1.00 89% 0.81 0.99 0.81 75% 0.52 1.00 0.38
1 OD - 86% 0.75 0.99 0.73 98% 0.96 0.98 0.98 83% 0.65 0.95 0.66
0.1 OD - 69% 0.40 0.51 0.87 87% 0.75 0.79 0.94 95% 0.90 0.98 0.92

OA: overall accuracy; MCC: Matthews correlation coefficient; Sen: sensitivity; Spe: specificity.