Skip to main content
. 2021 Oct 19;26(20):6318. doi: 10.3390/molecules26206318

Table 8.

Modelling performance of PLSDA and SVM classifiers built from one concentration and applied to other concentrations (deposited on Al) using 3500–2600 cm−1.

Applied to 10 OD 1 OD 0.1 OD
Built from LVs OA MCC Sen Spe OA MCC Sen Spe OA MCC Sen Spe
PLSDA 10 OD 4 99% 0.98 0.99 0.98 87% 0.72 0.83 0.89 55% 0.16 0.78 0.38
1 OD 9 96% 0.91 0.97 0.95 100% 1.00 1.00 1.00 74% 0.46 0.67 0.79
0.1 OD 5 57% 0.14 0.11 0.96 72% 0.42 0.56 0.84 100% 1.00 1.00 1.00
SVM 10 OD - 100% 1.00 1.00 1.00 92% 0.85 1.00 0.86 62% 0.28 0.78 0.50
1 OD - 96% 0.92 0.95 0.96 100% 1.00 1.00 1.00 50% 0.08 0.78 0.29
0.1 OD - 57% 0.17 0.09 0.99 55% 0.06 0.44 0.63 100% 1.00 1.00 1.00

OA: overall accuracy; MCC: Matthews correlation coefficient; Sen: sensitivity; Spe: specificity.