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Summary
Starch is the most abundant storage carbohydrate in maize kernels and provides calories for

humans and other animals as well as raw materials for various industrial applications. Decoding

the genetic basis of natural variation in kernel starch content is needed to manipulate starch

quantity and quality via molecular breeding to meet future needs. Here, we identified 50 unique

single quantitative trait loci (QTLs) for starch content with 18 novel QTLs via single linkage

mapping, joint linkage mapping and a genome-wide association study in a multi-parent

population containing six recombinant inbred line populations. Only five QTLs explained over

10% of phenotypic variation in single populations. In addition to a few large-effect and many

small-effect additive QTLs, limited pairs of epistatic QTLs also contributed to the genetic basis of

the variation in kernel starch content. A regional association study identified five non-starch-

pathway genes that were the causal candidate genes underlying the identified QTLs for starch

content. The pathway-driven analysis identified ZmTPS9, which encodes a trehalose-6-

phosphate synthase in the trehalose pathway, as the causal gene for the QTL qSTA4−2, which

was detected by all three statistical analyses. Knockout of ZmTPS9 increased kernel starch

content and, in turn, kernel weight in maize, suggesting potential applications for ZmTPS9 in

maize starch and yield improvement. These findings extend our knowledge about the genetic

basis of starch content in maize kernels and provide valuable information for maize genetic

improvement of starch quantity and quality.

Introduction

Maize (Zea mays L.) is the most widely cultivated crop globally on

account of its wide variety of uses involving human food, animal

fodder, biofuel, starch, sweetener production and so on. Its

starch, one of the three major chemical components in maize

kernels, constitutes approximately 70% of the dry weight of

maize seeds (Hannah and Boehlein, 2017; Hannah and James,

2008). As a result, increasing starch content has great potential

for breeding high-yielding maize cultivars. In addition to its critical

role in providing calories for humans and other animals, starch is

also a highly valued commodity and is processed by a multibillion-

dollar industry for applications in biofuels, paper manufacturing,

high-fructose corn syrup and pharmaceuticals (Egharevba, 2020;

Ranum et al., 2014; Smith, 2008; Zeeman et al., 2010).

Therefore, enhancing starch biosynthesis is of great importance

for improving grain yields and starch quality in maize, which

underpin efforts to feed a growing human population.

In maize kernels, starch is deposited in endosperm cells as

insoluble granules in the amyloplast stroma and consists of linear

amylose and branched amylopectin (Hannah and Boehlein, 2017;

Seung and Smith, 2019). In contrast to the simplicity of the

structure of starch, its synthesis is perhaps unexpectedly complex

after the point at which sucrose enters the endosperm from

photosynthetic tissues (Burrell, 2003; Stitt and Zeeman, 2012).

Many carbohydrate metabolic processes—such as sucrose meta-

bolism, sugar metabolism (glycolysis, the pentose phosphate

pathway, pyruvate dehydrogenase complex, the tricarboxylic acid

cycle) and the trehalose metabolic pathway—either directly or

indirectly influence starch synthesis because of some common

intermediate products or feedback regulation of some metabolite

across these metabolic pathways (Beloff-Chain and Pocchiari,

1960; Fichtner and Lunn, 2021; Li et al., 2019). For instance,

trehalose-6-phosphate (T6P) in the trehalose pathway can acti-

vate adenosine diphosphate glucose pyrophosphorylase (AGPase)

in the starch pathway and interfere with carbon allocation to the

sink tissues by inducing starch synthesis in the source tissues

(Gomez et al., 2006; Kolbe et al., 2005; Wingler et al., 2000). T6P

is synthesized from uridine diphosphate glucose (UDPG) and

glucose-6-phosphate (G6P) via a trehalose-6-phosphate synthase

(TPS) and is degraded into trehalose via a trehalose-6-phosphate

phosphatase (TPP) (Fichtner and Lunn, 2021; Paul et al., 2008).

The substrates UDPG and G6P are the common raw materials

shared among the starch pathway and other carbohydrate
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metabolism pathways, and consequently, the alternation of TPS

or TPP would change starch content.

As a consequence of advances in mutant characterization and

biochemical analysis over the past three decades, much is now

known about the starch biosynthetic pathway, especially the clear

role of starch synthases (e.g. GBSS, SSI, SSII, SSIII and SSIV),

branching enzymes (e.g. BEI, BEIIa and BEIIb) and debranching

enzymes (e.g. ISA and PUL) in starch synthesis (Jeon et al., 2010;

Nelson and Pan, 1995; Smith and Zeeman, 2020). Mutations in

the genes that encode these enzymes could increase sugar

content, amylopectin or amylose and have been used in specialty

maize breeding programmes. These genes cannot, however, be

used for breeding high-yield maize lines due to their pleiotropic

effects associated with defective kernel phenotypes and negative

yield performance. Furthermore, a few transcription factors, such

as Opaque2 (O2), prolamine-box binding factor (PBF), ZmNAC128

and ZmNAC130, have been reported to affect starch accumula-

tion in maize endosperm (Zhang et al., 2019; Zhang et al., 2016).

Thus, the clarification of the genetic architecture of starch

content and subsequent identification of natural variants for

starch content would allow breeders to more efficiently design

breeding schemes to manipulate this trait in maize kernels.

To dissect the genetic architecture of starch content in maize

kernels, many QTL mapping studies have been carried out to

identify QTLs associated with starch content in maize kernels

using different QTL mapping methods in various bi-parent

populations (Clark et al., 2006; Cook et al., 2012; Dong et al.,

2015; Dudley et al., 2007; Guo et al., 2013; Karn et al., 2017; Li

et al., 2009; Lin et al., 2019; Liu et al., 2008; Wang et al., 2010;

Wassom et al., 2008; Yang et al., 2013; Zhang et al., 2008).

These studies isolated a handful of single QTLs, as well as a limited

number of epistatic QTLs, that contribute to the genetic basis of

starch variation in the bi-parent populations. Yet, none of them

are responsible for the causative variation of starch content in

maize kernels. Thanks to advances in next-generation sequencing

(NGS) technologies, the genome-wide association study (GWAS)

has become a powerful tool to effectively and efficiently identify

genotype–phenotype associations (Xiao et al., 2017). Indeed, a

GWAS identified 4 and 27 loci significantly associated with starch

and amylose content, respectively (Li et al., 2018; Liu et al., 2016).

However, GWAS often causes false positives due to population

structure and may have reduced statistical power for detecting

rare alleles because the power for detecting a QTL is determined

by the frequency of its associated alleles (Bazakos et al., 2017;

Myles et al., 2009; Pritchard et al., 2000; Zhao et al., 2007).

To overcome the disadvantages of GWAS, multi-parent designs

have recently been developed, including nested association

mapping (NAM) and multi-parent advanced generation inter-

crosses (MAGIC), and have emerged as an efficient way to

identify QTLs for complex quantitative traits in plants (Buckler

et al., 2009; Cavanagh et al., 2008; Dell Acqua et al., 2015;

Huang et al., 2011; Yu et al., 2008). These genetic designs

strengthen the mapping power and resolution based on high

minor allele frequencies (MAFs) and the rapid decay of linkage

disequilibrium, allowing for the discovery of QTLs with greater

precision and accuracy (Glowinski and Flint-Garcia, 2018). For

instance, 21 QTLs that co-localized with fewer than one-half of

previously reported QTLs were identified for starch content in the

maize NAM population (Cook et al., 2012). However, this design

is time-consuming and detects fewer QTLs because of less

extreme variation among the parental phenotypes (Yu et al.,

2008). A more recent multi-parent design called random-open-

parent association mapping (ROAM) was developed, in which

recombinant inbred line (RIL) populations are derived from several

inbred lines crossed in combinations without an a priori require-

ment to interconnect across populations (Pan et al., 2016, 2017;

Xiao et al., 2016). Compared with NAM and MAGIC, the obvious

advantage of ROAM is that it saves time in developing mapping

populations and takes advantage of existing genetic resources for

dissecting the genetic architecture of complex traits of interest in

plants. With these advantages, this approach has unravelled the

genetic architecture of a wide range of complex traits, such as ear

traits, kernel size and weight, and plant architecture (Liu et al.,

2017; Pan et al., 2017; Xiao et al., 2016).

To deeply understand the genetic basis of starch synthesis

and accumulation in maize kernels, we used six RIL popula-

tions that exhibit abundant diversity in starch content, a subset

of the ROAM population (Xiao et al., 2016), to dissect the

genetic architecture for starch content in maize kernels.

Subsequently, we performed regional association mapping

using a set of 508 diverse maize inbred lines (AMP508) and

a co-localization analysis between the identified QTLs and the

known genes in the carbohydrate metabolism pathway to

resolve the candidate genes underlying the detected QTLs. Out

of 33 candidate genes, we cloned and characterized ZmTPS9

for qSTA4–2, which encodes a TPS involved in the trehalose

metabolism. These findings provide insights into the genetic

architecture of starch content in maize kernels and provide

informative clues for improving starch quantity and quality via

molecular breeding.

Results

Phenotypic variation in starch content

To dissect the genetic architecture of starch content in maize

kernels, we used seven inbred lines to develop six RIL populations,

DAN340/K22, K22/CI7, K22/BY815, DE3/BY815, BY815/KUI3

and KUI3/B77, with population sizes varying from 176 to 207

lines (Table S1). These seven parental lines exhibit substantial

variation in starch content, with a range of 54.0−69.7%
(Figure 1a, Table S1). Consequently, all six RIL populations

displayed abundant phenotypic variation for starch content (with

most populations following normal distributions), especially for

the three populations developed from the common parent BY815

which showed up to a 10% range in starch content (Figure 1a,

Table S1). An analysis of variance (ANOVA) showed that

genotype variance was greater than environmental variance in

nearly all populations (Table S1), indicating that phenotypic

variations were mainly controlled by genetic factors. In the entire

population, starch content exhibited an average broad-sense

heritability of 79.8%, ranging from 71.2% to 87.2%. Thus, the

abundant phenotypic variation and high heritability of starch

content among the six RIL populations provide a genetic basis for

identifying new QTLs in maize.

Genetic architecture of starch content dissected via
three methods

To systematically identify single QTLs for starch content in maize

kernels, we carried out three analyses for detecting QTLs,

including single linkage mapping (SLM), joint linkage mapping

(JLM) and GWAS. Using six genetic maps with the total length

ranging from 1,670.4 to 1,958.6 cM (Pan et al., 2016; Xiao et al.,

2016), we performed SLM analysis in each RIL population with

the composite interval mapping method (Zeng, 1994). In total, 26
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QTLs for starch content were detected, with the QTL number in a

population ranging from two to nine (Figure 1b; Table 1; Data set

S1). The 2.0-LOD supporting QTL interval averaged 8.6 cM

(8.8 Mb), with a range of 0.9−21.0 cM (0.7−31.6 Mb). The total

phenotypic variation explained (PVE) by all identified QTLs in a

population averaged 39.1% and ranged from 18.9% (DAN340/

K22) to 55.7% (DE3/BY815), far less than broad-sense heritability

(Figure 1c; Table 1). These findings suggest that some minor QTLs

for starch content cannot be detected in bi-parent populations.

Of these QTLs, most had moderate additive effects of

0.24−0.96% starch content (Figure 1d). The PVE for each QTL

ranged from 3.8% (qSTA5−7 in DE3/BY815) to 18.8% (qSTA5−4
in DE3/BY815), and only 19.2% (5/26) of the QTLs had large

effects with PVE ≥ 10% (Figure S1a). These results are consistent

with the quantitative nature of starch content, which is known to

be controlled by a large number of genes/QTLs with small effects

(Glowinski and Flint-Garcia, 2018). As expected, for 80.8% (21/

26) of the QTLs, the alleles from the parent with high starch

content in a population had additive effects for increasing starch

content (Figure 1d; Data set S1). In addition, the QTL co-

localization analysis among these six populations showed only

four QTLs (qSTA1−1, qSTA4−1, qSTA5−2, qSTA8−4) that were

present among more than two populations. The high percentage

(84.6%, 22/26) of QTLs uniquely detected in a given population

underscored the genetic diversity of the founders of the RIL

population (Data set S1).

Subsequently, we identified a total of 28 QTLs (likelihood ratio

test, LRT ≥ 2.99) for starch content using the JLM analysis

(Figure 2a; Table 1; Data set S1), which collectively explained

79.8% of the phenotypic variation. Compared with the SLM

results, the QTL interval was expectedly small, with 82.1%

(23/28) of the QTL intervals falling within 5 Mb. These detected

QTLs had small estimated effects with each explaining 0.4−8.7%

Figure 1 Phenotypic variation in starch content and summary of single QTLs for starch content identified by SLM analysis in six RIL populations. (a)

Phenotypic variation in starch content among the six RIL populations. The short, horizontal bars of different colours indicate the starch content values for

the seven parental lines. (b) Distribution of single QTLs on chromosomes. QTL regions across the maize genome are represented by confidence intervals,

and LOD values are scaled by colour. (c) Broad-sense heritability (h2) and total PVE for single QTLs for starch content in each population. (d) Effect size and

the origin of the increasing alleles of the identified single QTLs. Orange and blue bars indicate that increasing alleles come from the parents with high and

low starch content, respectively, in a given population.

Table 1 Summary of QTLs for starch content identified via three

methods using the BLUP values

Method

Single QTLs Epistasis analysis

QTL

number*

Total

PVE

(%)†

Pairs of

epistatic

QTLs

Total

PVE

(%)†

SLM 26 (2–9) 18.9–55.7 None available None available

JLM 28 79.8 7 2.0

GWAS 22 81.0 2 1.7

SLM, Single Linkage Mapping; JLM, Joint Linkage Mapping.
*The number of all QTLs identified via SLM in six RIL populations is shown before

brackets, while the range of QTLs identified in a given RIL population are shown

within the brackets.
†
Phenotypic variance explained (PVE) by all single QTLs or all epistatic QTLs.
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of the phenotypic variance (Data set S1). Three of five QTLs with

large effects (PVE ≥ 5%) coincided with large-effect QTLs

detected by SLM. The distribution of allelic effects in the founders

varied widely among the QTLs (Data set S1). The effect direction

(positive or negative) of most alleles was associated with the

starch content of the founders (Figure 2b). When the founder

had a high starch content, it had more positive alleles and vice

versa. When the founder had a moderate starch content, the

number of positive and negative alleles was similar. Notably,

BY815 carried the most negative alleles at half of the detected

QTLs, which provides a genetic basis for BY815 having the lowest

starch content among these founders.

Finally, we identified 137 SNPs significantly associated with

starch content via GWAS using model resampling techniques

(Figure 2c; Data set S1). To solve the problem of the redundancy

of the significant SNPs caused by linkage disequilibrium among

physically close SNPs, a backward regression procedure was

performed for the significant SNPs. Ultimately, 22 significant

candidate SNPs were retained in the model, of which 59.1%

(13/22) were located within a QTL support interval identified by

SLM or JLM (Figure 2d). Each of the candidate SNPs explained a

small fraction of the phenotypic variation (0.2−8.9%) (Data set

S1), consistent with the findings from the JLM analysis. However,

all candidate SNPs jointly explained a large portion of phenotypic

variation (81.0%) (Table 1). Taken together, we identified 50

unique single QTLs (see the definition of single QTLs in the

Methods) for starch content in the six RIL populations via three

methods, with nine QTLs identified via three methods and eight

QTLs identified via two methods. To test the QTL stability in

different environments, we repeated all three statistical analyses

in each environment (Data set S2). We found most of the

identified QTLs are stable across the environments with 73.1%

(19/26), 85.7% (24/28) and 77.2% (17/22) of the QTLs identified

using the BLUP values overlapping with the QTLs identified in the

individual environment using SLM, JLM and RIL-GWAS, respec-

tively (Data set S1).

In addition to single QTLs for starch content, we also tested

pairwise epistatic effects on starch content using the identified

QTLs and candidate SNPs via SLM, JLM and GWAS. We identified

only seven pairs of epistatic QTLs between QTLs from the JLM

results (PVE = 1.8−2.4%) and two pairs of epistatic QTLs

between candidate SNPs from the GWAS results (PVE = 1.7%

and 1.8%) (Data set S1). No epistatic effects were detected

between the SLM-identified QTLs. The extremely small PVE

Figure 2 Overview of QTLs for starch content identified by JLM and GWAS methods. (a) Manhattan plot resulting from the JLM results for starch content

in maize kernels. The horizontal dashed line shows the threshold of the likelihood ratio test (LRT = 2.99). (b) Distribution of allelic effects on starch content

from seven founders at the QTLs identified by JLM. The columns show the number of alleles from the seven founders ordered according to the values of

starch content. The red circles represent the starch content of each parent. The dark green and blue shadings show the number of alleles from a founder

with the largest positive and negative effects at a given locus, respectively, whereas the light green and blue shadings show the number of alleles from a

founder with moderate positive and negative effects, respectively. (c) Chromosome distribution of significant SNPs via GWAS. The orange upward-facing

triangles indicate that the major allele increased starch content relative to the minor allele, the blue downward-facing triangles indicate the opposite effect,

and the black dots indicate the candidate SNPs identified by the backward regression model. (d) Venn diagram of co-localization between QTLs detected by

the three models. Orange, blue and green numbers represent the number of QTLs detected by SLM, JLM and GWAS, respectively.
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percentage explained by all epistatic QTLs (Table 1) indicates that

epistasis does not substantially contribute to the genetic basis of

starch content variation relative to the additive effects in these RIL

populations. Collectively, starch content in maize kernels is

controlled by a few large-effect and many small-effect additive

QTLs as well as a few pairs of epistatic QTLs with small effects.

Regional association mapping identifies candidate
genes underlying the detected QTLs

To identify the candidate genes for the detected QTLs, we

extracted 86,290 SNPs across the QTL intervals with minor allele

frequency (MAF) ≥ 0.05 from ~0.56 million SNPs in AMP508 (Fu

et al., 2013; Yang et al., 2011; Yang et al., 2014). The marker-

trait association mapping identified 22 SNPs that were signifi-

cantly associated with starch content at P ≤ 1.0 × 10−4, which

were resolved to five candidate genes (Table 2; Figure 3a−d;
Figure S2a,b). All these candidate genes fell within the 2-LOD

supporting interval of the QTLs identified via SLM, and four of

them co-located with significant loci identified via RIL-GWAS

(Figure 3e−g, Figure S2c,d). In addition, the polymorphisms

including SNPs and Insertion–Deletions (InDels) among the seven

parents of six RIL populations further supported their roles as

candidate genes for the detected QTLs (Figure 3b−d, Figure S2a,

b, Table S2). The lead SNP (chr1.S_55704731) at the ZmABCI6

(Zm00001d029039) locus, which fell within qSTA1–1 in the DE3/

BY815 RIL population and co-located with chr1.S_56040444

detected via RIL-based GWAS, showed the most significant

association with starch content (Figure 3b,e). The inbred lines

carrying the C allele of the lead SNP chr1.S_55704731 had a

3.1% increase in starch content in comparison with those inbred

lines carrying T alleles (Figure 3h). ZmABCI6 encodes a putative

family member of ABC transporter I, of which the Arabidopsis

ortholog (AtNAP7) is essential for Arabidopsis embryogenesis

(Widiez et al., 2017; Xu and Moller, 2004). This suggested that

ZmABCI6 may affect maize embryogenesis and, in turn,

endosperm development and the synthesis and accumulation of

kernel chemical composition. The remaining four genes,

ZmPSKR1 (Zm00001d001877), ZmACP3 (Zm00001d012818),

ZmCPR (Zm00001d010607) and ZmGTL3 (Zm00001d025917),

are annotated as non-starch-pathway genes (Table 2), and the

favourable alleles at the lead SNPs increased starch content by

1.5% (chr2.S_2222544), 1.6% (chr5.S_845872), 6.0%

(chr8.S_121752963) and 1.7% (chr10.S_133752084), respec-

tively, in comparison with unfavourable alleles (Figure 3i,j;

Figure S2e,f). Notably, ZmACP3 fell within qSTA5−1 in the K22/

BY815 RIL population (Figure 3f). It encodes a putative acyl carrier

protein in the oil metabolism pathway, which shares a common

carbon flux with the starch pathway (Chan and Vogel, 2010;

Johnson and Alric, 2013). ZmCPR fell within qSTA8−4 identified

in both BY815/KUI3 and KUI3/B77 RIL populations and co-

localized with chr8.S_121752642 detected by RIL-GWAS (Fig-

ure 3g). ZmCRP encodes a putative cysteine-rich protein contain-

ing the PLAC8 conserved motif, which might affect kernel

development (Guo et al., 2010; Libault and Stacey, 2010) and, in

turn, starch content in maize. These findings provide evidence

that non-starch-pathway genes contain natural genetic variations

and may contribute to phenotypic diversity with respect to maize

starch content.

Pathway-driven analysis discovers candidate genes
underlying the detected QTLs

Metabolic pathways related to carbohydrates other than starch,

such as sucrose metabolism, sugar metabolism (glycolysis, the

pentose phosphate pathway, pyruvate dehydrogenase complex,

the tricarboxylic acid cycle) and the trehalose metabolic pathway,

also affect starch synthesis indirectly, as these pathways share the

same raw material, that is sucrose, and some intermediate

metabolites with starch metabolism (Dos et al., 2018; Glawis-

chnig et al., 2002; Spielbauer et al., 2006). Consequently, we

identified 471 genes that encode enzymes in maize carbohydrate

metabolism pathways from the MaizeCyc database (Data set S3).

Of these genes, 28 were located in the QTL intervals identified by

at least two of the methods described above, including six genes

involved in starch metabolism, seven genes involved in sucrose

metabolism, 18 genes involved in sugar metabolism, and two

genes involved in trehalose metabolism with three genes shared

in two metabolism pathways and one gene shared in three

metabolism pathways (Figure S3; Data set S3), suggesting their

possibility as candidate genes for these QTLs. For instance,

ZmSBEⅠ (Zm00001d014844) on chromosome 5 is located within

the QTL qSTA5−3 that was detected by both SLM and JLM

(Figure S3) and encodes a 1,4-α -glucan branching enzyme (Fisher

et al., 1995) that has a preference for amylose as a substrate by

catalysing the formation of α-1,6-branch points (Kuriki et al.,

1997; Tetlow and Emes, 2014).

Hierarchical clustering analysis using expression data from 78

tissues (Chen et al., 2014) showed that these 28 pathway genes

were clustered into four groups (Figure S4a). Nearly, all genes

show constitutive expression except three genes in class 3,

Zm00001d039066 (starch and sucrose metabolism), Zm00001

Table 2 Summary of loci significantly associated with starch content identified by region-association mapping

Candidate gene* Lead SNP† Chr Position‡ Allele§ MAF P-value Description

Zm00001d029039 chr1.S_55704731 1 55,704,731 C /T 0.16 2.7 × 10−6 ZmABCI6, ABC transporter I family member 6 chloroplastic

Zm00001d001877 chr2.S_2222544 2 2,222,544 A /G 0.34 9.2 × 10−6 ZmPSKR1, Phytosulfokine receptor 1

Zm00001d012818 chr5.S_845872 5 845,872 A/G 0.17 2.5 × 10−5 ZmACP3, Acyl carrier protein 3

Zm00001d010607 chr8.S_121752963 8 121,752,963 C /T 0.06 4.2 × 10−5 ZmCPR, PLAC8 family protein

Zm00001d025917 chr10.S_133752084 10 133,752,084 G/T 0.20 7.1 × 10−5 ZmGTL3, Probable galacturonosyltransferase-like 3

MAF, minor allele frequency.
*A plausible biological candidate gene at the identified locus or the annotated gene nearest to the lead associated SNP.
†
The SNP with the most significant association at a given locus.

‡
Physical position for SNPs according to the B73 reference genome Version 4.

§

The underlined nucleotide in a bold font is the favourable allele for each SNP.
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Figure 3 Associations between starch content and ZmABCI6, ZmACP3, and ZmCPR. (a) Manhattan plot of the results from the regional association

mapping for starch content in AMP508. The black horizontal dashed line indicates the Bonferroni-adjusted significance threshold (P = 1.0 × 10–4). The red

dots indicate the lead SNPs at each significant locus; the plausible biological candidate gene at each of these loci is shown. (b–d) Associations between the

SNPs at the ZmABCI6 (b), ZmACP3 (c) and ZmCPR (d) loci and starch content. The red dots show the lead SNP with the most significant association. Colour

coding of the remaining SNPs reflects their extent of linkage disequilibrium (r2) with the lead SNP. The black and grey boxes above the x axis represent exons

and UTRs, respectively. The InDels (orange triangles) and nonsynonymous SNPs (blue vertical lines) in the promoter, UTRs and exons are shown. (e–g) Co-
localization of candidate genes and the QTL or SNPs identified via SLM and RIL-GWAS. Blue and green lines show the LOD profile of the QTL identified via

SLM for the indicated RILs, whereas the blue dots represent the RIL-GWAS results. The red dashed vertical lines indicate the position of candidate genes. (h–
j) Genetic effects of the lead SNPs at the ZmABCI6 (h), ZmACP3 (i) and ZmCPR (j) loci on starch content. The P-values were calculated based on a two-tailed

Student’s t-test.
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d008816 (sugar metabolism-glycolysis) and Zm00001d052060

(trehalose metabolism), which were specifically and highly

expressed in maize developing kernels or endosperms (Fig-

ure S4b−d), suggesting that there is a high possibility that they

represent the candidate genes underlying the corresponding

identified QTLs.

ZmTPS9, involved in trehalose metabolism, affects
kernel starch content

Zm00001d052060 mapped within the QTL identified via three

methods, namely qSTA4–2 (SLM) with 7.4% of PVE in the K22/

CI7 RIL population, JLM14 (JLM) with 1.2% of PVE and

GWAS070 (GWAS) with 1.6% of PVE (Figure 4a). Its specifically

high expression in the endosperm and increased expression

during grain filling stages (Figure S4d) indicate that

Zm00001d052060 might be a candidate gene for the identified

QTL. Zm00001d052060 encodes a putative TPS, and hereafter

names ZmTPS9. Amino acid sequence alignment showed that

ZmTPS9 protein has a glycosyltransferase domain, a TPS-like

domain, which is required for T6P synthesis from UDPG and G6P,

and a C-terminal TPP-like domain, which contains two conserved

phosphatase boxes and might convert T6P to trehalose (Fichtner

and Lunn, 2021; Van Dijck et al., 2002) (Figure S5), indicating

that ZmTPS9 is a bifunctional synthase-phosphatase enzyme. The

previous finding that overexpressing otsA encoding for an

Escherichia coli TPS in Arabidopsis leads to the enhancement of

starch synthesis in leaves (Kolbe et al., 2005) suggests the

possibility that ZmTPS9 might affect starch synthesis in maize.

ZmTPS9 consists of 3,171 nucleotides with a 2,568-bp open

reading frame, a 293-bp 5’ untranslated region (UTR) and a 310-

bp 3’UTR with two introns in the B73 reference genome

(Figure 4b). Genomic sequencing identified 22 SNPs and seven

InDels in the promoter and 5’UTR, three nonsynonymous SNPs

(SNP chr4.S_178021716: A-to-G change resulting in Asp-to-Gly

change; SNP chr4.S_178019585 and 178019586: GC-to-AT

change resulting in Ser-to-Asn change) and 15 synonymous SNPs

in the coding regions, as well as one SNP and two InDels in 3’UTR

between K22 and CI7 (Figure 4b, Figure S6). These variations

suggest that ZmTPS9 might affect starch content via coding

region changes or transcriptional regulation, whereas no signif-

icant association signals were detected at the ZmTPS9 locus when

we performed regional-association mapping in AM508 (Fig-

ure 3a). Real-time quantitative PCR (qPCR) analysis in kernels at

20 days after pollination found that ZmTPS9 expression was high

in CI7 (Figure 4c), which allele at qSTA4-2 increased starch

content (Data set S1). This result suggests that the TPS domain in

ZmTPS9 might be a positive regulator for starch content.

Subsequently, we re-sequenced the promoter of ZmTPS9 in

AM508 and identified 63 polymorphic sites including all SNPs and

InDels identified between K22 and CI7. No significant associations

were again detected in the promoter and 5’UTR regions

(Table S3). These findings suggest that some rare variants such

as InDel283 around the transcription initiation site (TSS) of

ZmTPS9, for which only one of the 416 tested inbred lines

harboured the 283-bp insertion (Table S3), might be the causal

variants for starch content. To test this hypothesis, we performed

transient expression assays in maize leaf protoplasts, in which two

pairs of fragments with or without the 283-bp insertion (~1 kb)

upstream of the start codon of ZmTPS9 were fused upstream of

the luciferase (LUC) gene (Figure 4d). All fragments without 283-

bp insertions exhibited higher LUC activity than did the corre-

sponding fragments with 283-bp insertions (Figure 4e),

suggesting that InDel283 accounts for ZmTPS9 expression differ-

ences between K22 and CI7. Considering the K22 allele at

qSTA4-2 of decreasing starch content (Data set S1), we inferred

that the 283-bp insertion around the TSS of ZmTPS9 might

decrease starch content via weakening the TPS enzyme activity of

ZmTPS9.

To further determine the function of ZmTPS9, we identified an

ethyl methanesulphonate (EMS) mutant (ems0390, designated as

tps9) carrying a C-to-T substitution in the first exon that results in

CAG becoming the stop codon TAG, thus introducing a prema-

ture stop codon and leading to loss of TPP enzyme activity

(Figure 4f; Figure S6). Phenotypic analysis showed that starch

content in homozygous tps9 plants was significantly greater than

that in their homozygous wild-type siblings (67.1% versus

66.0%, P = 5.6 × 10−5; 68.2% versus 66.3%,

P = 5.7 × 10−10), with an increase in starch content of about

1.1% and 1.9% in Bayan Nur and Sanya, respectively, in 2019

(Figure 4g). Consequently, the hundred kernel weight (HKW) of

tps9 increased by 0.9 g (P = 8.7 × 10−3) and 3.5 g

(P = 6.0 × 10−4), respectively (Figure 4h). These results indicate

that ZmTPS9 function affects starch content and, in turn, kernel

weight.

Discussion

Starch content in maize kernels is a complex quantitative trait.

Identification of the QTLs or genes controlling the variation in

starch content aids in understanding the genetic basis of starch

quantity and quality and facilitates genetic improvement of starch

content. In this study, we identified 50 unique single QTLs and

nine pairs of epistatic QTLs for starch content via SLM, JLM and

GWAS using the BLUP values in the six RIL populations.

Consistent with previous studies (Dong et al., 2015; Wang

et al., 2010; Yang et al., 2013), the small effects of epistatic QTLs

and most single additive QTLs indicate that the summation of

many QTLs with small effects is responsible for the main

contribution to the genetic basis of the variations in kernel starch

content. When we consider the QTLs described here and

previously identified QTLs for starch content (Alves et al., 2019;

Cook et al., 2012; Dong et al., 2015; Guo et al., 2013; Karn et al.,

2017; Li et al., 2018; Li et al., 2009; Lin et al., 2019; Liu et al.,

2008; Liu et al., 2016; Wang et al., 2010; Wassom et al., 2008;

Yang et al., 2013; Zhang et al., 2008), we note that 18 of 50

QTLs (36.0%) were detected only in this study. This finding could

be the result of differences in genetic backgrounds, population

size, captured recombinant events, environmental effects and

QTL analysis methods. In general, QTL mapping populations

developed from multiple parents capture greater levels of genetic

diversity and recombination events and consequently have higher

mapping power and resolution relative to bi-parent populations

to disclose the genetic architecture of complex quantitative traits

(Glowinski and Flint-Garcia, 2018). The fact that more QTLs with

relatively narrow genetic intervals were identified by JLM and

GWAS in multi-parent populations than in bi-parent populations

in both our current study and previous studies (Cook et al., 2012;

Liu et al., 2017; Pan et al., 2016; Xiao et al., 2016) strongly

supports this conclusion. In addition, we identified only five

candidate genes underlying the identified QTLs for starch content

using regional association mapping with AMP508. This is not

surprising, as association mapping using a natural population

lacks the power to detect rare alleles caused by less extreme level

of the starch content distribution in the population (Auer and
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Figure 4 ZmTPS9 affected starch content and kernel weight. (a) LOD profile of qSTA4−2 in the K22/CI7 RIL population, JLM and RIL-GWAS results at this

locus. The red dashed lines indicate the position of ZmTPS9. The blue shading depicts the support interval from JLM with its height indicating the LRT score.

(b) Gene structure of ZmTPS9 and sequence comparisons between K22 and CI7. Black and grey boxes represent exons and UTRs, respectively. The grey

vertical lines show SNPs in non-coding regions and synonymous SNPs in exons; the green segments show InDels; the red lines show nonsynonymous SNPs in

exons. The red star indicates the mutation position of tps9. The red nucleotides indicate nonsynonymous SNPs between K22 and CI7. (c) Expression pattern

of ZmTPS9 in developing kernels at 20 DAP. (d) Constructs used to test the effect of InDel283 on ZmTPS9 expression in transient expression assays in maize

leaf protoplasts. K22, K22−283, CI7 and CI7+283 constructs harbour the promoter and 5’UTR of different ZmTPS9 alleles, including 1290 bp from K22,

1007 bp from K22 without a 283-bp insertion, 1019 bp from CI7 and 1302 bp from CI7 with a 283-bp insertion. (e) The alleles without a 283-bp insertion

are associated with increased LUC activity in comparison with the alleles with a 283-bp insertion. The data were normalized with respect to the average

values of the K22 construct. (f) Ear and kernel morphologies and genotype of wild type (WT) and tps9. Scale bars: 1 cm. The blue shading indicates the

mutated nucleotide. (g–h) Quantification of starch content and hundred kernel weight between WT and tps9. 19SY: Sanya in 2019; 19BN: Bayan Nur in

2019. In c, e, g and h, the P-values were based on a two-tailed Student’s t-test.
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Lettre, 2015). Joint linkage association mapping using multi-

parent populations avoids the potentially confounding influence

of population structure, raises the allele frequency of a subset of

alleles that are rare in the association population and thus is

powerful for identifying rare-allele and small-effect loci (Auer and

Lettre, 2015; Liang et al., 2021). We did identify ZmTPS9 as the

causal gene for qSTA4–2, which was further validated by mutant

analysis. In addition, the genotype–phenotype association analysis

showed no common variants that were significantly associated

with starch content, further supporting the possibility that the

causative variants of ZmTPS9 might be rare alleles.

Among the five candidate genes that affect starch content

identified via regional association mapping, none directly

affected starch synthesis but instead affected metabolites

related to starch synthesis, for example ZmACP3 and ZmGTL3,

or the development of the starch storage organ, for example

ZmABCI6 and ZmCRP. In addition to these two kinds of

effectors, previous studies have already identified several tran-

scription factors, such as those encoded by the aforementioned

O2, PBF, ZmNAC128 and ZmNAC130, that regulate starch

synthesis (Zhang et al., 2019; Zhang et al., 2016). O2 and PBF

can regulate the expression of critical components in the starch

biosynthetic enzyme complex, such as pyruvate orthophosphate

dikinases and starch synthase III, and their down-regulation or

loss of function consequently decreases starch content via the

down-regulation of genes in the starch pathway and pentose

phosphate pathway (Hennen-Bierwagen et al., 2009; Zhang

et al., 2016). Similarly, ZmNAC128 and ZmNAC130 can regulate

the transcription of Bt2, which encodes a small subunit of

AGPase, an enzyme responsible for initiating starch synthesis,

and down-regulation of ZmNAC128 and ZmNAC130 results in a

significant reduction in starch content by affecting metabolic

pathways related to non-starch carbohydrates (Zhang et al.,

2019). These findings suggest that non-starch-pathway genes

play a critical role in affecting starch synthesis and accumulation

in maize kernels in addition to genes encoding the key enzymes

in the starch metabolic pathway.

Due to the complex network of many interconnected

reactions and metabolites in carbohydrate metabolism, their

alteration will affect starch metabolism. A GWAS for amylose

content found that enzymes upstream of the starch pathway,

such as the sucrose transporter, invertase, phosphoglucomutase,

Nudix hydrolase, glycosyltransferases and glycosidases, are

responsible for the precursors for starch biosynthesis (Li et al.,

2018). Similarly, OsPK2, which encodes a pyruvate kinase

involved in glycolysis, affects starch content, starch physico-

chemical properties and grain weight in rice (Cai et al., 2018).

There is also more direct evidence that extensive recycling of

glucose occurs before its incorporation into starch via the

enzymes of the glycolytic and pentose phosphate pathway,

among others, which is based on isotopologue abundance

measurements from labelling experiments of developing maize

kernels (Glawischnig et al., 2002). The mutations in the starch

pathway could also lead to alterations in metabolite levels and

enzyme activities in the primary carbohydrate metabolic path-

ways, that is glycolysis, the pentose phosphate pathway and the

tricarboxylic acid cycle (Doehlert and Kuo, 1990; Tobias et al.,

1992). These studies also indicate that central carbohydrate

metabolism can affect starch content in maize kernels. Conse-

quently, the 28 genes involved in maize carbohydrate metabo-

lism that co-localized with the identified QTLs (Data set S3) are

likely to be candidate genes for these QTLs and might indirectly

participate in the starch pathway. We should, however, note

that our prediction of candidate genes underlying the detected

QTLs was based on the co-localization analysis; whether these

are the causal genes for the QTL requires additional exper-

iments, such as fine mapping, functional validation via overex-

pression and knocking out the target gene.

T6P, produced from UDPG and G6P via TPS, and degraded into

trehalose via TPP, acts as a sugar signal that regulates plant

growth and development and potentially regulates the utilization

of sucrose for growth and accumulation of storage reserves

(Fichtner and Lunn, 2021; Martins et al., 2013; Schluepmann

et al., 2003). As expected, it can potentially act as an effective

indicator of the pool size of UDPG and G6P (Paul et al., 2008),

which are the common raw materials shared among the starch

pathway and other carbohydrate metabolism pathways. Conse-

quently, the enhancement of TPS enzyme activity or the loss of

TPP enzyme activity in ZmTPS9 might increase the T6P concen-

tration, which might result in more sucrose being transported to

the endosperm and, in turn, an increase in starch content and

kernel weight. Here, we did find that knockout of the TPP domain

in ZmTPS9 resulted in higher starch content and grain yield. This

finding suggests potential applications for ZmTPS9with respect to

maize improvement via gene-editing, even though the molecular

mechanism by which ZmTPS9 regulates starch content is currently

unknown.

Starch is a key constituent of the mature maize kernel and

accounts for ~70% of the grain endosperm. Therefore, it is

reasonable that the genes that regulate starch content will also

influence kernel weight. These genes include Mn1 (Chourey

et al., 2012; Li et al., 2013); ZmDA1 and ZmDAR1 (Xie et al.,

2018); AGPase (Li et al., 2011); and GBSS, BEI, and BEIIb (Jiang

et al., 2013), as well as ZmTPS9 identified in our study.

Overexpression of Mn1, which encodes an endosperm-

expressed cell wall invertase, leads to improved grain yield and

starch content by increasing photosynthetic efficiency, accelerat-

ing carbohydrate flow from source to sink tissues and speeding

up grain filling in transgenic plants (Li et al., 2013). Similarly,

ZmDA1 and ZmDAR1 encode ubiquitin receptors that function as

negative regulators of cell proliferation during development, and

overexpression of mutated ZmDA1 or ZmDAR1 increases sugar

imports into the sink organ and increases kernel yield via the up-

regulation of many genes related to starch synthesis, including

Sh2, Bt2, and GBSSI (Xie et al., 2018). In addition, this increased

expression of starch synthesis-related genes such as Sh2 and Bt2

enhances seed weight and starch content in transgenic maize (Li

et al., 2011). A multigene engineering approach that targeted

Sh1, Sh2, Bt2, GBSSIIa, BEI and BEIIb resulted in increased total

starch content as well as kernel weight (Jiang et al., 2013). In

contrast, when we compared our SLM-QTL results with a previous

QTL study for HKW with four of the same populations (DAN340/

K22, K22/CI7, K22/BY815, DE3/BY815), only 21.7% (5/23) of

QTLs for starch content were co-localized with QTLs for HKW.

One possibility to explain this finding is that the HKW effects of

the QTLs for starch content were too small to discover, for

example qSTA4–2 and its causative gene ZmTPS9. This is

reasonable, as a weak correlation was observed for starch

content and HKW in the same bi-parent populations

(r = −0.02–0.15). These findings indicate that the identification

of QTLs for traits involved in HKW, such as starch content, will

allow causal variants of HKW to be identified.
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Methods

Plant materials and genotyping

Six RIL populations (DAN340/K22, K22/CI7, K22/BY815, DE3/

BY815, BY815/KUI3, KUI3/B77) with nearly 200 lines per popu-

lation were previously developed from seven maize inbred lines

(Pan et al., 2016; Xiao et al., 2016). All 1,141 lines together with

their parents (Table S1) used in this study have been genotyped

previously using the Illumina MaizeSNP50 BeadChip (Ganal et al.,

2011), with each population having 11,360 to 14,024 polymor-

phic SNPs, which were then used to construct high-density

linkage maps that captured 2,100 to 2,683 bins (a genomic

region in which no recombination exists) per population, with the

total length of the genetic maps ranging from 1,670.4 to

1,958.6 cM (Pan et al., 2016; Xiao et al., 2016). In addition,

1.03 million SNPs within the seven founder lines had been

obtained by RNA-sequencing (RNA-seq) (Fu et al., 2013) and

were used to facilitate the RIL-GWAS. The SNP positions in the

B73 reference genome Version 2 were converted to those in

Version 4 using CrossMap Version 2.0.5 (Zhao et al., 2014). The

EMS mutant of ZmTPS9 (stock number: ems0390) was ordered

from the Maize EMS induced Mutant Database (Lu et al., 2018)

and was backcrossed with B73 three times. The mutation site was

genotyped by sequencing with the primers listed in Table S4.

Field trials and starch measurement

All RIL lines together with their parents were planted in three

environments: Sanya, Hainan (18.2°N, 109.1°E) in 2013 and

2015, and Bayan Nur, Neimeng (40.8°N, 107.4°E) in 2014. The

lines were divided into six groups based on different crosses and

planted in one-row plots (2.5-m rows, 0.67 m between rows) in a

completely randomized block design within each group. All plants

in each row were self-pollinated and harvested at maturity. Fifty

kernels were bulked for each row with equal numbers collected

from the middle part of five well-grown ears and were ground to

a fine powder for starch measurement using a fermentable

carbohydrate assay (Xiao et al., 2016; Zhou and Bao, 2012). In

brief, 120–150 mg powder was digested with heat-stable α-
amylase and glucoamylase. The starch was then fermented into

ethanol and carbon dioxide (CO2) by yeast, following by heating.

Finally, the starch content was calculated as the weight loss

owing to fermentation and heat. All of the samples were

measured with two sub-samples analysed in parallel, and the

average was used for subsequent analyses.

Phenotypic data analysis

All statistical analyses were performed using R Version 3.1.1

(www.R-project.org). The R function ‘AOV’ was used to estimate

the variances of the starch content. The model for the variance

analysis was y = μ + αg + βe + ϵ, where αg is the effect of the

gth line, βe is the effect of the eth environment, and ϵ is the error.
All of the effects were considered to be random. These variance

components were used to calculate the broad-sense heritability as

h2 ¼ σ2g=ðσ2gþσ2ɛ=eÞ (Knapp et al., 1985), where σ2g is the genetic

variance, σ2ɛ is the residual error, and e is the number of

environments. To eliminate the influence of environmental

effects, the best linear unbiased predictor (BLUP) value for each

line was calculated using a linear mixed model that considered

both genotype and environment as random effects in the R

function ‘LME4’. The model was yij = μ + ei + fj + ϵij, where yij is

the phenotypic value of individual j in environment i, μ is the

grand mean, ei is the effect of different environments, fj is the

genetic effect, and ϵij is the random error. The BLUP values were

used for phenotypic description statistics and QTL analysis.

Single linkage mapping

Using high-density genetic linkage maps of six RIL populations,

SLM was performed with composite interval mapping (Zeng,

1994) implemented in Windows QTL Cartographer 2.5 (Wang

et al., 2012) for each RIL population. Model 6 of the Composite

Interval Mapping module was used to detect QTLs throughout

the genome by scanning with a 2.0-cM interval between markers

with a 10-cM window size. Forward-backward stepwise regres-

sion with five controlling markers was used to control the

background from flanking markers. To determine the threshold

logarithm of odds (LOD) value for putative QTLs, 1000 permu-

tations were performed, and the resulting LOD score threshold

ranged from 2.7 to 3.2 (α = 0.05). For simplicity, we used a LOD

score of 3.0 as the global threshold. The confidence interval for

the QTL position was estimated with the 2.0-LOD support interval

method according to the study of Liu et al., (2017). The R

function ‘LM’ was used to determine total PVE by significant

individual QTLs (R Core Team, 2020).

Joint linkage mapping

We combined six RIL populations to perform JLM, and a linear

mixed model was used to detect significant recombination blocks

(Xiao et al., 2016). The model is as follows: y = Xβ + Zγ + ξ + ϵ,
where Xβ represents fixed effects, Z is an N × P matrix for the

parental allelic genotype (N is the total number of lines in the six

RIL populations and P is the number of lines used to construct RIL

populations), γ is a vector that represents the genetic effects

associated with the markers, ξ is a vector that represents the

polygenic effects, and ϵ is a vector that represents the residual

errors. The restricted maximum likelihood was used to estimate

the parameters. A permutation test of 500 permutated samples

was used to determine the threshold of likelihood ratio test

scores, and the threshold of likelihood ratio test scores was 2.99

(α = 0.05).

SNP projection and genome-wide association analysis

To perform a GWAS for starch content, we projected the 1.03

million SNP genotypes of the seven parental lines obtained by

RNA-seq (Fu et al., 2013) onto 1,141 offspring RILs using a two-

step imputation strategy as described (Xiao et al., 2016). Overall,

99,404 genetic blocks were available for the GWAS, which

captured the current recombination occurring during the devel-

opment of the RIL populations and the historical recombination in

the seven founders. We carried out the GWAS using a modified

stepwise regression method. To control for the effect of a

polygenic background, the GWAS was performed one chromo-

some at a time. For each chromosome, we forced the population

effects and the effects of QTLs detected by SLM and JLM on other

chromosomes to be included in a general linear model. The

residual of this model was then used as the dependent variable to

test all SNPs on the current chromosome. We used both forward

and backward regressions to select variables, and the cut-off P-

value for SNPs entering or leaving the model was determined by

500 permutations. The SNPs in the final model were regarded as

significant SNPs, and the P-value was calculated from the

marginal F-values of the SNPs. To reduce SNP redundancy, we

performed a final backward regression for the significant SNPs.
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For SNPs falling within the QTL regions, a backward regression

was conducted one QTL at a time, in which the population effects

and all other QTLs were fitted to the model. For the remaining

SNPs falling outside the QTL regions, a backward regression was

conducted by forcing population effects and all QTLs in the

model. The median cut-off P-value of 10 chromosomes was used

as the threshold of the marker resulting in the final backward

model.

To take together all QTLs identified via SLM, JLM and GWAS,

we defined a single QTL as being present if more than two loci

identified via GWAS fell within a QTL interval identified via JLM or

SLM, or if more than two QTLs identified via JLM fell within a QTL

identified via SLM.

Epistasis analysis

Based on all significant QTLs or loci obtained as described above

by SLM, JLM and GWAS, we extracted loci with the peak value

LOD score for each QTL. The JLM used parental allelic genotype

data, whereas GWAS used biallelic genotype data. For simplicity,

all the heterozygous genotypes (<4%) were assigned as missing

values to ensure that only homozygous allelic interactions were

estimated and tested. Then, we performed epistatic analysis for

every pair of peak loci using a two-way ANOVA in the R

environment and took P < 0.05/N (N = all pairwise significant

epistatic interactions) as the threshold. Combined with the

genotypic information concerning all significant single loci and

two-locus interactions, we used the R function ‘LM’ to estimate

their contributions to the phenotypic variation.

Association mapping

An association mapping panel composed of 508 diverse inbred

lines (Yang et al., 2011) was grouped into temperate and

tropic/subtropic groups and planted in one-row plots (2.5-m

rows, 0.67 m between rows) in a completely randomized block

design within each group in Sanya, Hainan (18.2°N, 109.1°E) in
2009 and in Ya’an, Sichuan (30.0°N, 103.0°E) and again in Sanya,

Hainan in 2010. More than six maize ears in each row were self-

pollinated for all lines, and five well-grown ears in each plot were

selected, from which 300 kernels were bulked for phenotyping.

Fifty kernels were randomly selected from the bulked kernels to

quantify starch content using the aforementioned method. The

BLUP values for starch content for each line were used to perform

association mapping. For regional association mapping, 86,290

SNPs with MAF of 0.05 and missing rate of 0.2 were extracted

from 56,110 SNPs genotyped by the Illumina MaizeSNP50

BeadChip (Ganal et al., 2011; Li et al., 2012) and the 1.03

million SNPs previously identified by RNA-seq (Fu et al., 2013). To

investigate the genomic variants of the associated genes, the

promoter, 5’UTR and coding regions were re-sequenced in the

seven parents of six RIL populations (Table S4). For ZmTPS9-based

association mapping, an ~1-kb promoter fragments of ZmTPS9

were amplified by primers TPS9-AMseq (Table S4), and the PCR

products were sequenced. The sequences were aligned by MAFFT

(Katoh et al., 2019) and edited by Bioedit (Hall, 1999). The SNPs

and InDels were extracted by TASSEL 5 (Bradbury et al., 2007)

and included with the existing SNPs in the coding regions for

candidate-gene association mapping. The marker-trait association

mapping was carried out by using a mixed linear model (MLM, Yu

et al., 2006) accounting for population structure and relative

kinship (Li et al., 2012; Yang et al., 2011) presented in TASSEL 5

(Bradbury et al., 2007).

RNA extraction and qPCR

Total RNA was isolated from maize kernels at 20 days after

pollination using the Plant Total RNA Extraction kit (TianGen,

Beijing, China). First-strand cDNA was synthesized using M5 First

Strand cDNA Synthesis Kit (Mei5bio, Beijing, China). qPCR was

carried out with a Real-time PCR Supermix kit (SYBRgreen, with

anti-Taq; Mei5bio) on a 7500 Real-Time PCR System (Applied

Biosystems). Expression levels of ZmTPS9 were normalized to that

of maize Actin (Table S4). For each sample, three biological

replicates and three technical replicates were used. The relative

expression levels were determined using the 2−ΔΔCT method

(Livak and Schmittgen, 2001). The primer information for qPCR is

shown in Table S4.

Transient expression assays in maize protoplasts

The ~1-kb promoter fragments (with or without a 283-bp

insertion) of ZmTPS9 were amplified from K22 and CI7 DNA,

respectively, using specific primers (Table S4) and then inserted

upstream of the LUC gene in vector pGreenII 0800-LUC that

had been cleaved with KpnI and PstI. The Renilla luciferase (REN)

gene driven by the 35S promoter in these constructs was used

as the internal control to evaluate protoplast transfection

efficiency. The isolation of protoplasts from leaves of 14-day-

old etiolated B73 seedlings, the transformation of constructs

into protoplasts using polyethylene glycol-mediated transforma-

tion, the culture of protoplasts and detection of the LUC signal

were carried out as previously described (Huang et al., 2018).

Relative LUC activity was calculated by normalizing LUC activity

to REN activity. Five biological replicates were assayed per

plasmid.

Accession numbers

Sequence data from this study can be found in the GenBank data

libraries under accession number MW659943–MW660359 for

promoter sequence in AMP508, and MW674929 and

MW674930 for gene sequence of K22 and CI7 of ZmTPS9.
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