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Abstract

MYC oncoprotein promotes cell proliferation and serves as the key driver in many human cancers; 

therefore, considerable effort has been expended to develop reliable pharmacological methods to 

suppress its expression or function. Despite impressive advances, MYC-targeting drugs have not 

reached the clinic. Recent advances suggest that within a limited expression range unique to each 

tumor, MYC oncoprotein can have a paradoxical, pro-apoptotic function. Here we introduce a 

counterintuitive idea that modestly and transiently elevating MYC levels could aid chemotherapy

induced apoptosis and thus benefit the patients as much, if not more than MYC inhibition.
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Introduction

MYC has long been considered a major cancer driver, on par with activated K-Ras. 

For that reason, therapeutic targeting of this oncogene has become an article of faith in 

precision medicine. The overall rationale for targeting initiating oncogenes is based on the 

phenomenon known as “oncogene addiction” where tumor cells become dependent on one 

protein or signaling pathway in a way their normal counterparts never are [1]. Thus, the 

former can be specifically killed while leaving the latter mostly unharmed, which is not the 

case for cytotoxic therapies like chemotherapy. The concept of addiction to MYC has been 

amply validated in genetically engineered mouse models [2], and several MYC-targeting 

compounds are now in clinical development or in clinical trials. They range from broad 
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blockers of MYC transcription such as Brd4 inhibitors (BRD4i) [3, 4] and G-quadruplex

promoting compounds [5] to very specific blockers of MYC protein function such as 10074

G5 [6], MYCi361 [7], and Omomyc [8]. However, all these compounds are yet to produce 

tangible successes in the clinic, and in fact some of them such as MYC-targeting siRNA [9] 

resulted in terminated clinical trials.

One could argue that this is because the MYC locus frequently finds ways to bypass 

transcriptional inhibition, while specific and potent inhibitors of MYC itself are proving 

to be elusive. Interestingly, even though BRD4i are ineffective against most MYC

overexpressing cancers, they show acceptable potency against bona fide Brd4-driven cancers 

such as midline carcinoma [10], arguing that Brd4i are in fact good drugs, just not 

necessarily for MYC-driven cancers. The alternative explanation – unproven, but hard to 

rule out - is that genetically complex human cancers are far less dependent on MYC than 

commonly thought.

The second concern is that in both preclinical and clinical settings, Brd4i, Omomyc, and 

their brethren are sometimes tested as monotherapies, setting aside their interactions with 

existing standards of care in such scenarios. Thus, in parallel to inhibiting MYC expression 

or function as an anti-growth strategy, a complementary approach would be to exploit unique 

vulnerabilities associated with high MYC expression as an anti-survival strategy. One such 

vulnerability is the propensity of MYC to engage cell death pathways. In this review, we 

highlight this paradoxical pro-apoptotic function of MYC and the often-overlooked fact 

that MYC-driven tumors live (and sometimes die) by a Goldilocks Principle, according to 

which the levels of this lethal oncoprotein have to be just right: not too low, but not too 

high either. The corollary of this balancing act is that transiently elevating MYC levels 

aids chemotherapy-induced apoptosis and thus could directly benefit patients and potentially 

overcome chemotherapy resistance.

The many facets of MYC

The MYC gene is deregulated in over half of all cancers, making it the most frequently 

altered oncogene [11]. Gene amplification of MYC and its paralogs MYCN and MYCL 

alone was observed in almost 30% of all The Cancer Genome Atlas (TCGA) samples. MYC 

deregulation also has been found to occur by various other means including point mutations, 

activation of upstream signaling pathways resulting in elevated transcription and protein 

stabilization, and more recently – by enhancer hijacking within core regulatory circuitries, 

which are especially important for MYCN activation [12, 13]. Breakthroughs in deciphering 

the mechanisms of MYC-driven tumorigenesis came from the characterization of MYC 

protein domains and identification of MYC target genes and gene networks. MYC (formerly 

referred to as c-Myc) is an oncoprotein and a nuclear transcription factor that belongs to a 

family that also includes N-MYC and L-MYC. It has distinct structural modules and several 

key phosphorylation sites, which control its function and well as turnover via proteasomal 

degradation (see Figure 1 for details) (highlighted in [14, 15]).

In addition to its well-established role as a transcriptional activator, MYC has been 

shown to function as a transcriptional repressor, which in most cases involves complex 

formation with another nuclear protein Miz-1 [16]. Its opposite effects on gene expression 
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notwithstanding, MYC has been shown to bind the majority of actively transcribed human 

genes and regulate both protein-coding and non-coding RNA genes, suggesting that it acts 

as a global transcriptional regulator (reviewed in [17, 18]). A large proportion of MYC

regulated genes aid tumor growth and upkeep. This set includes genes that control cell cycle 

and growth, metabolism, protein synthesis, cell migration, angiogenesis, and chromosomal 

instability. All these pathways contribute to MYC-mediated transformation of normal cells 

into cancerous ones (reviewed in [19]). More recently, the role of MYC in creating the 

immunosuppressive microenvironment (for example, through its effects on CD47 and PDL1 

expression) has come to the fore [20]. Thus, it comes as no surprise that MYC is one of the 

few oncogenes that could single-handedly drive rapid neoplastic growth. Consequently, in 

many systems MYC inactivation led to regression of established tumors [21–24]. Numerous 

subsequent studies have confirmed that MYC plays an important role not only in tumor 

initiation, but also in tumor maintenance in multiple organ systems (reviewed in [25]). For 

this reason, considerable efforts have been expended to learn how to inhibit MYC activity.

Therapeutic targeting of MYC: opportunities and challenges

Transcription factors are notoriously challenging to target pharmacologically due to their 

lack of hydrophobic pockets and large interaction surface areas, which are at odds with the 

standard binding models of small drug molecules [26]. Only very recently some advances 

have been achieved with direct MYC inhibitors [7]. As an alternative to disrupting MYC 

with small molecules, the MYC dominant-negative peptide Omomyc has been developed 

to inhibit its function [27–29]. This 92-amino acid polypeptide homodimerizes and binds 

to both MYC and Max, thus preventing MYC:Max heterodimerization. While Omomyc 

has displayed anti-tumor activity in experimental models of non-small cell lung cancer, its 

efficacy in the patient setting is currently being determined (ClinicalTrials.gov Identifier: 

NCT04808362) [8].

Thus, complementary efforts were expanded to inhibit MYC expression and function at the 

mRNA and protein levels and to target signaling pathways that activate MYC. There are 

approaches to inhibit MYC function at just about every level of its regulation in the cell. 

Numerous upstream signaling pathways deregulate MYC activity, such as Notch, WNT, 

PI3K, and MAPK pathways [30]. Many small molecule inhibitors exist for each of these 

pathways and are currently undergoing pre-clinical and clinical trials.

One recently emerged strategy to target MYC function is the inhibition of BET 

bromodomain family members. BET inhibition was first shown to down-regulate the MYC 

transcriptional program [31]. Following the discovery that the BET transcriptional regulator 

BRD4 can bind to the MYC promoter and regulate MYC expression, investigators began to 

explore the therapeutic use of BRD4 inhibitors such as JQ1 to treat MYC-driven cancers 

[32–34]. There are currently several BRD4 inhibitors in clinical trials as monotherapies 

for a variety of cancer types. Despite the promising pre-clinical studies, the clinical trial 

results have thus far been mixed. Positive anti-tumor effects have been observed, but so 

have detrimental side effects at below-efficacy doses (reviewed in [35]). Additionally, pre

clinical studies have identified resistance mechanisms to BET inhibition, such as increased 

expression of anti-apoptotic or autophagy proteins, that could likewise end up leading to 
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BET inhibitor resistance in patient tumors [36]. It is also notable that BET inhibition affects 

key MYC-independent oncogenic pathways (see for instance [37]), making interpretation of 

results less straightforward.

In addition to BRD4, another targetable protein that affects the function of MYC is Aurora 

kinase A. This enzyme was first identified to enhance N-MYC stability in neuroblastoma, 

and since then has been tested pre-clinically as a druggable target for MYC-driven cancers 

[38–40]. These findings led to clinical trials of Aurora kinase inhibitors as monotherapy in 

solid and hematologic tumors; these inhibitors were unable to produce durable responses 

in solid tumors but were somewhat more effective at treating the hematologic malignancies 

(reviewed in [41]). As the mixed responses in clinical trials would suggest, BET and Aurora 

kinase inhibition may only be suitable for certain subsets of MYC-driven cancers.

A complementary approach to MYC destabilization has been to boost the activity of 

the PP2A phosphatase using compounds collectively known as SMAPs (small-molecule 

activators of PP2A) [42].

Together with mTOR inhibition, this approach has shown efficacy in pre-clinical models of 

highly aggressive pancreatic ductal adenocarcinoma [43], but SMAPs are yet to be tested in 

human patients.

Finally, there is considerable evidence that some therapeutic benefits could be reaped 

from inactivating MYC targets. One salient example is ornithine decarboxylase (ODC). 

In the 2005 proof-of-principle paper, deleting the ODC gene or inhibiting the enzyme with 

difluoromethyl-ornithine (DFMO) delayed lymphoma development in the Eμ-MYC mouse 

model [44]. However, in the realm of experimental oncology, this approach appears to 

be re-directed towards N-MYC-driven tumors, such as neuroblastoma [45]. In summary, 

while multiple independent strategies are concurrently being pursued to inhibit MYC either 

directly or indirectly, each has its own limitations, which make it difficult to ascertain 

whether any of them would ever emerge as blockbuster drugs to successfully treat MYC

driven malignancies.

MYC-driven apoptosis: a potential vulnerability

Given that the efforts to inhibit pro-oncogenic activities of MYC are yet to come to fruition 

clinically, unorthodox approaches might be in order. One such approach would be to exploit 

the long-known function of MYC to promote programmed cell death, or apoptosis, during 

normal development. Indeed, in a recent study MYC was found to be highly expressed in 

young tissues that were exquisitely primed to undergo apoptosis, and loss of a MYC allele 

resulted in a reduced response to apoptotic stimuli [46]. Rather paradoxically, oncogenic 

MYC also retains the conflicting functions of driving proliferation and cell death. The anti

survival effects of MYC first reported 30 years ago are achieved by a variety of mechanisms 

(comprehensively reviewed in [47]) in both immortalized and cancerous cells lines as well 

as in vivo tumor models.

In fact MYC-dependent apoptosis is a hallmark of many cancers such as Burkitt lymphoma, 

in which tumor cells are highly proliferative but at the same time also display high levels of 
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apoptosis [48]. In the realm of solid tumors such as lung, liver, and ovarian cancers, where 

MYC is usually activated via copy number gains [49], activation of MYC was reported to 

correlate with higher apoptotic indices and/or focal amplification of anti-apoptotic genes 

[50–52]. Admittedly, correlation does not prove causation, but there is also a large body of 

evidence demonstrating direct pro-apoptotic effects of MYC, as discussed below.

Early studies revealed that stimuli such as low serum, cytokine withdrawal, or T-cell 

activation induce apoptosis, and that this cell death response was dependent on MYC [53–

55]. Not long after it was discovered that MYC triggers apoptosis via ARF upregulation 

and ensuing activation of the tumor suppressor p53; this p53-driven apoptotic response 

was found to require the activity of the DNA damage response protein ATM [56, 57]. 

Subsequently, it was noted that MYC-driven murine transgenic lymphomas and other 

MYC-driven tumors inactivate this pro-apoptotic pathway by disabling Arf or p53 [58]. 

The inactivation of MYC-driven apoptosis is thought to be crucial for tumor initiation 

and progression, because upon loss of the ARF-MDM2-p53 pathway in mouse models 

of MYC-driven cancers, there was a robust acceleration of tumorigenesis [59, 60]. Two 

mutant forms of MYC commonly found in Burkitt lymphoma (P57S and T58A) are unable 

to induce apoptosis owing to their failure to upregulate BIM and inhibit Bcl-2 function, 

further demonstrating how critical it is for cancer to evade MYC-driven apoptosis during 

tumorigenesis [61]. Of note, adjacent serine and proline residues are recurrently mutated 

in other histotypes as well, including endometrial salivary and gland cancers ([62]; in the 

COSMIC database T58 is annotated as T73, owing to the existence of the longer CTG 

codon-initiated MYC Isoform 2 with the Uniprot Identifier P01106–2).

While it is well established that p53 is the main effector of MYC-mediated apoptosis, 

p53-independent mechanisms have also been identified (reviewed in [47]). It has been 

often proposed that MYC exerts its pro-apoptotic function through direct modulation of 

gene transcription. Later it was found that numerous intrinsic and extrinsic apoptotic genes 

(Figure 2) are in fact direct transcriptional targets of MYC and are bound by MYC at 

their promoters. In Eμ-MYC murine lymphomas MYC activity led to the suppression of 

the anti-apoptotic proteins BCL-2 and BCL-XL [63, 64], and in melanoma MYC-driven 

transcription of NOXA, a pro-apoptotic protein in the Bcl-2 family of proteins, was observed 

[65]. One of the major pro-apoptotic proteins, Bax, is also a direct transcriptional target 

of MYC [66], although non-transcriptional regulation of Bax activity by MYC has been 

described as well [67]. Additionally, MYC has been shown to bind to and activate the 

promoters of the pro-apoptotic proteins BIM and BID and in doing so contribute to the 

priming of mitochondria to respond to apoptotic stimuli. This was observed in multiple 

models including transformed rodent fibroblasts [67, 68] and B-cell neoplasms [69, 70], but 

also pancreatic [71], and breast, ovarian, and colon [66, 72] carcinomas. MYC was also 

found to bind the promoter of mtCLIC, a pro-apoptotic mitochondrial chloride ion channel; 

when the expression of this gene was suppressed, so was MYC-driven apoptosis, suggesting 

that it is yet another player in MYC-mediated cell death [73].

In addition to amplifying intrinsic, or mitochondrial cell death pathway, MYC has also 

been found to modulate extrinsic, or death-receptor mediated cell death (Figure 2). Early 

studies demonstrated that MYC could sensitize cells to signaling though the death receptor 
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CD95/Fas [74]. MYC expression was also found to greatly sensitize cells to apoptosis 

triggered by the extrinsic ligand TRAIL [75]. Just as with intrinsic apoptosis, many 

extrinsic apoptosis genes are direct transcriptional targets of MYC. This includes genes 

like death receptor-4 (DR4) and the extrinsic ligand FasL which are both positively 

regulated by MYC, as well as CFLAR/FLIP, the negative regulator of Caspase 8, whose 

transcriptional expression is repressed by MYC [76–78]. The TRAIL receptor DR5 was 

found to be upregulated at the cell surface upon MYC activation [79, 80]. But do these 

well-established axes represent valid therapeutic targets in MYC-driven tumors? Some 

preliminary answers are beginning to emerge from studies exploiting the concept of 

synthetic lethality: perturbations that uniquely affect cells with a certain genetic background, 

in this case MYC dysregulation.

Lessons from synthetic lethality and correlative studies

Genome-wide screens have proved an invaluable tool for global assessment of MYC

synthetic lethality genes. Using shRNA, siRNA, or CRISPR pooled libraries screens, 

numerous genes and gene networks have emerged as synthetically lethal with high 

MYC expression. Some of these gene networks include components of RNA polymerase 

complexes, transcription initiation complexes, DNA repair and cell cycle checkpoint 

proteins, metabolic enzymes, and notably – components of the apoptotic pathways (reviewed 

in [81, 82]). For example, CDK1 knockdown was identified from RNAi screens to 

be synthetically lethal with MYC overexpression, and inhibiting CDK1 in MYC-driven 

lymphoma and neuroblastoma models lead to apoptosis and decreased tumor growth owing 

to dysregulation of a direct CDK1 target BIRC5 (a.k.a. survivin), one of the Inhibitor of 

Apoptosis (IAP) gene family members and a caspase 3/7 inhibitor (Figure 2) [83]. Of 

note, survivin is now considered a good drug target, with multiple compounds in clinical 

development [84].

Admittedly, many other MYC synthetic lethal genes emerging from genome-wide screens 

have no known direct connection to cell death pathways and are involved instead in a range 

of other functions ranging from cell cycle regulation (checkpoint kinase 1) to metabolism 

(glutaminase) [85]. However, there is little overlap between targets identified in independent 

screens, questioning the broad application of specific synthetic lethal targets across different 

tumor types. In contrast, targeted synthetic lethality approaches aimed at apoptotic pathways 

might be more enlightening. For example, it has long been appreciated that MYC sensitizes 

cells to apoptosis through the extrinsic death receptor Fas, and subsequently it was found 

that the expression of high MYC lead to cells being sensitized to the extrinsic ligand TRAIL 

via MYC-dependent upregulation of death receptor-5 (DR5) [79]. Another recent study 

similarly identified that while high MYC expression drives brain metastases of breast cancer, 

it also generates a synthetically lethal interaction with TRAIL [86]. Through these studies, 

the field has been able to identify unique vulnerabilities of MYC-driven cancers, many of 

which are now being pursued in the pre-clinical or clinical settings ([87] and references 

therein).

However, for the majority of tumor types, new investigational drugs targeting specific 

genetic lesions are tested in combination with standards of care [88]. Thus, the complex 
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effects of MYC on pro-survival and pro-apoptotic pathways might be particularly relevant 

in the context of chemotherapy, where MYC-directed and conventional therapies would 

need to function together. There is considerable evidence that they might. Almost 20 

years ago, it was demonstrated that in human colorectal cancers, MYC amplification 

(combined with wild type p53 expression) increases susceptibility to 5-fluorouracil in 

vivo [89]. Subsequently, sensitizing effects of MYC were observed in fibroblasts [90] 

and in a non-lymphoid hematologic malignancy with dismal outcomes: multiple myeloma 

[91]. More recently, the presence of high MYC was shown to sensitize multiple cancer 

types to anti-mitotic chemotherapy agents through upregulation of pro-apoptotic BH3 

proteins and suppression of BCL-XL [92]. Similarly, in breast cancer the anti-tumor 

activity of Bcl-2 inhibitors combined with AMPK activators was found to be dependent 

on high MYC expression [93]. In yet another study using an in vivo model of MYC

driven small cell lung cancer, tumors were sensitized to Aurora kinase inhibitors which 

synergized with chemotherapy to induce apoptosis [94]. Conversely, numerous studies on 

transformed fibroblasts, B-cell lymphoma, adrenocortical cancer and other cancer types 

have demonstrated that the loss of MYC expression confers resistance to chemotherapeutic 

drugs like doxorubicin, etoposide, and paclitaxel [68, 95–97] as well as the proteasome 

inhibitor bortezomib [98]. In fairness, there are several cell lines where inactivation of MYC 

was reported to render cells more susceptible to chemotherapy, e.g., M14 melanoma [99, 

100] and MCF-7 breast carcinoma [101]. This complexity indicates that the role of MYC 

in chemotherapy is either narrowly histotype-specific or more likely of bi-phasic nature, 

where for the tumor to withstand the onslaught of anticancer drugs MYC levels have to be 

just right: not too low, but not too high either. This latter Goldilocks scenario has broad 

translational implications.

Boosting MYC-dependent therapeutic apoptosis

The intrinsic ability of MYC to drive apoptosis is clearly insufficient to offset high cell 

proliferation rates found in most MYC-driven tumors. However, by employing strategies to 

enhance MYC-mediated apoptosis it should be possible to tip the scale in favor of cancer 

cell death and ensuing tumor regression. Sophisticated in vivo studies with finely controlled 

MYC alleles have suggested that there are thresholds for MYC activity: a modest increase 

in the level of MYC led to oncogenesis, but yet higher levels were required to trigger 

apoptosis [92, 102]. This would indicate that in the context of cancer, there could be a 

certain threshold for MYC that when surpassed, could activate cell death.

Conceptually, there are precedents for the counterintuitive overexpression of oncogenes 

as a therapeutic strategy. As early as in 1998, it was demonstrated that overexpression 

of adenovirus 5 E1A oncogene suppresses tumor growth in vivo via increased apoptosis 

[103]. This concept has been advanced to Phase I clinical studies using intratumoral 

E1A cancer gene therapy [104, 105]. Although these formulations are currently not in 

clinical development, recent studies demonstrated the validity of this approach in genetically 

engineered mouse models, where transgenically expressed E1A blocked chemical skin 

carcinogenesis [106]. However, up until recently, it remained to be determined how exactly 

the pro-apoptotic function of MYC could be re-engaged in various cancers.
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Several laboratories have reported that strengthening the CD19-PI3K-AKT axis is a reliable 

method to boost MYC protein stability in B-lymphoid cells [107–111]. This finding is 

consistent with the propensity of glycogen synthase kinase 3 beta (GSK-3β), which is 

inhibited by Akt, to phosphorylate MYC at Thr-58, marking MYC for recognition by the 

E3 ubiquitin ligase Fbxw7 and subsequent degradation [112–115] [reviewed in [116] (Figure 

1). Given that activation of the PI3K pathway is one of the most frequent alteration in 

human cancers [11, 117], and that it is a known suppressor of MYC-induced apoptosis [118, 

119]it would need to be manipulated only transiently, for example with short-lived GSK-3 

inhibitors.

Further work demonstrated that transient (90–120 min) stabilization of MYC protein 

using the GSK-3β inhibitor CHIR99021 [120] (see Table 1) is sufficient to sensitize 

therapy-resistant B-cell lymphomas to chemotherapy and direct engagers of the extrinsic 

apoptotic pathway such as TRAIL or DR4 agonistic antibodies [121] (Figure 2). Several 

lines of evidence suggest that the bulk of these sensitizing effects was MYC-dependent. 

First, inhibition of GSK-3 had no discernable effect on sensitivity to chemotherapy in 

Epstein-Barr virus-transformed B-lymphoid P493–6 cells with tet-repressible MYC alleles 

[122] when they were maintained in the MYCOFF state (with the caveat that these cells 

were also non-proliferating and potentially refractory to genotoxic stresses.) Second, in 

Burkitt lymphoma cell lines the effects of GSK3i were cancelled following JQ1–mediated 

MYC downregulation. Lastly, no chemosensitizing effects were observed in lymphoma 

cells bearing MYC Thr-58 mutations, where MYC protein levels are no longer regulated 

by GSK-3β nor transiently increased by GSK3i. Of note, while this mutation is relatively 

frequent in Burkitt’s lymphoma, it is not common in human cancers in general. For example, 

COSMIC Cancer Mutation Census estimates its frequency to be 2.3×10−3 and recurrence - 

144 (https://cancer.sanger.ac.uk/cmc/gene/myc).

Beyond B-cell malignancies, GSK-3 inhibition has been shown to induce apoptosis via 

MYC-dependent mechanisms in certain cancer types, such as KRAS-mutant pancreatic 

adenocarcinoma, neuroblastoma, and glioma even as a monotherapy [123–125]. Other 

groups demonstrated that GSK-3 inhibition can increase the sensitivity of melanoma cells 

to the extrinsic ligand TRAIL and to inhibitors of mutant BRAF [126, 127]. Although in 

these studies the authors attributed the sensitization to the activation of the Wnt pathway, 

the caveat is that MYC itself is a well-known transcriptional target of that pathway [128], 

making it difficult to invoke MYC-independent effects. Additionally, the role of GSK-3 in 

cancer is complicated by contradictory findings that this protein promotes apoptosis in some 

cell lines while inhibiting it in others. Yet recent studies by several groups provide rationale 

and supporting evidence for the therapeutic targeting of GSK-3 in cancer ([129], also [130] 

and references therein, ).

Whatever pharmacological approach one might take, timing will be of essence. Certainly, 

long-term stabilization of MYC must be avoided, not only because of its pro-growth 

properties, but also because of well documented immunosuppressive effects of MYC, for 

example via controlling PD-L1 expressing (first reported in [131]; reviewed in [132]). In 

several murine models, inhibition of MYC allowed recruitment of immune effector cells, 

which contributed to anti-tumor effects (see for instance [7]). Curiously, in yet other mouse 
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models, including the above-referenced AMPK study, pharmacological reactivation of MYC 

increased, not suppressed susceptibility to anti-PD-1 immunotherapy [93]. One possible 

explanation for this is that high levels of MYC have been documented to increase genomic 

instability [133], which at least in principle could lead to the increased expression of 

neoantigens. But regardless of the exact effects of MYC on the immune system, adaptive 

immune responses unravel slowly, within days, and are unlikely to be affected by two hour

long elevation of MYC levels, as achieved with GSK-3i [121]. In fact, one can envision a 

bi-phasic form of therapy where long-term MYC inhibition (to sustain anti-tumor responses) 

is combined with metronomic burst of short-term MYC induction scheduled to coincide with 

cycles of chemotherapy.

Repeated, “metronomic” administration of MYC agonists might also avoid another 

commonly encountered problem: that of clonal selection. First, short-term nature of MYC 

induction removes continuous pressure needed to select for MYC-resistant clones. Second, 

as drug selection often favors quiescent or dormant cells, which are inevitably characterized 

by low MYC expression, MYC agonists could reverse or at least ameliorate this unfavorable 

trend.

Concluding remarks

Work by many laboratories have shown that the ability of MYC to engage cell death 

pathways is the core feature of this oncoprotein. The pro-apoptotic activity of MYC could be 

leveraged for improved treatment outcomes even in chemoresistant tumors, if one considers 

that tumor cells require enough MYC to initiate tumorigenesis and sustain growth, but 

cannot have too much MYC, which would induce cell death. What constitutes “too much 

MYC” is likely going to be different among individual tumors, depending at least in part on 

the genetic make-up of each particular neoplasm (TP53 status, BCL2 expression, etc.) One 

can envision a simple scenario where tumors A, B, and C have already achieved their own 

maximum tolerated levels of MYC, and further increases, however small, would push them 

over the edge when combined with chemotherapy (Figure 3).

Indeed, a recent study has demonstrated that transiently increasing MYC levels immediately 

prior to chemotherapy through GSK-3β inhibition with CHIR99021 [120] improves 

apoptotic response in p53-mutated, highly chemoresistant lymphomas [121]; similar data 

exist for solid cancers such as lung adenocarcinoma as well [129]. Besides CHIR99021, 

there is a handful of GSK-3 inhibitors currently in clinical trials [134], such as tideglusib 

which has undergone trials for Alzheimer’s disease [135], and LY2090314 which is in phase 

II trials for the treatment of acute leukemia [136] and has been tested in phase I clinical trials 

in many other cancer types [137]. The potential to re-purpose the FDA approved GSK-3β 
inhibitor lithium chloride [138] makes this adjuvant therapy strategy particularly viable 

as transitioning this psychiatric drug to cancer therapy would be relatively unchallenging. 

Of note, long-term usage of lithium chloride is not correlated with an increase in cancer 

incidence and appears to be a safe adjuvant [139]. Interestingly, inhibition of GSK-3α was 

recently shown to sensitize drug-resistant leukemias to asparaginase by a mechanism at least 

partly dependent of WNT signaling, which is the upstream regulator of MYC [140] and 

relies on it for some of its key functions in several organ systems [141].
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In addition to GSK-3β, there are many other regulators of MYC protein stability that could 

be considered as therapeutic targets. Besides FBXw7, MYC is regulated by a host of E3 

ubiquitin ligases including but not limited to Skp2 [reviewed by [116]. Thus, therapeutic 

inhibition of Skp2 [142–147] and other degradation complexes could potentially be another 

way to boost MYC expression and re-engage apoptosis. Furthermore, it was recently 

discovered that CDK9, which was already known to be required for transcription of the 

MYC gene, positively regulates MYC protein stability and prevents its degradation [148]. 

Although CDK9 agonists are yet to be developed, it is clear that there are numerous avenues 

to manipulating MYC levels for therapeutic benefit.

Finally, given that much of MYC pro-apoptotic effects are realized through the extrinsic 

apoptotic pathway, one could also revisit the use of death receptor agonists as anti

cancer agents. For example, TRAIL and its analogs had undergone extensive Phase I/II 

clinical trials where they well tolerated but displayed minimal efficacy against tumors 

[149]. Similar fate befell death receptor agonist antibodies such as mapatumumab [150]; 

however, the addition of a GSK-3β inhibitor could well bring these compounds back into 

clinical relevance. More broadly speaking, re-designing MYC synthetic lethality screens to 

incorporate standards of care appears to be a highly promising approach.

In fairness, many questions pertaining to MYC stabilization therapies remain unanswered 

(see Outstanding Questions Box). Thus, the goal of this review is not to advocate for the 

immediate use of GSK3i or similar molecules in the clinic, but rather to promote further 

research on the subject in preclinical models utilizing both chemotherapeutic drugs and 

death receptor agonists.
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Outstanding Questions

• Are pro-apoptotic effects of MYC limited to certain tumor types, such as 

hematologic malignancies, or are they a hallmark of most, if not all, human 

cancers?

• What other small molecules, beyond GSK3i, could be used to hyperactivate 

MYC?

• How would tumors with stabilized MYC respond to radiation therapy?

• What effects would MYC stabilization therapy have on anti-tumor immunity 

and more specifically - on the efficacy of immune checkpoint inhibitors?

• Could tumors become resistant to MYC-and-chemotherapy-driven apoptosis?

• Could inhibitors and activators of MYC be combined into single therapeutic 

regimens to alternatily target cell proliferation and cell survival?

Highlights

• As genomic and transciptomic profiling of human cancers is becoming a 

routine diagonstic and prognostic tool, the MYC oncogene has emerged as 

a pervasive force in human cancers, whose gain-of-function alterations are 

apparent in the plurality of tumor types and specimens

• Thus, inhibitors of the MYC oncoprotein are under active development and 

show promise in model systems, but are yet to prove their utility in clinical 

settings

• On the other hand, a considerable body of evidence indicates that expressing 

too much MYC can be counterproductive for neoplastic growth, as it drives 

tumor cell apoptosis and correlates with favorable responses to chemotherapy

• Indeed, some very recent studies demonstrate that as antagonists of MYC 

degradation pathways (such as small molecule inhibitors of the GSK3 kinase) 

transiently elevate MYC levels, they confer chemosensity within that narrow 

window.
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Figure 1. MYC protein structure and regulation.
MYC protein is comprised of 5 major domains: MBI and MBII (MYC Box I and II) in the 

N-terminus, and the NLS (nuclear localization signal), bHLH and LZ domains (basic helix

loop-helix and leucine zipper) in the C-terminus. This C-terminal domain also allows MYC 

to hetero-dimerize with its binding partner Max and associate with E-box DNA sequences 

(CACGTG), which is essential for its transcriptional and transforming activity. Another box 

(MB0) has been recently identified and shown to positively control transcription elongation. 

There are also multiple protein-protein interactions, which either enhance (blue stars) or 

counteract (yellow stars) MYC function. Thus, inhibitors of CDK9 and Erk, activators of 

PP2A, and the synthetic peptide Omomyc (which disrupts MYC:MAX binding) bring about 

either reduced MYC levels or impaired MYC function. Conversely, inhibitors of GSK3 and 

E3 ligases (Fbxw7, Skp2, etc.) stabilize MYC protein levels and boost its function.
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Figure 2. Regulation of apoptosis by MYC.
MYC can promote apoptosis through both intrinsic (mitochondrial) and extrinsic (death 

receptor-mediated) mechanisms by regulating many key components of these pathways. 

Common anti-cancer drugs (e.g., chemotherapeutics) often trigger both apoptotic pathways, 

thereby increasing their reliance on MYC. Additionally, the extrinsic pathway can 

be specifically engaged by death receptor agonists or DR4-activating antibodies (e.g., 

mapatumumab).
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Figure 3. The role of MYC in development and cancer.
During normal development, MYC levels start out high and decline in aging tissues, with 

a concomitant decline in both proliferation and apoptosis (left). During the development of 

cancer, MYC levels are increased and so is neoplastic growth, which compensates for the 

increase in apoptosis and results in tumorigenesis (right). Both proliferative and apoptotic 

thresholds are not absolute and vary in individual neoplasms, resulting in inter-tumor 

heterogeneity. Here tumors A, B, and C have already achieved their own maximum tolerated 

levels of MYC, and further increases, however small, would push them over the edge when 

combined with chemotherapy.
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Table 1.

MYC-stabilizing compounds in clinical development

Inhibitor Mechanism of action Indication Stage of development References

CHIR99021 GSK-3 inhibitor various xenograft models Preclinical Harrington et al., 2019; O’Flaherty et al., 
2019

tideglusib GSK-3 inhibitor Alzheimer’s disease, 
myotonic dystrophy

Phase II completed Lovestone et al., 2015

LY2090314 GSK-3 inhibitor acute leukemia, metastatic 
solid cancers

Phase II trials Rizzieri et al., 2016; Gray et al., 2015

9-ING-41 GSK3-inhibitor pediatric and adult cancers Ongoing Phase I/II Ugolkov et al., 2018

LiCl GSK-3 inhibitor bipolar disorders FDA approved O’Brien and Klein, 2009

Compound A Skp2 inhibitor hematologic malignancies Preclinical Chen et al., 2008

C1/C2 Skp2 inhibitor soft tissue sarcoma Preclinical Wu et al., 2012; Li et al., 2020

C25 Skp2 inhibitor T-ALL, other cancers Preclinical Chan et al., 2013; Rodriguez et al., 2020

Dioscin Degradation of SKP2 colorectal carcinoma Preclinical Zhou et al., 2020
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