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Abstract Biocatalysts are a biomolecule of interest for

various biotechnological applications. Non-reusability and

poor stability of especially enzymes has always limited

their applications in large-scale processing units. Nan-

otechnology paves a way by conjugating the biocatalysts

on different matrices. It predominantly enables nanomate-

rials to overcome the limited efficacy of conventional

biocatalysts. Nanomaterial conjugated nanobiocatalyst

have enhanced catalytic properties, selectivity, and stabil-

ity. Nanotechnology extended the flexibility to engineer

biocatalysts for various innovative and predictive catalyses.

So developed nanobiocatalyst harbors remarkable proper-

ties and has potential applications in diverse biotechno-

logical sectors. This article summaries various

developments made in the area of nanobiocatalyst towards

their applications in biotechnological industries. Novel

nanobiocatalyst engineering is an area of critical impor-

tance for harnessing the biotechnological potential.
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Introduction

Biocatalysts especially enzymes are the essential compo-

nent for cellular functioning. They have been isolated from

all possible life forms and characterized for their biocat-

alytic properties. The biocatlysis trasfiormation has been

widely reported by either whole-cell or cell-free system

[1–4]. Enzymes as a cell-free system catalyze specific

reactions in ambient environmental conditions without

influencing product quality. Their particular activity,

specificity, and selectivity make them promising biocata-

lysts for numerous industrial [5–8], environmental [9, 10],

and diagnostic applications [11, 12]. Though usage of

enzymes in industrial application promotes green chem-

istry, however, their poor stability and non-reusability

enhance their operational cost in large-scale industrial

processes. Immobilization of biocatalysts, including

enzymes on the solid support, was observed as a technical

solution to resolve these issues [13–15]. Significant efforts

were made to immobilize enzymes on insoluble supports to

enhance their stability, as well as reusability. Engineering

of the immobilization supports and optimization of

immobilization chemistry paved the way towards their

recovery and reusability in large-scale industrial applica-

tions [16, 17]. The essential efforts made in the line of

development were engineering of novel immobilization

supports, optimal immobilization chemistry, and direct

immobilization of the whole cell as the enzyme source

(Table 1). Despite initial success, none of the technologies

were able to answer all the issues. At the same time,

nanotechnology has emerged as a promising material sci-

ence technology.

Nanobiocatalysts were engineered for desirable proper-

ties towards their applications in the field of energy, syn-

thesis, diagnostics, therapeutics, environmental
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management, agriculture, medicines, food processing, etc.

(Fig. 1). Cumulatively, the usage of nanotechnology has

expressed the true potential of nanobiocatalyst in biotech-

nological applications [33]. The current review enlists

various biotechnological applications of the nanobiocata-

lyst for human welfare.

Table 1 Immobilized nanobiocatalysts for biotechnological application

Enzyme Supports Immobilization

method

Application References

HjLAD and SpNox Cu metal Encapsulation L-xylulose production [18]

Cholesterol oxidase TiO2–MWCNT@Inulin

nanocomposite

Encapsulation Determination of cholesterol in spiked

blood serum and milk samples

[19]

Alcohol dehydrogenase Carboxymethyl dextran-coated

magnetic nanoparticles

Covalent Determination of ethanol [20]

Glucose dehydrogenase Silica support (MM-SBA-15) Encapsulation Gluconic acid production [21]

(S)-Mandelate

dehydrogenase (SMDH)

and laccase

Chitosan Covalent Stereoselective biotransformation of

racemic mandelic acid

[22]

Laccase rGO–Fe3O4 Adsorption Oxidation of phenolic compound [23]

Cu and Zn-metals Encapsulation Degradation of bisphenol A [24]

Cu metal Encapsulation and

cross–linking

Decolorization of synthetic dyes [25]

Fe2O3 yolk-shell Covalent 2,6-Dimethoxyphenol biosensor [26]

Fe2O3 yolk–shell Covalent and

cross-linking

Decolorization of synthetic dyes and

degradation of bisphenol A

[13]

Fe3O4 Covalent Degradation of bisphenol A [27]

Fe3O4–MWCNTs@SiO2 Covalent Decolorization of azo dyes [28]

Lipase Magnetic rice straw Adsorption and

cross-linking

Fatty esters production [29]

Fe3O4 nanoparticles coated with

3-aminopropyltriethoxysilane

Covalent Fatty acid ethyl ester production [30]

Cellulosic enzymes Fe3O4 Covalent Ethanol production [31]

a-Amylase, pectinase and

cellulase

Fe3O4 magnetic nanoparticles Cross linking Juice clarification [32]

Fig. 1 Enzyme technology for

biotechnical applications.

Enzymes or organisms could be

immobilized on the various

matrices using varied

immobilization chemistry for

diverse biotechnological

applications
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Immobilized Biocatalyst: Supports
and Characteristics

Immobilization of the enzymes on suitable supports

improves their stability as well as activity during the

transformation reactions [34–36]. A wide variety of

materials are used for the immobilization of enzymes

(Table 1). Among them, polymeric materials are well-re-

ported support matrices for the immobilization of enzymes.

In natural polymers, the most common are polysaccharides

[31, 37], and in synthetic polymers, frequently used poly-

mers are polystyrene, polyacrylate, polyacrylamide, etc.

[38]. Conducting polymers are good for enzyme immobi-

lization due to their unique properties that enhance the

efficiency of biocatalysts [38]. Other reported materials for

immobilization are carbon heterostructures [23, 39], silica

[40–43], clays, metal oxides [44], and glasses. Alginate is

also a well-reported material for immobilization [45].

Recently, hybrid organic–inorganic materials within the

size range of 1–100 nm and large surface area, functional

moieties for covalent linkage, biocompatibility, as well as

with improved catalytic properties, were proved as excel-

lent support materials for immobilization [24, 46–49].

Nanomaterials are fabricated either with top-down

approaches (Milling, laser ablation, explosion, sputtering,

etching, etc.) or bottom-up approaches (chemical reduc-

tion, spinning, sol–gel process, molecular condensation,

green synthesis, supercritical fluid synthesis, etc.[27].

These nanomaterials were characterized as nanoparticles,

nanoreefs, nanoboxes, nanofibers, nanotubes, and

nanoflowers. Enzymes are immobilized through covalent

linkage, entrapment, crosslinking, electrospinning, elec-

trodeposition, coating, adsorption, co-precipitation, etc.

Immobilization of enzymes on these nanostructures was

found to enhance enzyme performance, stability, and

reusability. These nanomaterial coupled enzymes have

been characterized as nanobiocatalyst that holds the

promising strengths of both nanotechnology and biotech-

nology (Fig. 1). Selection of the support surface or the

matrix for immobilization is decided primarily by their

biocompatibility and resistance to microbial attack. Fur-

thermore, cost, stability, hydrophobicity, surface area, and

compression behavior are also critical factors towards the

industrial utilization of the materials [34]. In comparison to

non-porous support, porous supports are more desirable.

Biocalysts, including enzymes immobilization can be

demonstrated with the help of different strategies like

covalent [50], crosslinking [25], adsorption, encapsulation,

and metal ions-based hybrid formation [48]. The strategy to

choose is also dependent upon the mechanical, chemical,

and kinetics characteristics of biocatalysts (Fig. 1).

Potential Biotechnological Applications

Environmental Remediation

Biocatalysts are applied successfully for the transformation

of micropollutants to less or nontoxic moieties. Various

prominent biocatalysts have been reported for the degra-

dation of organic contaminants including laccases, hydro-

lases, peroxidases, and oxidoreductases etc. [51].

Nanoflower-linked laccase was characterized for residual

decolorization of the synthetic dyes with an efficiency of

up to 84.6% [25]. Immobilized Pleurotus ostreatus laccase

was characterized for transformation of Bisphenol A into

nontoxic product [51]. Several microbial sources such as

fungi (Tramates versicolor, Pleurotus eryngii), bacteria

(Pseudomonas aeruginosa, Rhodococcus erythropolis), and

algae (Monoraphidium braunii, Chlamydomonas rein-

hardtii) have been concluded to have a catabolic mecha-

nism for pollutant cleanout [52]. Many organic pollutants

including phenols, 2,4,6-trinitrotoluene (TNT), nitroaro-

matic compounds, chlorophenol, dyes (malachite green,

bromophenol blue), and polychlorinated biphenyls can be

degraded using different classes of biocatalysts [52, 53].

Chemical Synthesis

A wide variety of reactions like esterification, trans-ester-

ification and chemoselective transformations are catalyzed

by biocatalysts [54]. Several industrially useful compounds

such as alkyl levulinates and glycerol carbonates can be

produced through biocatalysis. Microbial lipolytic enzymes

are well known for their capability to catalyze biotrans-

formation reactions of compounds containing ester-bonds

e.g. conversion of waste into high-energy products like

biofuel and other value-added products via energy-efficient

pathways [55–57]. Methylosinus sporium produced a

maximum methanol concentration of 6.45 mM In a

methanotrophic reactor [56]. Bioplastics like polyhydrox-

yalkanoates were obtained by biocatalysis and considered

an alternative to the non-biodegradable plastic [58].

Bacillus cereus EGU43 was characterized for its potential

to produce polyhydroxyalkanoates with an optimal output

of 195 mg PHA/l using effluent from the H2 production

stage [58].

Pharmaceuticals and Healthcare

Biocatalysis use in the pharmaceutical industry is speeding

up [59]. For this, the biocatalyst should have specificity and

good activity. Sitagliptin is one of the most popular pro-

cesses in pharmaceuticals showing the applicability of

biocatalysis [60]. Chondroitin sulfate lyase, a biocatalyst
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applied for the synthesis of chondroitin sulfate, is used in a

variety of therapeutic uses such as osteoarthritic treatment.

Statins, a big class of medicine used in the treatment of

hypercholesterolemia also works through biocatalysis [61].

Laccase, a biocatalyst used in the polymerization of phe-

nolic compounds produces compounds with enhanced

physicochemical properties and is used as nutraceuticals.

Biocatalysts are also highly applicable in the synthesis of

chiral pharmaceuticals [61].

Agriculture and Food Industry

A strong correlation exists between enzymology and agri-

cultural technology. Initially, enzymes were reported by

agricultural chemists and even many of their characteristics

were also elucidated by them. Primary sources of enzymes

are agricultural plants, animals, and microorganisms. These

biocatalysts are being widely applied in food industries

where they are employed to modify the properties of raw

products for their conversion into food [62]. Biocatalysts

regulate the appearance and texture of the food materials

which in fact influence the product value. A big family of

enzymes mainly a-amylase, b-amylase, glucoamylase,

pullulanase, and transglutaminase along with some more

enzymes are also involved in the starch industry [62].

Xylanases which are produced by different species of

Trichoderma and Aspergillus, are extremely valuable in the

baking industry to increase the bread volume, reduce

stickiness, and crumb structure [63]. The enzymes pecti-

nases, cellulases, and tannases are the most widely used

ones in the fruit juice industry [63]. Lipases are used for the

production and ripening of cheese that provides a lipolytic

flavor to the product [62, 63].

Biomass Conversion and Fuels

The major constituent of biomass is a polysaccharide

which could be bio- catalyzed to achieve fuel or fine

chemicals. Polyols, syngas, glycerol, cellulosic alcohols,

ethers, and various fatty acids are the product or by-prod-

ucts of the conversions processed through bio-catalysis

[29]. Biomasses rich in cellulose and hemicellulose are the

primary source to produce biofuels. Lignocellulosic mate-

rials like wood chips, municipal wastes, and crop residues

are also the prime sources to produce biofuels. Cellulose

catabolism proceeded through the biocatalyst can lead to

the production of fuel precursors [64]. The availability of

wastes biomass especially as biowastes in large quantum

such as from agricultural and municipal origin has been

considered as low-cost feed-stock to produce fuels [65–67].

Anaerobic digestion and fermentation are the generally

employed biochemical processes in fuels and value-added

product production from complex feed such as biomass

[4]. The fermentative process is a less energy-intensive

process for the production of H2. Although the efficiency is

not much and is mainly influenced by the feedstocks,

besides other environmental conditions. The various indi-

vidual microbial culture [68], co-culture [69], and mixed

cultures were reported for the biological hydrogen pro-

duction [70, 71]. Immobilized Methylocystis bryophila

showed an enhanced methanol production up to

52.9 mmol/L [72]. Co- or mixed cultures influence the H2

production rates synergistically. Immobilized co-culture of

Bacillus and Enterobacter was observed as an efficient H2

producer (6.4-fold improvement) than individual strain

[69]. Glycerol which is a byproduct of biodiesel production

is also found a good feedstock for the production of

hydrogen [68]. Immobilzed Bacillus thuringiensis EGU45

was characterized for an H2 yield of 0.386 mol in reference

to per mol of consumed pure glycerol [68]. Methanol is

found as a primary component in various synthesis reac-

tions and is also considered a component in gasoline

blends. Methane is a major greenhouse gas other than

carbon dioxide. So bio-conversion of methane to methanol

is not only economically important but also environment

friendly. Synthetic gas mixture (CH4, CO2, and H2) is more

efficient in comparison to CH4 for H2 production [72, 73].

Production of methanol by using biological methods is

regarded as a cost-effective method in comparison to the

chemical methods of synthesis at ambient conditions

[74, 75]. Methanotrophs which are aerobic and gram-neg-

ative bacteria successfully produce methanol by utilizing

CO2 and CH4 as carbon sources [76, 77]. The process

proceeds through a complex metabolic mechanism

involving different enzymes such as methanol dehydroge-

nase (MDH), methane monooxygenases (MMOs),

formaldehyde dehydrogenases, and formate dehydroge-

nases [78].

Analytical Chemistry

Engineered biocatalysts are efficient detectors for many

prominent biomarkers. Enzymes in the immobilized state

possess great potential to act as sensors and can detect their

respective target molecules [79]. In this process, the ana-

lyte molecule moves towards the enzyme and is converted

into a product by the catalytic action of the enzyme with a

simultaneous release of electrons. The released electron

gets transferred to the transducer through an electrode and

can be detected [79]. Materials like metal nanoparticles,

graphene materials, and carbon nanotubes have excellent

electrical and mechanical properties that provide rapid

electron transfer rates. Oxidoreductases are commonly

used in the detection of phenols [26]. Several compounds

including triglycerides, glucose, heavy metals, urea, and

catechol have been recognized by bio-sensing where lipase,
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glucose oxidase, urease, tyrosinase are the respective

enzymes involved in the processes. Bilirubin oxidase,

cholesterol oxidase, and glutamate oxidase are used for the

detection of bilirubin, cholesterol, and L-glutamate for liver

diagnosis.

Carbon Dioxide Utilization

Generally, CO2 is regarded as a pollutant that disturbs the

environment and causes the greenhouse effect. However, in

recent years it has been treated as a chemical feedstock to

produce different kinds of carbon-based materials. Among

the different strategies involved to convert CO2 into useful

compounds, bio-based materials such as microorganisms

and enzymes are of particular interest for redox reactions of

CO2. The major advantage of utilizing biocatalysts in the

CO2 conversion process is high yields and selectivity to the

generated products. In this field, dehydrogenase enzymes

are of special focus as these are especially known to

transform CO2 into carbon monoxide or hydrocarbons like

methanol [80], formate, or formaldehyde [81] where

nicotinamide adenine dinucleotide (NADH) acts as a co-

factor in the involved redox reactions. In addition to

dehydrogenases, carbonic anhydrase is also able to trans-

form CO2. In hydrogenation reactions, carbonic anhydrase

converts CO2 into bicarbonates. As already stated, sup-

ported enzymes are more stable and active as compared to

the native ones, encapsulation in gels and gel beads is a

better approach. Silica sol–gel supported dehydrogenase

enzyme can have a 90% yield in methanol production from

CO2 [82]. Polymeric sheets can also be used for the same

purpose where efficient amounts of methanol are produced

from CO2 [82].

Conclusion and Future Prospective

Catalytic selectively and specificity of enzymes make them

a potential candidate for biotechnological applications.

Conjugation of enzymes with smart nanomaterial’s have

significantly enhanced their catalytic performance and

made them suitable candidate for biotechnological appli-

cations in the area of nutraceuticals, diagnostics, drug

designing, energy, synthesis, environment management.

Despite advancement, further efforts are still required to

improve Nanocatalysts stability, biocompatibility, envi-

ronmental safety, and reusability for wider applications.
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