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Mindfulness-based interventions such as meditation have increasingly been utilized for the treatment of psychological disorders
and have been shown to be effective in the treatment of depression and relapse prevention. However, it remains largely unclear
the neural mechanism of the therapeutic effects of meditation among depressed individuals. In this study, we investigated how
body–mind relaxation meditation (BMRM) can modulate the thalamocortical functional connectivity (FC) in major depressive
disorder patients and healthy controls. In the present study, we recruited 21 medication-naive adolescents with major depressive
disorder (MDDs) and 24 matched healthy controls (HCs). We designed an audio recording to induce body–mind relaxation
meditation. Resting-state fMRI (rs-fMRI) scans were collected before and after the BMRM intervention in both groups. The
thalamus subregions were defined according to the Human Brainnetome Atlas, and functional connectivity (FC) was measured
and compared to find brain regions that were affected by the BMRM intervention. Before the BMRM intervention, MDDs showed
reduced FC of the bilateral precuneus/post cingulate cortex with the left posterior parietal thalamus and left caudal temporal
thalamus, as well as an increased FC of the left occipital thalamus with the left medial frontal cortex. Moreover, aberrant FCs in
MDDs at baseline were normalized following the BMRM intervention. After the BMRM intervention, both MDDs and HCs showed
decreased FC between the left rostral temporal thalamus and the left inferior occipital. Given the small sample used in this study,
future studies are warranted to evaluate the generalizability of these findings. Our findings suggest that BMRM is associated with
changes in thalamocortical functional connectivity in MDDs. BMRM may act by strengthening connections between the
thalamus and the default mode network, which are involved in a variety of high-level functioning, such as attention and
self-related processes.
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INTRODUCTION
A major characteristic of major depressive disorder (MDD) is
the persistence of sad mood and loss of interest or pleasure in
doing normal activities for a prolonged period of time. In
severe cases, MDD can lead to suicidal thoughts and behaviors
[1, 2]. Mindfulness meditation is a contemplative practice that
facilitates an increased engagement with the present moment
and acceptance of bodily awareness. Heightened attention has
been devoted to Mindfulness-based interventions (MBIs) in
improving psychological wellbeing, and in particular, reducing
depressive symptoms. For instance, previous studies have
demonstrated the usefulness of MBIs in alleviating depressive
symptoms and reducing the relapse rate for patients whose
depressive episode are in remission [3, 4]. Furthermore, some
studies have demonstrated the effectiveness of brief medita-
tion interventions in improving mood, cognition, and self-
regulation [5–7].

Body–mind relaxation meditation (BMRM) is a type of mind-
fulness training that has been implemented and utilized in many
studies. BMRM allows for a high awareness of bodily sensations,
engagement with breathing patterns, as well as stronger attention
paid to both internal and external stimuli [8, 9]. BMRM has been
demonstrated to be suitable for beginners and MDD patients, who
may have difficulty suddenly entering into and remaining in a
state of mindfulness.
Though there is burgeoning awareness of the benefits of

mindfulness training for MDD patients, it still remains largely
unclear the underlying mechanisms of how it works. fMRI
functional connectivity, which allows for the identification of
functional networks in the brain may provide insights into the
underlying mechanism of mindfulness training in MDD patients. It
has been used to examine the brain state-dependent activity and
is well suited for studying meditation. For this study, we collected
rs-fMRI data before and after a body–mind relaxation meditation
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induction session to examine the underlying mechanism of
mindfulness training in MDD patients. We hypothesized that after
a single brief session of guided meditation, participants would
demonstrate functional changes in the brain.
The thalamus is one of the key structures in the brain that is

changed by long-term meditation and plays an important role in
awareness, alertness, attention, and emotional response to
sensory experiences. Moreover, the thalamus has been referred
to as a relay station for the processing of all sensory signals from
various parts of the body to the cerebral cortex and then
translating the information as it passes. Given its importance, even
the smallest damage to the thalamus can negatively affect other
brain areas. In a study by Eileen Luders, there was a marked
increase of gray matter in the thalamus among individuals who
engaged in long-term meditation compared to control subjects.
This increase in the gray matter volume in the thalamus can be
attributed to the meditators’ increased sense of awareness and
focus during meditation [10]. In line with this finding, research has
indicated that larger gray matter in the thalamus can increase
positive emotions, longer-lasting emotional stability, and heigh-
tened focus in daily life [11].
Findings from numerous studies have revealed that the

thalamus plays a far more complex role in cognitive functioning
ranging from decision-making and attentiveness [12]. Further-
more, research has indicated that a dysfunction of the thalamus
plays a critical role in the pathophysiology of MDD. For instance,
depressed patients show reduced gray matter volumes in the
thalamus [13]. In addition, a meta-analysis showed that hyper-
activity of the thalamus may contribute to individuals with
depression being highly sensitive to emotional stimuli [14]. Similar
findings illustrate thalamic neurons are significantly higher in
depression patients compared to healthy controls [15, 16] and
thalamic lesions can induce depression in stroke patients [17, 18].
Furthermore, numerous structural and functional neuroimaging
studies have shown deficits in the prefrontal–thalamo–limbic and
limbic–striatal–pallidal–thalamic circuits in MDD patients [19].
Resting-state fMRI findings have shown abnormal thalamocortical
functional connectivity in MDD patients [20, 21]. Kong and
colleagues indicated a reduced parietal ROI-to-thalamus connec-
tivity trend in MDD [22]. Liu and colleagues also found that the
connectivity between the right posterior cingulate gyrus and right
thalamus were negatively correlated with depression scores in
unipolar depression [23].
Additional findings illustrate that the therapeutic effects of anti-

depressants may be achieved by the regulation of the thalamo-
cortical circuit FC. For instance, Salomons and colleagues
illustrated that thalamocortical FC predicted clinical response to
repetitive transcranial magnetic stimulation (rTMS) in MDD
patients using resting-state (rs) fMRI [24]. Also when receiving
negative valanced emotional stimulus, antidepressant medication
such as selective serotonin reuptake inhibitors (SSRIs) inhibit the
enhanced activity of the amygdala, thalamus, and other limbic
regions in MDD patients [25, 26]. Electroconvulsive therapy can
modulate the resting-state functional connectivity in the medio-
dorsal thalamus, which was associated with changes in depressive
symptoms [27]. After treating MDD patients with the antidepres-
sant escitalopram, increased long-range FCs were illustrated in the
bilateral posterior cingulate cortex/precuneus and reductions in
the right thalamus were observed in MDD patients [28].
Furthermore, the network dynamics of thalamocortical circuits
have been proposed to be a promising pathway for brain
stimulation treatment for MDD patients [22, 29]. These findings
demonstrate the critical role that the thalamus plays in MDD.
To date, most studies have mainly focused on the neuroana-

tomical distinctions of MDD patients and healthy controls, and
thus primarily examined the entire thalamus as a region of interest
(ROI) to identify thalamic connectivity abnormalities in MDD.
Nonetheless, human and animal studies have well-established

that the thalamus serves a complex and multifarious brain region
that organizes in many nuclei subserving diverse functions. Thus,
it is inadequate to study the thalamus as an entire homogeneous
structure with a unitary connectivity profile to examine its precise
locations of thalamocortical connectivity associated with MDD
neuropathology and treatment response.
In the current study, we aimed to determine whether specific

thalamocortical networks were related to MDD and explore how
BMRM experience can modulate the thalamocortical functional
connectivity (FC) in MDD patients and healthy controls. We used
rs-fMRI data to investigate the thalamocortical connectivity with
separate thalamus subregions as seed ROIs. Based on previous
reports, we hypothesized that the BMRM intervention will affect
people with MDD and healthy controls differently.

MATERIALS AND METHODS
Subjects
Participants were 45 adults (21 MDD patients and 24 Healthy Controls) of
Han Chinese ancestry. For both groups, participants were right-handed,
between the ages of 18 and 50, and reported no contradiction to undergo
an MRI scan according to a screening questionnaire. Recruited participants
had to meet the following criteria for the MDD group: (1) SCID-IV
diagnostic criteria for depression; (2) Hamilton Rating Scales for Depression
(HDRS) score >20; (3) medication naive or withdrawn for 2 weeks before
the rs-fMRI scanning and no other drug therapy; (4) no diagnoses of other
psychiatric illnesses or severe physical illness or disease course longer than
2 weeks; (5) no history of qigong practice, yoga practice, or relaxation
training. Furthermore, the criteria for the healthy controls were as follows:
(1) no psychiatric disorders or severe physical disorders and (2) no history
of qigong practice, yoga practice, or relaxation training.
The study’s protocol was approved by the Institute of Medicine Review

Board at Guang’anmen Hospital of China Academy of Chinese Medical
Sciences. And written informed consents were obtained from each
participants. Before and after the BMRM induction section, both groups
were scanned and rs-fMRI data was collected. For this study, we utilized an
adapted version of BMBR in the experiment. The BMRM induction featured
background music and a female broadcaster reading relaxing-inducing
passages in standard Chinese Mandarin. Saishangqu, a type of soft and
slow Chinese lute music, was utilized as the background music. The
induction passage included two main sessions: (1) a whole-body scanning
session and (2) a mind relaxation session. During the whole-body scanning
session, participants were instructed to bring awareness and pay attention
to every part of the body and focus their attention on their body’s physical
sensations. During the mind relaxation session, participants were
instructed to relax with statements such as “now calm your mind…
remove all your worries …”. Participants listened to the BMRM induction for
a total of 15 m and the body scanning session lasted for ~9min [30].

fMRI data acquisition
Before undergoing scanning, participants were instructed to keep their
eyes closed, remain awake, not to think about anything specific, and to
keep their heads still while in the MRI scan. MRI data were acquired on a
1.5 T GE Signal scanner using a standard GE whole-head coil. Blood oxygen
level-dependent (BOLD) signals during functional runs were obtained by
means of a T2*-weighted single-shot gradient echo-planar-imaging (EPI)
sequence with the following parameters: TR/TE= 2500/30ms; flip angle=
90°; data matrix= 64 × 64; FOV= 240 × 240mm2; slice thickness= 3mm
with inner-slice gap= 0.5 mm; the sequence duration was 370 s for each
subject, 150 time points were acquired.

fMRI data preprocessing
All preprocessing was performed using DPARSFA 2.3 (Data Processing
Assistant for Resting-State fMRI Advanced Edition, http://www.restfmri.net/
forum/DPARSF) [31], which is based on statistical parametric mapping
(SPM12, http://www.fil.ion.ucl.ac.uk/spm). The first 10 volumes were
discarded for data equilibration. The remaining images were slice-time
corrected and then realigned for head-motion correction. Subjects
whose head motion exceeded 2mm in any direction or rotation exceeded
2° were excluded from the study. Subsequentially, functional images were
spatially normalized to the Montreal Neurological Institute (MNI) EPI
template, resampled to a voxel size of 3 × 3 × 3mm3, and then smoothed
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(Gaussian kernel full-width half-maximum, 6 mm). The time series for the
whole brain were further preprocessed as follows: (1) six head-motion
parameters, the averaged signals from the CSF and white matter, and the
global brain signal were regressed; (2) to reduce the effects of low-
frequency drifts and high-frequency noise, the time series were band
filtered (0.01–0.08 Hz) and linearly detrended.

Seed-ROI functional connectivity
The bilateral thalamus subregions were defined according to the Human
Brainnetome Atlas. The Brainnetome atlas is an in vivo map based on fMRI
and dMRI, with more fine-grained functional brain subregions and detailed
anatomical and functional connection patterns for each area [32]. In this
atlas, the thalamus was subdivided into eight subregions in each
hemisphere (Fig. 1). The thalamus subregions contain the medial prefrontal
thalamus (mPFtha, roi1, and roi2), the pre-motor thalamus (mPMtha, roi3,
and roi4), the sensory thalamus (Stha, roi5, and roi6), the rostral temporal
thalamus (rTtha, roi7, and roi8), the posterior parietal thalamus (PPtha, roi9,
and roi10), the occipital thalamus (Otha, roi11, and roi12), the caudal
temporal thalamus (cTtha, roi13, and roi14), and the lateral prefrontal
thalamus (IPFtha, roi15, and roi16).
Each of the left and right thalamus subregions (roi1–16 in Fig. 1) was

defined as seed ROIs. Functional connectivity maps were produced by
computing Pearson correlation coefficients between the mean time series
of each seed region and all the other voxels within a gray matter mask.
Then, a fisher r-to-z transformation was applied to convert the correlation
coefficient to z values to improve normality. Finally, we obtained z-FC
maps of each subject for group statistics.

Statistical analysis
Statistical analyses were performed using SPSS statistics 20.0 (SPSS Inc,
Chicago, IL), SPM12 (http://www.fil.ion.ucl.ac.uk/spm), and MATLAB R2016a
(The Mathworks, Natick, MA). There were four groups of data for statistical
analysis: (1) the MDD patients’ FC maps before the BMRM (denoted as
MDD_01), (2) the MDD patients’ FC maps after the BMRM (denoted as

MDD_02), (3) the healthy controls’ FC maps before the BMRM (denoted as
HC_01), and (4) the healthy controls’ FC maps after the BMRM (denoted as
HC_02). A two-sample t-test (two-sided) was performed on the FC maps at
baseline to find aberrant FCs in MDDs before the BMRM intervention and a
partial correlation analysis was carried out to calculate association values
between the HAMD scores and the aberrant FCs, while controlling for age
and gender. To further explore the effect of BMRM on MDDs and HCs, a
two-way mixed design repeated ANOVA with a between-subjects factor of
diagnosis and a within-subjects factor of BMRM was performed using SPM
software to identify the FCs with the main effect of diagnosis, a main effect
of BMRM, and an interaction effect of diagnosis × BMRM. In the current
study, the cluster-extent-based threshold was calculated using the
Gaussian random field (GRF) method implemented in SPM. The resultant
maps were corrected by GRF with voxel p < 0.001 and cluster p < 0.05
within a gray matter mask (cluster size >1215mm3). For the FCs showing
significant BMRM and interaction effect, post hoc paired t-tests and two-
sample t-tests were applied to find how BMRM can affect FC patterns.

RESULTS
Demographics and clinical characteristics
The demographics and clinical characteristics are presented in
Table 1. The final groups (24 HCs, 21 MDDs) did not significantly
differ in age (two-sample t-test: p= 0.74) or gender (Pearson chi-
square t-test: p= 0.81).

Seed-based resting-state functional connectivity
Before the BMRM, MDDs showed reduced FC between the left
posterior parietal thalamus and the bilateral precuneus/post
cingulate cortex, reduced FC between the left caudal temporal
thalamus and the bilateral precuneus/post cingulate cortex, and
increased FC between the left occipital thalamus and the left
medial frontal cortex (Table 2). Partial correlation analysis showed

Fig. 1 The anatomical location of thalamus subregions. The thalamus subregions containing the medial prefrontal thalamus (mPFtha, roi1,
and roi2), the pre-motor thalamus (mPMtha, roi3, and roi4), the sensory thalamus (Stha, roi5, and roi6), the rostral temporal thalamus (rTtha,
roi7, and roi8), the posterior parietal thalamus (PPtha, roi9, and roi10), the occipital thalamus (Otha, roi11, and roi12), the caudal temporal
thalamus (cTtha, roi13, and roi14), and the lateral pre-frontal thalamus (IPFtha, roi15 and roi16).
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that only the positive correlation between HAMD scores and the
FC of the posterior parietal thalamus with the bilateral precuneus/
post cingulate cortex in MDD was marginally significant (r= 0.43,
p= 0.066), and it was markedly different from the corresponding
correlation in HCs (HCs: r=−0.232, p= 0.298; Fisher z= 2.136,
p= 0.034). The above aberrant FCs in MDDs at baseline were
normalized following the BMRM intervention (Table 2 and Fig. 2).
BMRM had a significant main effect on the FC between the left

rostral temporal thalamus (rTtha) and the left middle temporal
visual cortex (MT/V5)/inferior occipital cortex (iOcc). Post hoc
paired t-test found that after the BMRM intervention, the FC
between those two regions became more negative in both
groups, albeit much more significantly in the MDDs (Table 3 and
Fig. 3).
The FC between the left posterior parietal thalamus (PPtha) and

the bilateral precuneus/posterior Cingulate Gyrus (PCC) showed
an interaction of diagnosis × BMRM. At baseline, the MDD patients
exhibited significantly decreased FC between those two regions
compared with HCs. After the BMRM, a shift from negative to
positive FC in left Pptha-bilateral precuneus/PCC was found in the
MDDs, while decreased FC in left Pptha-bilateral precuneus/PCC
was observed in the HCs (Table 3 and Fig. 4). After multiple
corrections, we found no significant main effect of diagnosis.

DISCUSSION
In this paper, we examined the effects of BMRM intervention on
thalamocortical FC among MDD patients and Healthy Controls.
Our results showed a similar effect of BMRM on both MDDs and
HCs and also a specific effect of BMRM on MDD patients.
Typically, the dorsal lateral prefrontal cortex (dlPFC) and

thalamus are associated with attention control and cognitive
flexibility [13, 33, 34]. Whereas the dlPFC helps to execute tasks
that contribute to cognitive functioning, including working
memory, attention, and decision-making [35], the thalamus is
critical for enhancing and sustaining cortical connectivity. In
recent years, numerous frameworks have begun to acknowledge
the prominent role of the thalamus-frontal circuits in attention
control and cognitive flexibility [34, 36–38]. Some studies support
a negative attentional bias in depressed patients and mood states

can influence depressed individuals’ attention and overall
cognitive styles. Thus, the low mood observed in depression
may contribute to attentional impairments and attentional
impairments may in turn prolong low mood [39]. Previous studies
have shown that the dlPFC was more functionally connected to
the thalamus in MDD patients, suggesting a role of dlPFC-
thalamus FC in the pathogenesis of MDD [40–42], which was
consistent with our findings. Similarly, improved response to
repetitive transracial magnetic stimulation in MDD patients was
linked to the lower dlPFC-mediodorsal thalamus FC [24].
Furthermore, the mediodorsal thalamus has been linked to an
array of cognitive functions such as working memory, behavioral
flexibility, and goal-directed behavior [43]. Our findings of
increased FC between the occipital thalamus and the dorsolateral
prefrontal cortex in MDDs at baseline suggest negative attentional
biases due to the persistent low mood prevalent among MDD
patients.
The precuneus/PCC is widely recognized as the central core of

the default mode network (DMN) [44], which plays a critical role in
self-referential processing, self-consciousness, self-related mental
representations, and first-person perspective taking [45–47]. The
functional connectivity behaviors between the precuneus/PCC
and other cortico-limbic regions is essential to determining how
individuals perceive stimuli about themselves and process
emotional events [48]. Although the thalamus is not considered
to be a part of the DMN, the thalamus is both structurally and
functionally connected to DMN regions and is considered to be
crucial for DMN functioning [49, 50]. The thalamus receives
information from the anterior cingulate cortex and the amygdala
before transferring that information back to the cerebral cortex.
Depressive rumination is associated with abnormal FC in sgPFC-

thalamus-precuneus/PCC circuit [51–53]. Other studies have
reported that abnormal thalamus-PCC FC was related to stress
and neuroticism. It is believed that individuals who are high in
neuroticism are more vulnerable to stress and thus more
susceptible to depression. Yin and co-workers demonstrated that
the precuneus/PCC-thalamus FC is positively correlated with
semantic memory and executive speed [54]. Previous studies
have found reduced FC between the precuneus and the thalamus
in MDD patients [23, 54, 55], which was consistent with our
findings. Considering these previous findings, our study suggests
that the disengagement of the posterior parietal thalamus and the
caudal temporal from the DMN in MDDs at baseline may relate to
the general memory bias prevalent in ruminative thinking, which
largely contributes to the cognitive biases and impairments
prevalent in MDD patients. Thus, reversal of these abnormalities
by BMRM training suggests that modulating thalamus-DMN
connectivity may serve as a potential therapeutic tool for the
treatment of depressed individuals.
Furthermore, the precuneus and the thalamus have been

consistently associated with an individual’s state of awareness
[49, 56]. Although self-focus has been previously considered to
be a single, monolithic state, it actually requires attention to
either positive or negative self-aspects, of which focusing on
the negative self-aspects may be associated with depression.

Table 2. Functional connectivity showing significant differences in MDDs and HCs before BMRM.

Seed region Brain regions BA MNI coordinates Voxels T value

X Y Z

Left PPtha Bilateral precuneus/post cingulate cortex 7/31/23 −3 −66 30 89 −4.4524

Left Otha Left dorsolateral prefrontal cortex 9/6 −45 3 42 54 5.1487

Left cTtha Bilateral precuneus/post cingulate cortex 7/31 −3 −66 30 47 −4.7954

BMRM body–mind relaxation meditation, PPtha posterior parietal thalamus, Otha occipital thalamus, cTtha caudal temporal thalamus, BA Brodmann area, MNI
Montreal Neurological Institute.

Table 1. Group demographics and clinical measures.

MDD patients Healthy
controls

p value

Age, year (mean ±
SD)

36.05 ± 9.18 35.21 ± 7.92 0.74a

HAMD (mean ± SD) 30.48 ± 5.86 2.00 ± 2.02 <0.001a

Gender (female/
male)

16/5 19/5 0.811b

SD standard deviation, HAMD Hamilton Depression Rating Scale.
aIndicates p values for two-sample t-test.
bIndicates p values for Pearson chi2 t-test.
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Given that meditation training focuses on dealing with the present
moment and increases attention to internal or external stimuli, our
findings suggest that the negative rs-FC between the precuneus/
PCC and the posterior parietal thalamus after the BMRM interven-
tion in healthy controls may shift focus from relating sensory events
to interoceptive awareness, which grounds participants to directly
experience the present moment [57, 58].

New findings suggest that the anterior thalamic maybe
involved in learning, episodic memory, as well as alertness
modulation [59, 60]. Furthermore, the middle temporal
visual cortex (MT or V5) is thought to be important in visual
motion perception. On the contrary, evidence indicates that
it may play a major role in attention control and imagery
training [61, 62]. In conscious human subjects, electrical

Table 3. Functional connectivity showing significant differences in 2 groups (MDD/HC) × 2 conditions (before BMRM/after BMRM) repeated
measure ANOVA.

Seed region FC sig. region BA MNI coordinates Voxels F value

X Y Z

Main effect of diagnosis

No significant FC

Main effect of BMRM

Left rTtha Left V5/MT+/inferior occipital gyrus 37/19 −45 −78 −3 47 20.3317

Interaction effect of diagnosis × BMRM

Left PPtha Bilateral precuneus/post cingulate cortex 7/23 6 −54 27 78 21.4796

BMRM body–mind relaxation meditation, ANOVA analysis of variance, FC functional connectivity, rTtha rostral temporal thalamus x; PPtha posterior parietal
thalamus, BA Brodmann area, MNI Montreal Neurological Institute.

Fig. 2 Functional connectivity showing significant differences in MDDs and HCs before BMRM. A Functional connectivity between the left
posterior parietal thalamus (PPTha) and the bilateral precuneus/post cingulate cortex (Pcun/PCC) and its correlation with HAMD in HCs and
MDDs. B Functional connectivity between the left occipital thalamus (oTha) and the left dorsolateral prefrontal cortex (dlPFC). C Functional
connectivity between the left caudal temporal thalamus (cTha) and the bilateral precuneus/post cingulate cortex. HAMD Hamilton Depression
Rating Scale, HC healthy control group, MDD major depressive disorder. *0.01 ≤ p < 0.05, **0.001 ≤ p < 0.01, ***p < 0.001.
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stimulation of cortical area MT is used to elicit reproducible
illusory motion [63].
Zou and colleagues conducted a fMRI study with varying

resting-state conditions (e.g., eyes open, eyes closed) to investi-
gate the connection of the natural brain activity between the
thalamus and the visual cortex. Their findings illustrated that in
the eyes-closed condition, the whole thalamus showed a negative
correlation with the visual cortex, which became less negative in
eyes open condition [64]. Similarly, Hampson and colleagues
found that there was a strong negative functional correlation
between the V5/MT and the thalamus in the eyes-closed resting-
state condition and the functional connectivity was significantly
less negative when participants viewed continuous motion [65].
Other studies suggest that the thalamus and visual areas are

crucial regions associated with electroencephalography (EEG)
alpha power [66, 67]. For instance, by studying the relationship
between the spontaneous variations of the alpha rhythm and the
BOLD signals, researchers found that the alpha power was
positively correlated with BOLD signal in the thalamus and
negatively correlated with BOLD signal in the visual cortex
[64, 68–71]. The alpha rhythm serves as a regulatory mechanism
for information flow through the mind and is a sign of deep
relaxation. It has been associated with alleviating stress, anxiety,
discomfort, and pain [72]. The amount of Alpha waves is increased
when our mind relaxes from any intentional or goal-oriented tasks.
Some studies suggest that mindfulness meditation could regulate
alpha rhythm in the cortex [73–75]. Although it is assumed that

alpha rhythm originates from the occipital lobe, more recent
papers have demonstrated that alpha rhythm may originate from
the thalamus [76]. In our study, we found that the functional
connectivity of rTtha-V5/MT was negative after the BMRM
intervention in both groups, which suggests that body–mind
relaxation meditation might play a role in the generation and
modulation of the alpha rhythm in participants.
Nonetheless, some studies have indicated that the thalamo-

visual cortex networks contribute to selective attention [77, 78],
which allows individuals to focus and attend to relevant
information in the environment and simultaneously tune out
irrelevant information. Brain oscillations are important for sensory
cognitive processes and integrate and process the entire brain
with sensory information, and this information is sent to the
thalamus, which consequentially allows for the experience of
mindfulness. As a result, the practice of body–mind relaxation
meditation may help individuals increase bodily awareness and
recognition of its sensations, as well as improve interoceptive
awareness skills [79, 80].

Limitations
There were several limitations in our study. First, our sample was
relatively small. Moreover, we investigated only the brain resting-
state functional network connectivity. Ideally, studies that gather
both behavioral and resting-state functional connectivity data
from the same participants might be helpful to further validate
our study’s findings. Furthermore, the parcellation scheme and the

Fig. 3 Main effect of BMRM. BMRM had the same effect on the healthy controls and MDD patients in the functional connectivity between the
left rostral temporal thalamus (rTtha) and the left V5/MT+/inferior occipital gyrus (iOccG). Decreased FC values were observed after the BMRM
in both groups. BMRM body-mind relaxation meditation, L left, R right. *0.01 ≤ p < 0.05, **0.001 ≤ p ≤ 0.01, ***p < 0.001.

Fig. 4 Interaction effect of Diagnosis × BMRM. BMRM had the different effect on the healthy controls and MDD patients in the functional
connectivity between the left posterior parietal thalamus (PPTha) and the bilateral precuneus/posterior Cingulate Gyrus (PCun/PCC). After
the BMRM, the MDD patients demonstrated significantly increased FC in left Pptha-bilateral PCun/PCC (turn from negative FC into positive
FC), while the HCs demonstrated decreased FC in left PPTha-bilateral PCun/PCC. BMRM body–mind relaxation meditation, L left, R right.
*0.01 ≤ p < 0.05, **0.001 ≤ p < 0.01, ***p < 0.00.
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potential inter-individual variability of the thalamus subregions
might also influence our results. Finally, the current findings
suggest that modulating thalamus-DMN connectivity may be a
potential therapeutic mechanism for body–mind relaxation
meditation in MDD patients; however, this remains only a
hypothesis. Further studies conducted with larger cohorts using
multimodal data are warranted to further validate our results.
In conclusion, we investigated resting-state connectivity using

functional magnetic resonance imaging before and after
body–mind relaxation meditation in major depressive disorder
patients and healthy controls. Our results illustrated that before
the BMRM intervention, MDDs showed reduced FC between the
left posterior parietal thalamus and the bilateral precuneus/post
cingulate cortex, reduced FC between the left caudal temporal
thalamus and the bilateral precuneus/post cingulate cortex, and
increased FC between the left occipital thalamus and the left
medial frontal cortex. In addition, we found that the functional
connectivity between the left rostral temporal thalamus and the
left middle temporal visual cortex (MT/V5) /inferior occipital cortex
became more negative in both groups after the BMRM interven-
tion; which has been indicated to be important in the generation
and modulation of the EEG alpha rhythm. In addition, aberrant
thalamo-precuneus/PCC functional connectivity in MDDs was
normalized following the BMRM intervention, possibly implicating
meditation-induced changes of the default mode network. Taken
together, our results advance the knowledge of the influence of
body–mind relaxation meditation in healthy individuals and those
with major depressive disorder.
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