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Abstract

Background: As countries make progress towards HIV epidemic control, there is increasing need to identify finer
geographic areas to target HIV interventions. We mapped geographic clusters of new HIV diagnoses, and described
factors associated with HIV-positive diagnosis, in order to inform targeting of HIV interventions to finer geographic
areas and sub-populations.

Methods: We analyzed data for clients aged > 15 years who received home-based HIV testing as part of a routine
public health program between May 2016 and July 2017 in Siaya County, western Kenya. Geospatial analysis using
Kulldorff's spatial scan statistic was used to detect geographic clusters (radius < 5 kilometers) of new HIV diagnoses.
Factors associated with new HIV diagnosis were assessed in a spatially-integrated Bayesian hierarchical model.

Results: Of 268,153 clients with HIV test results, 2906 (1.1%) were diagnosed HIV-positive. We found spatial variation
in the distribution of new HIV diagnoses, and identified nine clusters in which the number of new HIV diagnoses
was significantly (1.56 to 2.64 times) higher than expected. Sub-populations with significantly higher HIV-positive
yield identified in the multivariable spatially-integrated Bayesian model included: clients aged 20-24 years [adjusted
relative risk (@RR) 3.45, 95% Bayesian Credible Intervals (Cl) 2.85-4.20], 25-35 years (aRR 4.76, 95% (| 3.92-5.81)

and > 35 years (aRR 2.44, 95% Cl 1.99-3.00); those in polygamous marriage (aRR 1.84, 95% ClI 1.55-2.16), or
separated/divorced (aRR 3.36, 95% Cl 2.72-4.08); and clients who reported having never been tested for HIV (aRR
2.35,95% Cl 2.02-2.72), or having been tested > 12 months ago (@RR 1.53, 95% Cl 1.41-1.66).

Conclusion: Our study used routine public health program data to identify granular geographic clusters of higher
new HIV diagnoses, and sub-populations with higher HIV-positive yield in the setting of a generalized HIV epidemic.
In order to target HIV testing and prevention interventions to finer granular geographic areas for maximal
epidemiologic impact, integrating geospatial analysis into routine public health programs can be useful.
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Background

In 2017, the eastern and southern Africa region had an
estimated 800,000 new HIV infections, accounting for
44% of all new infections worldwide [1]. Reducing new
HIV infections is essential for HIV epidemic control [2].
Interventions to prevent transmission of HIV include
biomedical (e.g. antiretroviral drug use, medical male
circumcision, condom use), behavioral (reducing risky
behaviors) and structural (policy formulation and guide-
lines). Initiation of antiretroviral therapy (ART) at, or
soon after, HIV diagnosis, and sustained viral suppres-
sion, substantially reduces HIV transmission [3, 4] and
HIV-related morbidity and mortality [5]. In 2014, the
Joint United Nations Programme on HIV/AIDS
(UNAIDS) set ambitious global targets towards achiev-
ing HIV epidemic control, recommending programs aim
for 90% of people living with HIV (PLHIV) to know
their HIV status, 90% of people with diagnosed HIV in-
fection to receive sustained ART, and 90% of people re-
ceiving ART to achieve viral suppression [6].

In 2017, Kenya had an estimated HIV prevalence of
4.8% among individuals aged 15—49 years, and approxi-
mately 52,800 new HIV infections. Nationally, with 1.12
million of the estimated 1.5 million PLHIV accessing
ART, the country had achieved a population ART cover-
age of 75% [7]. Of Kenya’s 47 counties, Siaya had the
highest HIV prevalence of 21%, with an estimated
123,000 PLHIV, and 4000 new HIV infections [7]. As of
September 2017, the county had a population ART
coverage of 71% [7]. In order to accelerate progress to-
wards HIV epidemic control, programs in Siaya intensi-
fied implementation of multiple county-wide HIV
prevention interventions and testing approaches, includ-
ing community home-based HIV testing.

In many countries with generalized HIV epidemics, in-
terventions and resource allocation are planned and tar-
geted to large geographic units (primarily county-level in
Kenya). As more PLHIV access HIV services, interven-
tions need to reach a diminishing number of people.
Strategies to effectively target the delivery of HIV ser-
vices, including HIV testing, to finer geographic units
and sub-populations, are therefore needed, to improve
program efficiency.

Geospatial analysis and mapping have been used to
demonstrate geospatial clustering (i.e. “micro-epi-
demics”) of HIV infection around geographic, social or
behavioral risk factors [8-11]; describe geographic clus-
tering of incident HIV infections [12]; demonstrate
within-country variability in the decline of HIV preva-
lence [13]; describe geographic variability in prevention
of mother to child transmission program achievements
[14] and variability in HIV testing access [15]; and to
guide targeted implementation of HIV testing interven-
tions [16, 17]. Furthermore, multiple studies have
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described ways to prioritize HIV interventions to specific
geographic areas, including areas with higher HIV preva-
lence [11, 18], higher HIV incidence [18, 19], and fo-
cused prioritization based on local epidemiologic
context [20]. Despite the potential utility of geospatial
analysis of routine HIV testing program data to map
finer geographic clusters of higher new HIV diagnoses in
order to inform targeting of HIV testing and prevention
interventions, limited studies have been conducted on
this. One study done in Kenya used 2015/2016 facility-
level HIV testing data to describe the spatial distribution
of newly diagnosed HIV-positive persons across counties
with differing HIV burden [21].

This study uses data from home-based HIV testing
conducted as part of a routine public health program in
Siaya County, western Kenya. We use geospatial analysis
to assess and map granular geographic clusters of new
HIV diagnoses, and a spatially-integrated Bayesian hier-
archical model to describe factors associated with new
HIV diagnoses in order to inform targeting of HIV inter-
ventions to finer geographic areas and sub-populations.

Methods

Study area, design and setting

This study uses data from home-based HIV testing of-
fered as part of a routine public health program in Siaya
County. Home-based testing was supported by the
United States President’s Emergency Plan for AIDS Re-
lief (PEPFAR) through the United States Centers for Dis-
ease Control and Prevention (CDC), under the Impact
Research and Development Organization cooperative
agreement.

Siaya County borders Lake Victoria in western Kenya.
The population is predominantly rural, and includes
fishing communities living along the lake’s beaches. Ad-
ministratively, the county consists of six sub-counties,
which are subdivided into 30 wards, and further into 179
sub-locations, and 2285 villages. In 2016 and 2017 inten-
sified routine HIV testing was implemented in Siaya
County, and included biannual testing offered to fishing
communities living along the beaches, and home-based
testing offered to inland residents of the county.

For home-based HIV testing, all households in the in-
land geographic areas were visited to enumerate occu-
pants and assess their eligibility for HIV testing.
Household occupants were enumerated if they would be
resident in the household for one or more months fol-
lowing enumeration. Clients aged > 15 years were eligible
for HIV testing if they reported having never been tested
for HIV; reported a negative HIV test done more than 3
months ago; had signs, symptoms or a diagnosis of tu-
berculosis, or a sexually transmitted infection; or re-
ported a recent (within 3 months) HIV exposure such as
unprotected sex with a partner of unknown or positive
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HIV status. Children aged 14 years and below were eli-
gible for testing if their biological mother was known to
be HIV infected or deceased. Within 1 month of enu-
meration, trained lay counselors offered pre-test coun-
seling, HIV testing and post-test counseling to those
eligible. Counselors made up to three follow-up visits to
offer testing to those not found at home. HIV testing
was offered according to the 2015 Kenya HIV testing
guidelines [22] using Determine™ [23] and First Re-
sponse® [24] rapid point of care kits." An individual was
considered HIV-negative (uninfected) if the Determine
test result was negative (considered a conclusive negative
result), HIV-positive (infected) if both the Determine
and First Response serial tests results were positive (con-
sidered a conclusive positive result), and inconclusive if
the Determine test was positive and First Response test
was negative. Clients with inconclusive HIV test results
were referred to a health facility for follow-up testing ac-
cording to Kenya Ministry of Health guidelines.

We retrospectively analyzed data for clients aged > 15
years who received routine home-based HIV testing in
Siaya County from May 2016 to July 2017. Home-based
testing data for children aged <15 years, and data col-
lected as part of biannual HIV testing of fishing commu-
nities were excluded from the analysis. Data were
spatially analyzed at sub-location level; sub-locations in
which all, or more than half of households were enumer-
ated, were included in the analysis. Out of the 179 sub-
locations in the county, data from 161 sub-locations met
criteria for inclusion (156 sub-locations in which all
households were enumerated, and 5 in which >50% of
households were enumerated).

Data management

Routine home-based HIV testing data collected included
sociodemographic characteristics: age, sex, marital status
and relationship to household head; sub-county, ward,
sub-location and village of residence; and HIV test eligi-
bility criteria and test results. Data collected were manu-
ally recorded on standardized enumeration forms and
Ministry of Health HIV testing registers by lay coun-
selors. At a central (office) location, data clerks reviewed
the data for completeness and accuracy, and entered it
into a secure password-protected Microsoft Access
database.

For this study, routinely collected data were stripped
all identifiers (names and unique patient numbers) and
each record assigned a new study-specific identification
number. The analytic dataset was saved in a secure
password-protected database.

"From the manufacturer’s package insert, Determine™ has a sensitivity
of 100% and specificity of 99.8%; while First Response® has a sensitivity
of 100% and specificity of 99.5%.
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Data analysis

Frequencies, proportions, medians and interquartile
ranges were calculated to summarize the data. The pro-
portion of new HIV-positive clients (new HIV-positive
yield) was defined as the total number of clients newly
identified HIV-positive among those with a conclusive
test result. The proportion of total HIV-positive clients
was calculated as the sum of new HIV-positive and
previously-identified HIV-infected clients among those
assessed for HIV test eligibility.

Spatial data analysis

For spatial analysis, client data were aggregated to the
sub-location where they were tested for HIV, and sub-
location-level geographic units used for analysis and
mapping. Village-level analysis was not possible owing to
small numbers and lack of household-level point
coordinates.

a) Global Moran'’s | statistic

The Global Moran’s I statistic was computed using
GeoDa software tool version 1.12.1.131 [25, 26] in order
to assess the presence of spatial autocorrelation of new
HIV diagnoses at sub-location level. A significant posi-
tive autocorrelation indicates the existence of either
high-value or low-value clustering, while a negative
autocorrelation indicates a tendency toward the juxta-
position of high values next to low values.

b) Kulldorff’s spatial scan statistic

The Kulldorff's spatial scan statistic [27] was imple-
mented using SaTScan™ version 9.6 [28] to detect spatial
clusters of new HIV diagnoses. Since the proportion of
clients newly diagnosed HIV-positive was low, a discrete
Poisson probability model was used for scanning. SaTS-
can™ software cyclically scans a window across space,
calculating the number of observed and expected cases
inside the window at each location, and adjusting for
spatial inhomogeneity of the background population.
The window with the maximum likelihood estimate is
considered to be the most likely cluster, rejecting the
null hypothesis of no clusters at p value < 0.05. For our
study, the Kulldorff spatial cluster detection looped over
all of the 161 sub-locations included in the analysis. We
used a maximum spatial cluster size radius of five kilo-
meters (km) in order to inform HIV program implemen-
tation meaningfully at a granular sub-location level.
Because Siaya County has a generalized epidemic, and it
was not possible to segregate the population proportion
at higher risk, we assumed 50% of the total population
were at risk of HIV-infection (excluding PLHIV with
previously known HIV status) [29]. The maximum num-
ber of standard Monte Carlo replications was set to 999.
Significant clusters were reported together with
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corresponding radii, number of observed and expected
cases, relative risk, likelihood ratio and p-values. Clusters
with a relative risk of > 1.0 at p value < 0.05 were consid-
ered significant clusters of higher new HIV diagnoses;
while those with a relative risk of < 1.0 at p value < 0.05
were considered significant clusters of lower new HIV
diagnoses. A standard Geographical Information System
(GIS) program, Quantum GIS version 3.6 [30], was used
to map clusters and layer them over ecological features.

¢) Mapping of HIV testing uptake

To describe patterns of HIV testing uptake, quantiles of
testing uptake were mapped and overlaid on sub-
location clusters of new HIV diagnoses.

d) Bayesian hierarchical spatial model

We used a Bayesian hierarchical spatial model to assess
the relationship between new HIV diagnosis and covari-
ates while accounting for spatial autocorrelation in the
data. A Bayesian estimation based on an Integrated
Nested Laplace approximation (INLA) was computed
using R-INLA package [31]. In a Bayesian framework
random effects are unknown quantities assigned to prior
distributions that reflect prior knowledge on the struc-
ture of the effects, while enabling accounting for hetero-
geneity across spatial units. We applied a Bayesian
approach to client-level and spatial parameters, separ-
ately and jointly.

The outcome in our analysis was new HIV-positive
diagnosis. The covariates: age, sex, marital status, time
since last HIV test and sub-location proportion of total
HIV-positive clients, were included in the Bayesian
spatial model.

We let Y, denote the number of new HIV-positive
individuals diagnosed among the 7, tested for HIV in
the i-th sub-location for the j-th age category, k-th sex,
[-th marital status and m-th time since last HIV test. We
assumed that Yjjy, is a Poisson random variable with
mean Eijklmgijklm' That iS, Yijklm"’POiSSO”l(Eijklmeijklm):
where Ejyy,, denotes the expected number of cases and
Ojjkim is the “true” but unknown relative risk in the i-th
sub-location for the j-th age category, k-th sex, /-th
marital status and m-th time since last HIV test.

We used the Besag-York-Mollié (BYM) model [32, 33]
of the form:

log(ﬂijklm) = Bo + XijimPB + ;i + vi

where f3, is the intercept that represents the overall log-

odds of a new HIV-positive diagnosis; B is a vector of

parameters associated with the vector of covariate Xjjq,;

u; is a spatial structured component modeled with a

conditional autoregressive (CAR) distribution u; | u_;

~ N(ﬁ(gi,}j—i), where s, = ns, ™! Z u; 8; and ns, repre-
jedi
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sent the set of neighbors and the number of neighbors
of sublocation i respectively; and v; is an unstructured
spatial effect defined as v; ~ N(0,02). The Besag York
Mollié Poisson model [32] includes an ordinary random-
effects component for non-spatial heterogeneity.

The posterior distributions of the parameters in the
Bayesian spatial model were estimated via an Integrated
Nested Laplace Approximation (INLA) approach in R
statistical package, borrowing strength across subloca-
tions to produce smoothed sublocation level estimates
even where the data were sparse. Full list of the latent
models, likelihoods and prior assumptions can be found
in the R-INLA website at http://www.r-inla.org/ [31].

Unadjusted relative risk (uRR) and 95% Bayesian
credible intervals (CIs) were computed to describe
univariate associations. A multivariable Bayesian
spatial Poisson model was used to assess the perform-
ance of four non-spatial and spatial models: fixed ef-
fects only, fixed effects in a spatially unstructured
model, fixed effects in a spatially structured model,
and fixed effects in a convolution unstructured and
structured spatial random effects model. The convolu-
tion model, additionally allows for both spatially
structured and unstructured heterogeneity in one
model [34]. We reported measures of adjusted relative
risk (aRR), 95% Bayesian Cls, precision of the spatially
unstructured and structured random effect model,
and the deviance information criterion (smaller values
indicating better model performance).

Random effects maps of residual variability of new
HIV diagnoses, not accounted for by the explanatory
variables, were generated from the convolution Bayes-
ian Poisson model, and mapped using ggplot2 R
package [35]. These included unstructured random ef-
fects maps, showing variability when spatial autocor-
relation was not taken into account, and structured
random effects maps, when spatial autocorrelation
was accounted for.

The Bayesian approach allows the posterior probability
of any area’s relative risk exceeding a threshold to be cal-
culated. A threshold of 1.25 was used in our analysis;
noting that it would have been possible to use a different
threshold > 1.0 (denoting an area’s higher relative risk).
This probability is an important tool for the assessment
of unusual elevated risk of disease [36, 37]. From the

posterior marginals of the relative risk, é,»/klm = exp(/S’0
+X i,/(lm[} + u; +v;), the exceedance probability was cal-
culated and is defined as Pr(6 > 6) = > 1(6¢) > 6"

), where G is the sampler sample size. Wherever this
probability is high there is evidence that the excess risk
is not only high, but significantly high.
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Results

From the 161 Siaya administrative sub-locations in-
cluded in the analysis, 365,798 clients aged > 15 years
from 136,607 households were enumerated for home-
based HIV testing (Fig. 1). Among those enumerated,
136,607 (37%) were household-heads, 80,161 (22%) were
spouses, 110,255 (30%) were children aged > 15 years,
and 38,775 (11%) were other relatives/non-relatives
(Table 1). Overall, those enumerated had a median age
of 30years (interquartile range 20-47years), and
203,170 (56%) were women.

Of the total clients enumerated, 355,277 (97%) were
assessed for HIV testing eligibility, and 312,223 (88%)
were eligible for testing (Fig. 1, Table 1). Among those
eligible, 268,543 (86%) were tested for HIV, and 2906
(1.1%) of 268,153 clients with conclusive HIV test results
were diagnosed HIV-positive. The new HIV positive
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yield by different characteristics is shown in Table 1 and
supplemental Fig. S1. The reasons for not testing among
eligible clients are shown in Fig. 1.

The 161 sub-locations had a median HIV testing
uptake among eligible clients of 87% (interquartile
range 82-91%), a median new HIV-positive yield of
1.1% (interquartile range 0.8-1.5%), and a median
proportion of total HIV-positive clients of 9.1% (inter-
quartile range 7.6-10.4%), (Table 1). Maps showing
the sub-location distribution of new HIV-positive
yield, proportion of total HIV-positive clients, and the
distribution of different client characteristics are
shown in supplemental Fig. S2.

Spatial clusters of new HIV diagnoses
Sub-location level Moran’s I analysis yielded an index of
0.2925 (p value <0.001), indicating the presence of

Clients >15 years of age enumerated
=365,798

Eligibility for HIV testing assessed =
355,277 (97%)

Eligibility for HIV testing not assessed =
10,521 (3%)

Declined = 2,617

Not found at home = 7,525

Relocated =110

Mentally challenged/advanced age® = 130
Referred elsewhere for testing® = 139

A
Eligible for HIV testing =
312,223 (88%)

\ 4

Not eligible for HIV testing = 43,054 (12%)

e Previously diagnosed HIV-positive and
enrolled in care = 27,833
Tested recently® = 14,206

Other reasons? = 1,015

A

Tested for HIV = 268,543 (86%)

Not tested for HIV = 43,680 (14%)

Declined = 5,931

Not found at home = 32,852
Relocated = 289

Other reasons? = 4,608

A

With conclusive (positive or negative)
HIV test results = 268,153 (99.9%)

[
v

v

Inconclusive HIV test results® = 390 (0.1%)

HIV-positive® =
2,906 (1.1%)

HIV-negative® =
265,247 (98.9%)

Fig. 1 Flowchart of clients receiving home-based HIV testing, Siaya County, May 2016-July 2017. *Advanced age referred to elderly clients who
were unable to comprehend HIV testing due to their diminished mental capacity related to old age. PClients 15-24 years of age in selected sub-
locations were referred to another program offering testing for young people. “Self-reported tested recently within the prior 3 months. “Details of
other reasons not given. “An individual was considered HIV-negative (uninfected) if the Determine test result was negative (considered a
conclusive negative result), HIV-positive (infected) if both the Determine and First Response serial tests results were positive (considered a
conclusive positive result), and inconclusive if the Determine test was positive and First Response test was negative
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Table 1 Characteristics of clients aged > 15 years offered home-based HIV testing in Siaya County

Enumerated, Eligibility Eligible for HIV Tested for HIV, With conclusive test HIV-positive,
n (%) assessed, n (%) testing, n (%) n (%) results, n n (%)

Total clients 365,798 (100%) 355,277 (97%) 312,223 (88%) 268,543 (86%) 268,153 2906 (1.1%)°
Relationship to household head

Household head® 136,607 (37%) 132,622 (37%) 111,024 (36%) 94,506 (35%) 94,349 1432 (1.5%)

Spouse 80,161 (22%) 78,756 (22%) 66,124 (21%) 60,660 (23%) 60,545 848 (1.4%)

Children > 15 years 110,255 (30%) 105,999 (30%) 99,144 (32%) 80,781 (30%) 80,698 345 (0.4%)

Relatives & non-relatives 38,775 (11%) 37,900 (11) 35,931 (11%) 32,596 (12%) 32,561 281 (0.9%)

Age (median, 30 (20, 47) 30 (20, 47) 28 (19, 46) 28 (19, 47)

interquartile  range)
Age group (years)

15-19 88,758 (24%) 85813 (24%) 81,979 (26%) 69,651 (26%) 69,580 166 (0.2%)

20-24 52,952 (14%) 51,579 (14%) 47,722 (15%) 41,738 (16%) 41,682 442 (1.1%)

25-35 82,771 (23%) 80,349 (23%) 67,381 (22%) 57,238 (21%) 57,138 1096 (1.9%)

>35 141,317 (39%) 137,536 (39%) 115,141 (37%) 99,916 (37%) 99,753 1202 (1.2%)
Sex

Men 162,628 (44%) 156,410 (44%) 141,011 (45%) 114,349 (43%) 114,187 1123 (1.0%)

Women 203,170 (56%) 198,867 (56%) 171,212 (55%) 154,194 (57%) 153,966 1783 (1.2%)
Marital status®

Single 102,988 (38%) 102,887 442 (0.4%)

Married monogamous 131,034 (49%) 130,802 1844 (1.4%)

Married polygamous 6284 (2%) 6275 154 (2.5%)

Separated/divorced 1917 (1%) 1913 100 (5.2%)

Widow/widower 26,317 (10%) 26,273 363 (1.4%)
Time since last HIV test®

<3 months 2521 (1%) 2516 32 (1.3%)

3-12 months 183,854 (69%) 183,606 1711 (0.9%)

> 12 months 64,870 (24%) 64,761 951 (1.5%)

Never tested 17,298 (6%) 17,270 212 (1.2%)

“In addition to the new diagnoses of 2906, a total of 27,833 previously diagnosed HIV-positive clients were identified; the proportion of total HIV-positive clients

was 8.7% among those whose eligibility was assessed

PAmong household heads, 81,599 (60%) were men and 55,008 (40%) women
“These variables were collected only for clients tested for HIV

Abbreviation: n, number

significant spatial autocorrelation of new HIV diagnoses.
Nine significant sub-location clusters of higher new HIV
diagnoses were identified (Fig. 2, Table 2) with cluster
relative risk ranging from 1.56 to 2.64, and radius ran-
ging from 3.15 to 4.91km. Seven of the nine clusters
were located centrally in the area around, and stretching
eastward and westward of Ndere town; one cluster was
in the area around Ndori town, where four major roads
intersect; and another was located in the south, adjacent
to Lake Victoria (Fig. 2). The sub-location cluster with
the highest relative risk of 2.64 was located north-east of
Ngiya town in a predominantly rural area. Significant
clusters of lower new HIV diagnoses were located in the
south-eastern part of the county (Fig. 2, Table 2), the
area around and stretching southward of Yala town; the

area south-east of Ngiya town; and the area adjacent to
Lake Victoria, and stretching north, west and south-west
of Asembo town. Major roads passed through areas with
clusters of higher and lower new HIV diagnoses.

Sub-location patterns of HIV testing uptake

HIV testing uptake at sub-location level overlaid with
clusters of new HIV diagnoses is shown in Fig. 3. The
majority of sub-locations in clusters with higher new
HIV diagnoses had high (>87%) HIV testing uptake,
with exceptions observed in sub-locations located south-
east of Luhano town; north, north-east, and east of
Ngiya town; and west of Ndori town, which all had HIV
testing uptake < 82%.
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Fig. 2 Sub-location clusters of new HIV diagnoses from home-based HIV testing in Siaya County. Spatial clusters of new HIV diagnoses were
detected using the Kulldorff's spatial scan statistic, implemented using SaTScan™ version 9.6 (http://www.satscan.org). Spatial clusters were
mapped and layered over ecological features using a standard Geographical Information System (GIS) program, Quantum GIS version 3.6 (http://
qgis.org). Shown in red circles are sub-location clusters of higher new HIV diagnoses with a relative risk of > 1.0 at p value< 0.05, and in blue
circles sub-location clusters of lower new HIV diagnoses with a relative risk of < 1.0 at p value< 0.05. The boundary information for sub-locations
in Siaya was obtained as shapefiles from DIVA-GIS (https://www.diva-gis.org/gdata)

Major roads
[ Lakes
Sub-location clusters

N [ Higher new HIV diagnoses
| Lower new HIV diagnoses
Sub-location boundaries

Included in the analysis

Excluded from the analysis

Associations of new HIV diagnoses in the Bayesian model
In unadjusted analysis, clients aged 20—24 years (uRR 4.44,
95% CI 3.73-5.33), 25-35 years (uRR 8.03, 95% CI 6.84—
9.48) and > 35years (uURR 5.05, 95% CI 4.3-5.96) were
more likely diagnosed HIV-positive compared to those
aged 15-19 years (Table 3). Men (uRR 0.85, 95% CI 0.79—
0.92) were less likely diagnosed HIV-positive compared to
women. Compared to clients in monogamous marriage,
clients in polygamous marriage (uRR 1.74, 95% CI 1.47-
2.04) or separated/divorced (uRR 3.71, 95% CI 3.01-4.51)
were more likely diagnosed HIV-positive; while those sin-
gle (uURR 0.3, 95% CI 0.27-0.34) were less likely diagnosed
HIV-positive. Compared to those who reported had tested
for HIV 3-12 months ago, those who had never tested
(uRR 1.3, 95% CI 1.12-1.5) and those who had tested >
12 months ago (uRR 1.58, 95% CI 1.46—1.71) were more
likely diagnosed HIV-positive.

The non-spatial and spatial random effect multivariable
models used to explore factors associated with HIV-
positive diagnosis are shown in Table 3. Of the four

multivariable models explored, the convolution model
that consisted of both a spatially structured and unstruc-
tured random effect model performed best with a devi-
ation information criterion of 10,810.58. In this model,
there was no association between sex (men compared to
women) and HIV-positive diagnosis. Clients aged 20-24
years (aRR 3.45, 95% CI 2.85-4.20), 25-35years (aRR
4.76, 95% CI 3.92-5.81) and > 35 years (aRR 2.44, 95% CI
1.99-3.00); clients in polygamous marriage (aRR 1.84, 95%
CI 1.55-2.16), or separated/divorced (aRR 3.36, 95% CI
2.72-4.08); and clients never tested (aRR 2.35, 95% CI
2.02-2.72) and those who had tested > 12 months ago
(aRR 1.53, 95% CI 1.41-1.66) were more likely to be diag-
nosed HIV-positive. The proportion of total HIV-positive
clients in a sub-location (aRR 1.3, 95% CI 1.07-1.60) was
also positively associated with HIV diagnosis. Clients
whose marital status was single (aRR 0.50, 95% CI 0.44—
0.57) were less likely to be diagnosed HIV-positive.

Maps of the unstructured and structured estimated
median value of the random effects for each sublocation,
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Table 2 Characteristics of clusters of new HIV diagnosesa in Siaya County

Number of sub- Names of sub-locations in the cluster Radius Observed Expected Relative Log likelihood P value
locations in the (kilometers) cases cases risk ratio
cluster
Clusters with significant (p value < 0.05) higher new HIV diagnoses
3 Malunga West, Sirembe, Malunga East 336 49 1879 264 16.91 <0.001
2 Gangu, Ojwando ‘A’ 324 62 2857 22 14.81 <0.001
7 Kochieng ‘A, Kodiere, Ojwado ‘B, Kochieng ‘B, 491 145 7032 212 31.24 <0.001
Koyeyo, Komeny, Kalaka, Ojwando ‘A’
5 Komolo, Hono, Kukumu_kombewa, Nyalgunga, ~ 3.95 140 72.96 197 25.01 <0.001
Koyeyo
4 Komenya Kowala, Kalkada Uradi, Komenya 3.15 72 3893 187 114 0.002
Kalaka, Simur Kondiek
7 Ulafu, Umala, Nyalgunga, Nyamila, Olwa, Hono, ~ 4.65 197 111.58 1.82 27.89 <0.001
Karapul
4 Mur_ngiya, Olwa, Masumbi, Umala 343 91 57.76 1.59 832 0.026
3 Bar Chando, Abom, North Ramba 3.69 97 62.91 1.56 8.12 0.032
2 Kagwa, Kokwiri 392 81 4793 1.71 9.62 0.008
Clusters with significant (p value < 0.05) lower new HIV diagnoses
5 Gombe, Onyinyore, Ramula, Kambare, Uranga 3.69 68 115.55 0.58 1.9 <0.001
5 Omia Malo, Omia Diere, Memba, South Ramba,  4.14 81 150.33 0.53 20.11 <0.001
Omia Mwalo
4 Lihanda, Uranga, Marenyo, Ramula 438 78 146.24 052 20.05 <0.001
6 Bar Sauri, Nyamninia, Anyiko_yala, Jina, Nyawara, 4.71 80 154.24 0.51 22.72 < 0.001
Nyandiwa_yala
5 Dienya East, Nguge, Dienya West, Ulamba, 3.61 32 62.12 0.51 9.05 0014
Wagai West
7 Nyamninia, Bar Sauri, Jina, Nyandiwa_yala, 441 99 192.71 05 29.37 <0.001
Anyiko_yala, Nyawara, Marenyo
5 Lihanda, Uranga, Marenyo, Ramula, Nyandiwa_  4.78 86 180.17 046 3217 <0.001
yala
4 Mahaya, Akom, Memba, Nyagoko 468 56 119.77 046 2192 < 0.001
5 Masala, Rachar, Akom, Kobong’, Nyagoko 485 63 164.62 037 4297 <0.001
1 Ochieng’a 0 2 31.7 0.06 2433 <0.001

#Sub-location clusters of new HIV diagnoses were mapped using SaTScan, which gradually scans a window cyclically across space, noting the number of observed
and expected observations inside the window at each location, adjusting for the underlying spatial inhomogeneity of the background population

generated from the convolution Bayesian Poisson model,
are shown in Fig. 4. The maps show the pattern of ran-
dom effects, that further explain the distribution of new
HIV diagnoses, over and above what is explained by the
fixed effects (age group, sex, marital status, time since
last HIV test and sub-location proportion of total HIV-
positive clients). Figure 4 (a) shows the pattern of pos-
terior median unstructured random effects, not taking
into account spatial autocorrelation. When spatial auto-
correlation was taken into account, as shown in Fig. 4
(b), the pattern of posterior median random effects
changed, with more darker areas in the central region,
demonstrating higher influence of spatially correlated
random effects in this area.

Sub-location level exceedance probability of new HIV
diagnoses is shown in Fig. 5. The darker colors show

areas of high probabilities, while the lighter colors show
areas of low probabilities.

Discussion

Our study uniquely demonstrates the use of geospatial
analysis in a routine public health program to assess
geospatial patterns of new HIV diagnoses, and identify
geographic areas where HIV interventions could be tar-
geted with finer granularity. Although the HIV epidemic
in Siaya is generalized, our study found spatial variation
in new HIV diagnoses, and identified sub-location clus-
ters in which the number of new HIV diagnoses ob-
served was 1.56 to 2.64 times higher than expected. We
also identified sub-locations with higher exceedance
probability of new HIV diagnoses, indicating areas where
the probability of new HIV diagnoses are high.
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DIVA-GIS (https://www.diva-gis.org/gdata)

T

Fig. 3 Sub-location HIV testing uptake overlaid with clusters of new HIV diagnoses, Siaya County. A standard Geographical Information System
(GIS) program, Quantum GIS version 3.6 (http://qgis.org) was used to map HIV testing uptake, and overlay sub-location clusters of new HIV
diagnoses. The sub-location HIV testing uptake is in quantiles. The clusters of new HIV diagnoses were detected using the Kulldorff's spatial scan
statistic, implemented using SaTScan™ version 9.6 (http://www.satscan.org). Shown in red circles are sub-location clusters of higher new HIV
diagnoses with a relative risk of > 1.0 at p value< 0.05, and in blue circles sub-location clusters of lower new HIV diagnoses with a relative risk of
< 1.0 at p value< 0.05. The boundary information for sub-locations in Siaya was obtained as shapefiles from

© Towns

[ Lakes

Sub-location clusters
[ Higher new HIV diagnoses
\ ] Lower new HIV diagnoses
N Sub-location HIV testing uptake
B 91.2%-97.3%
[ 87.3%-91.2%
[ 82.1%-873%
L 1573%-82.1%

Sub-locations excluded from analysis

Geographic clusters of higher new HIV diagnoses may
be attributed to having a high number of undiagnosed
PLHIV, a high number of incident HIV infections, in-
creased access to HIV testing, or a combination of these
factors. It would, therefore, be beneficial to target inten-
sified HIV prevention and testing interventions to these
areas, as they may have relatively more undiagnosed
PLHIV unreached by the program, and continued HIV
transmission driven by high viral load levels among un-
diagnosed and newly diagnosed HIV-infected
individuals.

Several studies have described ways to prioritize HIV
interventions to specific geographic areas as a means to
improve efficiency and cost-effectiveness; these include
mapping the geographic distribution of ART coverage
[38], and the distribution of sub-populations with higher

HIV-risk [11] or higher HIV prevalence [11, 18, 19].
Additionally, studies have described opportunities to
utilize geospatial analysis and mapping to support tar-
geting of HIV program interventions towards achieve-
ment of HIV epidemic control [20, 39]. To our
knowledge, this study is the first to map fine (< 5km ra-
dius) clusters of higher HIV diagnoses using routine data
from a home-based HIV testing program. A similar
study done in Kenya used routine facility-level HIV test-
ing data to identified facility clusters (at a radius of <50
km) of newly diagnosed HIV-positive persons across
counties with differing HIV burden [21]. Other routinely
available HIV testing data [e.g., provider-initiated testing
and counseling data at health facilities, data from partner
HIV testing services (index testing), antenatal clinic data,
etc.] could be used in a similar manner.
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Unadjusted Adjusted relative risk (aRR)
relative risk N
(uURR) Fixed effects only

uRR (95% ClI)

aRR (95% ClI)

Spatially unstructured

model

aRR (95% CI)

Spatially structured

model

aRR (95% ClI)

Convolution spatially

unstructured and
structured model

aRR (95% ClI)

Age groups (years)

15-19 1.00 (ref) 1.00 (ref)

20-24 444 (3.73-533) 355 (2.94-431)

25-35 803 (6.84-948)  4.78 (3.94-5.83)

> 35 5.05 (4.3-5.96) 44 (1.99-3)
Sex

Women 1.00 (ref) 1.00 (ref)

Men 0.85 (0.79-0.92)  0.95 (0.88-1.03)

Marital status

Married monogamous 1.00 (ref) 1.00 (ref)

Married polygamous 1.74 (1.47-2.04) 1.86 (1.57-2.19)
Separated/divorced 3.71 (3.01-451) 335 (2.72-4.08)
Single 0.3 (0.27-0.34) 049 (042-0.55)
Widow/widower 0.98 (0.87-1.1) 3 (0.99-1.28)

Time since last HIV test

<3 months 1.36 (0.94-1.9) 1 (0.9-1.81)
3-12 months 1.00 (ref) 1.00 (ref)
> 12 months 1.58 (146-1.71) 1(1.39-1.63)
Never tested 1.3 (1.12-1.5) 237 (2.04-2.74)
Sub-location proportion of 161 (1.43-1.8) 1.5 (1.34-1.68)
total HIV-positive clients®
Random effects
Spatially unstructured precision
Spatially structured precision
Model comparison
Effective number of parameters 13
Deviation information criterion 11,153.63

0 (ref) 1.00 (ref) 1.00 (ref)
346 (2.86-4.2) 345 (2.85-4.19) 345 (2.85-4.2)
4.78 (3.93-5.82) 4.76 (3.92-5.81) 4.76 (3.92-5.81)
245 (2-3.01) 244 (1.99-3) 44 (1.99-3)
1.00 (ref) 1.00 (ref) 1.00 (ref)

0.96 (0.89-1.04)

0.96 (0.89-1.04)

0.96 (0.89-1.04)

1.00 (ref) 1.00 (ref) 1.00 (ref)
1.84 (1.55-2.17) 1.84 (1.55-2.17) 1.84 (1.55-2.16)
337 (273-4.1) 3.36 (2.72-4.08) 3.36 (2.72-4.08)
0.5 (044-0.57) 0.5 (044-0.57) 0.5 (044-0.57)
1.1 (0.97-1.24) 1.1 (0.97-1.24) 1.1 (0.97-1.24)
1(0.9-1.83) 1.33 (0.91-1.85) 1.33 (0.91-1.85)
0 (ref) 1.00 (ref) 1.00 (ref)
4 (141-1.67) 1.53 (141-1.66) 1.53 (1.41-1.66)
2.35(2.02-2.73) 2.35(201-2.72) 2.35(202-2.72)
49 (1.21-1.82) 1.26 (1.04-1.53) 1.3 (1.07-1.6)

6.01 (4.37-827)

125.12
10,816.12

244 (1.67-3.59)

109.09
10,811.64

17.39 (9.01-36.14)
497 (25-9.24)

1138
10,810.58

*The proportion of total HIV-positive clients was defined as the sum of the total new HIV-positive and previously identified HIV-infected clients among those

whose eligibility for HIV testing was assessed

Abbreviations: uRR, unadjusted relative risk; aRR, adjusted relative risk; Cl, credible interval

Our study further identified sub-locations with both
higher new HIV diagnoses and low testing uptake. A
study in Zimbabwe demonstrated the use of geospatial
analysis to target areas for increased uptake of HIV ser-
vices, including those with high HIV prevalence [40].
Our findings, therefore, add to the literature base de-
scribing the utility of geospatial analysis in identifying
areas with potentially high HIV-positive yield that could
be efficiently targeted to increase HIV testing uptake.

In Siaya, clusters of higher new HIV diagnoses were
found in areas around specific towns, around major
roads, near a major road intersection and adjacent to a
beach. Although geospatial clustering of new HIV diag-
noses has not yet been described in the literature, other

studies have described the clustering of higher HIV
prevalence [10, 13] and incidence [12] around similar
ecological factors. The clustering around ecological fea-
tures observed in our study suggests that population-
level factors related to the ecological features, including
socioeconomic, mobility and geographic factors, may in-
fluence the clustering of new HIV diagnoses. Surpris-
ingly, however, the sub-location cluster with the highest
relative risk was in a predominantly rural area with no
prominent ecological features. Furthermore, several sub-
locations around towns and major roads had clusters of
lower new HIV diagnoses, suggesting that other uniden-
tified factors unrelated to ecological factors, additionally
influence the distribution of new HIV diagnoses.
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Fig. 4 Maps of unstructured and structured random effects of new HIV diagnosis, Siaya County. a) Map of estimated median value of
unstructured random effects, showing residual variability of new HIV diagnoses when spatial autocorrelation was not taken into account; b) Map
of estimated median value of structured random effects, showing residual variability of new HIV diagnoses when spatial autocorrelation was
accounted for. The maps were generated from the convolution Bayesian Poisson model, and mapped using ggplot2 R
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A Bayesian model was used to enable assessment of
individual and spatial-level associations of new HIV
diagnoses in a spatially-integrated framework. Spatial ef-
fects influenced the distribution of new HIV diagnoses,
influencing the degree of association of individual-level
factors, and further influencing the pattern of random
effects (the distribution of new HIV diagnoses not ex-
plained by factors in the Bayesian model). In the spatial
Bayesian model, we found that clients in polygamous
marriage and those separated/divorced were more likely
diagnosed HIV-positive, likely due to their higher risk of
HIV infection as shown in other studies [41-45]. Polyg-
amous marriages permit concurrent sexual partnerships
[46] and correlates with low rates of condom use [47].
Separated/divorced women have been shown to have a
higher risk of HIV [48], as these women may seek new
sexual relationships that put them at higher risk of HIV,
or HIV infection may have contributed to the divorce/
separation [49]. Although several studies have docu-
mented a correlation between widowhood and higher
HIV infection [44, 45, 50], a significant association be-
tween widowed individuals and HIV-positive diagnosis
was not observed in this study. Similar to findings ob-
served in facility-based testing [51], individuals never
tested for HIV, and those tested > 12 months prior, were
more likely to be diagnosed HIV-positive. The associ-
ation between increasing age and higher likelihood of

HIV diagnosis found in this study is consistent with
higher HIV prevalence observed in older age groups
[52-54]. Although other studies have shown that men
have lower HIV prevalence compared to women, our
spatial model did not find a significant association be-
tween HIV-positive diagnosis and sex. The association
observed between higher proportion of total HIV-
positive clients in a sub-location and higher new HIV
diagnoses suggests these areas likely have a relatively
high number of undiagnosed PLHIV and ongoing local
HIV transmission. Random effects or additional factors
beyond those included in the Bayesian model, influenced
the distribution of new HIV diagnoses (Fig. 4). This
points out to the importance of other factors, likely
other individual or population-level factors (including
geographic, economic or social), that influenced the pat-
tern of new HIV diagnoses.

Home-based HIV testing conducted in Siaya between
May 2016 and July 2017 achieved high (86%) HIV test-
ing uptake among eligible individuals; and was compar-
able to the testing uptake (64 to 99%) reported in other
home-based testing programs in sub-Saharan Africa
[55]. The proportion of new HIV diagnoses was low
(1.1% HIV-positive yield), slightly lower than that ob-
served in outpatient HIV testing services (1.3% yield) in
this setting [51]. The low yield observed is likely due to
a diminishing number of undiagnosed PLHIV in the
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Fig. 5 Map of exceedance probability of new HIV diagnosis, Siaya County. The posterior probability of the sub-location’s relative risk to exceed a
threshold was calculated using the Bayesian approach. For our analysis, a threshold of 1.25 was used. The darker colors show areas of high
probabilities, while the lighter colors show areas of low probabilities. The map was created using ggplot2 R package (https.//ggplot2.tidyverse.org)
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general population, and further highlights the import-
ance of granular spatial analysis to better target HIV
testing programs.

We compared the number of individuals aged >15
years enumerated for home-based testing in the 161
sub-locations included in our analysis (365,798 clients),
with 2016/2017 corresponding projected population
(435,727 individuals). The projected population was de-
rived using 2009 [56] and 2019 [57] Kenya population
census reports. From this, we estimate that majority (~
84%) of residents aged >15years in the 161 sub-
locations included in our analysis were enumerated for
home-based testing.

Our study had some limitations. First, our results do
not represent the whole of Siaya County, as data for 18
sub-locations were excluded; our study did, however, in-
clude the majority (90%) of sub-locations in the county.
Second, we encountered several limitations owing to the
use of routinely collected data for home-based testing,
namely: HIV testing procedures were those set for the

routine home-based testing program; during enumer-
ation, household residents who reported they would be
away for more than one-month following enumeration
were excluded, which might have reduced representation
of adolescents in boarding schools/colleges; data were
not available to verify the number of households in each
sub-location enumerated; and variables included in our
analysis of factors associated with new HIV diagnoses
were limited to those routinely collected, and therefore
we were not able to explore other variables likely associ-
ated with new HIV diagnoses. Third, per Kenya Ministry
of Health guidelines, the assessment of HIV testing eligi-
bility relied on self-reported previous HIV testing, which
can be unreliable [58].

Finally, despite literature showing utility of geospatial
analysis in informing geographic-targeting of HIV inter-
ventions [20, 21, 39], geospatial analysis is not routinely
used in public health programs. Our study demonstrates
the feasibility of using routine HIV testing data for geo-
spatial analysis, to identify granular (<5km) geographic
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areas to target HIV testing and other interventions. We
recommend that countries and programs should inte-
grate geospatial analysis into routine public health pro-
gram data analysis and use, to inform targeting of
interventions to more granular geographic units for
maximal epidemiologic impact and efficient resource
allocation.

Conclusions

Our study uniquely demonstrates the use of geospatial
analysis in a routine public health program, to identify
geographic areas with higher new HIV diagnoses where
HIV interventions could be targeted with finer granular-
ity. Additionally, we demonstrate sub-populations with
higher HIV-positive yield (i.e., older age groups, those in
polygamous marriage or separated divorced, and those
never tested for HIV, or tested HIV-negative >12
months prior), that would benefit from continued tar-
geted HIV testing and prevention interventions. As
countries make progress towards HIV epidemic control,
integrating geospatial analysis into routine public health
programs would help focus interventions to more granu-
lar geographic units for maximal epidemiologic impact
and efficient resource allocation.
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