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Abstract 

Background:  Estimates of the geographical distribution of Culex mosquitoes in the Americas have been limited to 
state and provincial levels in the United States and Canada and based on data from the 1980s. Since these estimates 
were made, there have been many more documented observations of mosquitoes and new methods have been 
developed for species distribution modeling. Moreover, mosquito distributions are affected by environmental condi‑
tions, which have changed since the 1980s. This calls for updated estimates of these distributions to understand the 
risk of emerging and re-emerging mosquito-borne diseases.

Methods:  We used contemporary mosquito data, environmental drivers, and a machine learning ecological niche 
model to create updated estimates of the geographical range of seven predominant Culex species across North 
America and South America: Culex erraticus, Culex nigripalpus, Culex pipiens, Culex quinquefasciatus, Culex restuans, Culex 
salinarius, and Culex tarsalis.

Results:  We found that Culex mosquito species differ in their geographical range. Each Culex species is sensitive to 
both natural and human-influenced environmental factors, especially climate and land cover type. Some prefer urban 
environments instead of rural ones, and some are limited to tropical or humid areas. Many are found throughout the 
Central Plains of the USA.

Conclusions:  Our updated contemporary Culex distribution maps may be used to assess mosquito-borne disease 
risk. It is critical to understand the current geographical distributions of these important disease vectors and the key 
environmental predictors structuring their distributions not only to assess current risk, but also to understand how 
they will respond to climate change. Since the environmental predictors structuring the geographical distribution of 
mosquito species varied, we hypothesize that each species may have a different response to climate change.
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Background
Culex mosquitoes, which frequently take blood meals 
from animals—including humans, are important 
transmitters of emerging and re-emerging pathogens 
[1–4]. These mosquitoes are often found in temperate 
climate zones and are known to be vectors for several 

arboviruses, including West Nile virus (WNV), St. Louis 
encephalitis virus (SLEV), eastern equine encepha-
litis virus (EEEV), and western equine encephalitis 
virus (WEEV) (Table 1). For example, WNV is the larg-
est cause of mosquito-borne disease in humans in the 
United States and is maintained in nature in a wild bird-
mosquito life-cycle involving a variety of avian hosts and 
several Culex species. Culex nigripalpus, Culex pipiens, 
Culex quinquefasciatus, and Culex tarsalis are highly effi-
cient in maintaining and transmitting WNV [2, 3, 5, 6]. 
Some species transmit parasites as well, such as filarial 
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nematodes and the Plasmodium parasites that cause 
avian malaria (Table 1).

Disease outbreaks facilitated by Culex species are 
increasing in frequency, and these mosquitoes will 
continue to be important vectors for emergent and re-
emerging diseases [7–9]. For example, outbreaks of EEEV 
occurred in multiple states within the USA in summer 
2019, which resulted in 34 infections and 11 deaths [10]. 
Spillover events of EEEV into dead end hosts, such as 
humans and horses, occur unpredictably and are medi-
ated by Culex mosquitoes [11]. Outbreaks of EEEV and 
similar diseases are difficult to predict because of the 
complex interactions between reservoir hosts, environ-
mental conditions, human activity, and mosquito dis-
tributions [12]. Understanding the spatial distribution 
of Culex species that are important for the transmission 
of EEEV and other diseases can provide insight on areas 
prone to disease risk.

Our current understanding of the geographical distri-
butions of Culex species in North America  and South 
America is mainly limited to studies carried out at state 
and provincial levels in the USA and Canada that were 
published in the early 1980s [13]. Though the distribu-
tion maps have been updated recently with new species 
and additional presence data, the estimates of the spatial 
extent of Culex species have generally remained the same 
[14]. Furthermore, climate and environmental condi-
tions have continued to change in the years since these 
updates, including further warming of surface air tem-
peratures and shifts in precipitation [15].

Significant changes to climate are occurring around 
the world, which influence where mosquitoes can sur-
vive. Areas are becoming warmer and wetter or drier 
[15], causing the geographic distributions of mosquitoes 
to expand, contract, and/or shift in response [12, 16–18]. 
In the near future, it is estimated that North America, 

Central America, and South America will experience 
warmer temperatures and more variable precipitation 
patterns [19, 20]. There will also likely be an increase 
in the number of extreme weather events, leading to 
increased flooding in some areas and long-term droughts 
in others [19]. Increasing temperatures result in quicker 
life-cycles of mosquitoes, which allow them to colo-
nize new areas within their temperature limits [21, 22]. 
Changes to precipitation patterns will promote suitable 
habitats (e.g., standing water) for them in some areas, but 
decrease suitability where habitats become drier [21].

There is already evidence that several Culex spe-
cies have experienced recent shifts in their geographi-
cal ranges, with some species expanding northward into 
Canada. For example, Culex salinarius and Culex errati-
cus have been consistently trapped in Ontario, Canada 
in recent years [23]. This finding contradicts the distri-
bution maps produced by Darsie and Ward [14], which 
show Cx. salinarius and Cx. erraticus having northern-
most ranges in the northern and Midwestern USA states, 
respectively [14]. Culex pipiens and Cx. quinquefasciatus 
are both predicted to spread northward, too [17, 24]. In 
fact, Cx. pipiens has already been identified in Canada, 
and it is likely that this species will undergo further range 
expansion northward [17].

In parallel to expanding mosquito species distributions, 
several mosquito-borne viruses are expanding as well, 
impacting novel and susceptible human populations [9, 
18, 25]. For example, since 2014, specific strains of SLEV 
thought to be restricted to Argentina have been reported 
in Arizona and California [9, 26]. There has also been an 
increased risk for WNV in Canada, both in urban and 
rural areas [27]. Knowing which mosquito species and 
their associated pathogens are present in an area may 
assist physicians in providing accurate disease diagnoses 
and timely, appropriate medical treatments, as well as 

Table 1  Summary of the pathogens that are vectored by the seven focal Culex species and the general regions in which these species 
are found

 EEEV Eastern equine encephalitis virus, WNV West Nile virus, SLEV St. Louis encephalitis virus, WEEV western equine encephalitis virus

Species Pathogen General region References

Culex erraticus EEEV, Venezuelan equine encephalitis virus, WNV, Zika 
virus

Southeastern USA, Midwestern USA, Mexico, South 
America

[92–95]

Culex nigripalpus EEEV, SLEV, WNV, Zika virus, dog heartworm, avian 
malaria

Southeastern USA, Mexico, South America [4, 96–98]

Culex pipiens SLEV, WNV, Zika virus, filarial worms, avian malaria Mexico, Canada, Midwestern USA, northeast USA [3, 96, 99]

Culex quinquefasciatus SLEV, WEEV, WNV, Zika virus, lymphatic filariasis Southern USA, Mexico, South America [24, 98, 
100–102]

Culex restuans SLEV, WNV Canada, Mexico, eastern USA [3, 98, 99]

Culex salinarius SLEV, WEEV, WNV Midwestern USA, northeastern USA, southeastern USA [98, 99]

Culex tarsalis SLEV, WEEV, WNV, Zika virus Mexico; west of the Mississippi, USA; southeastern USA [96, 98, 
103]



Page 3 of 13Gorris et al. Parasites Vectors          (2021) 14:547 	

help mosquito control districts identify and control these 
species [28].

Recent developments in mathematical ecology offer 
statistical methods to model geographic ranges for 
organisms when presence records are available. One such 
method is Maxent [29, 30]. Maxent estimates occurrence 
intensities by relating species presence data and back-
ground locations to environmental predictors in the con-
text of a generalized linear model [31]. It aims to learn 
the environmental conditions that are suitable for species 
presence based on the environmental conditions at the 
recorded presence data points. Because systematically 
sampling large areas for species presence is difficult, this 
statistical method provides a tractable and practical way 
to determine species distributions by making efficient use 
of species presence data and remotely sensed environ-
mental covariates. This approach also affords information 
to researchers and public officials because it proposes 
environmental conditions important to the distribution 
of the species.

The goal of our study was to use contemporary mos-
quito and environmental data to update species distribu-
tion maps of seven Culex species found in North America 
and South America: Culex erraticus, Culex nigripalpus, 
Culex pipiens, Culex quinquefasciatus, Culex restuans, 
Culex salinarius, and Culex tarsalis. To achieve this, we 
first surveyed the literature for articles describing envi-
ronmental conditions that may be important for these 
seven Culex species. This literature survey highlighted 
the variables that promote or inhibit Culex species’ per-
sistence and provided information on the geographical 
locations where these species reside. We gathered envi-
ronmental datasets for use in model development, such 
as temperature, humidity, and land cover. Then, we used 
mosquito presence data from several data repositories 
and the environmental datasets in Maxent to estimate the 
contemporary distribution of these seven Culex species, 
examining the environmental variables important for 
structuring the patterns of habitat suitability. Our con-
temporary Culex distribution maps may be used to assess 
mosquito-borne disease risk and forecast future threats 
from emerging diseases carried by these Culex species.

Methods
Mosquito presence data
We focused our analyses on seven predominant Culex 
species found in North America and South America: Cx. 
erraticus, Cx. nigripalpus, Cx. pipiens, Cx. quinquefas-
ciatus, Cx. restuans, Cx. salinarius, and Cx. tarsalis. We 
chose these species because of the number of diseases 
they can transmit, the extent of their presence, and the 
data available. We gathered mosquito presence data from 
1990 to 2020 from three data repositories:  VectorBase 

[32], VectorMap (http://​vecto​rmap.​si.​edu; collected 22 
September 2020), and the National Ecological Obser-
vatory Network ([33]; collected 4 May 2020),  and from 
surveys done by two public health departments—Public 
Health of Ontario (2002–2017), and Washington State 
Department of Health (2008–2014). We included obser-
vations that had two decimal point precision (~ 1 km) in 
their latitude and longitude. To account for the clustering 
of occurrence points and sampling bias, but also main-
tain the necessary environmental gradient to capture a 
reliable signal of habitat suitability, we filtered our mos-
quito presence data using the package spThin in R using 
a 30-km radial buffer, so that only one species presence 
point was used within that buffer area [34, 35]. After fil-
tering, we had between 79 and 300 presence data points 
per species (Additional file  1: Table  S1). As a sensitiv-
ity analysis during Maxent model development, we also 
tried 50-, 75-, and 100-km radial buffers, and the results 
remained stable (data not shown).

Climate and environmental data
We reviewed the literature on the seven Culex species to 
find articles describing important climate and environ-
mental drivers for mosquito presence. Using our litera-
ture review as a basis for variable selection, we gathered 
climate and environmental data that we found to be rel-
evant  for providing mosquito habitat and supporting 
the mosquito life-cycle. We used data from two different 
sources: MERRAclim [36] and EarthEnv [37–39]. These 
data sources provide remotely sensed variables relating 
to climate, land cover, terrain, and biodiversity at resolu-
tions of approximately 1 and 5 km.

We used the most contemporary available MERRA-
clim data, which was averaged from 2000 to 2009 [36]. 
We included five measures of temperature: annual mean 
temperature, mean diurnal range in temperature, the 
maximum temperature of the warmest month, the mini-
mum temperature of the coldest month, and the annual 
range in temperature. We included three measures of 
atmospheric moisture: annual mean specific humidity, 
specific humidity of the most humid month, and specific 
humidity of the least humid month. Each variable was 
available at 2.5-arcmin (~ 4 km) resolution.

Each EarthEnv dataset spanned its own time frame 
based on the product. We included one measure of habi-
tat heterogeneity derived from vegetation, called the 
evenness of the enhanced vegetation index (EVI), which 
is bounded from zero to one. This dataset was available 
at 30-arcsec (~ 1 km) resolution and based on the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) 
EVI product (MOD13Q1 version 5; 250-m resolution) 
from 2001 to 2005 [39]. We included 12 different land 
cover classes derived from multiple datasets [GlobCover 

http://vectormap.si.edu
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(2005–2006; v2.2), the MODIS land cover product 
(MCD12Q1; v051), GLC2000 (global product; v1.1), and 
DISCover (GLCC; v2)]. These classifications are available 
at 30-arcsec (~ 1  km) resolution: evergreen/deciduous 
needleleaf trees, evergreen broadleaf trees, deciduous 
broadleaf trees, mixed/other trees, shrubs, herbaceous 
vegetation, cultivated and managed vegetation, regularly 
flooded vegetation, urban/built-up, snow/ice, barren, and 
open water [38]. Lastly, we included four measures of 
topography based upon the global 250-m GMTED2010 
and near-global 90-m SRTM4.1dev products: elevation, 
slope, roughness, and a terrain ruggedness index [37].

We aggregated each dataset from its native resolution 
to match the 30-km resolution of our filtered presence 
data. Matching these resolutions ensures that only one 
presence data point falls within a single environmental 
grid. As a result, Maxent analyzes the occurrence record 
and the environmental grid as a coordinate pair. We visu-
ally inspected this aggregated data to verify that coarsen-
ing did not noticeably alter the geographic pattern of the 
environmental variables. We included all the environ-
mental variables in each model in order to infer the con-
tribution of different predictors for each species.

Maxent modeling
We used the machine learning, maximum entropy model 
Maxent (maxnet package, version 0.1.2, based on Max-
ent version 3.4.0; [29, 30]) to create species distribution 
maps of the seven predominant Culex species. We used 
the 30-km filtered presence data and 30-km climate and 
environmental data as input to the model. To select the 
environmental training area for Maxent (i.e., the study 
area M as defined by Soberon and Peterson [40]), we cre-
ated a buffer distance for each species based on its pres-
ence data and our assumption that mosquito species can 
readily disperse given their short life-cycles and flight 
ranges [41–43]. We calculated the buffer length by first 
computing the centroid of each species’ presence data 
points and then computing the median distance from 
each presence point to the centroid [44]. We applied this 
median distance as the radius for a buffer around each 
presence point. This procedure creates an environmen-
tal training area unique to each species (Additional file 1: 
Figs. S1, S2). From this environmental training area, we 
initiated Maxent to randomly sample 10,000 background 
points and trained the models using cross-validation with 
ten random k-folds of the presence data points. We con-
sidered three different feature classes to model relation-
ships between environmental predictors and presence 
data: linear  (L); linear and quadratic  (LQ); and linear, 
quadratic, and hinge (LQH) [45]. We also tested a suite of 
regularization parameters for model fit, including 0.5, 1, 

2, 5, 10, 20. Larger regularization parameters encourage 
models with fewer covariates, lowering overfitting [46].

We selected a best model for each species based on 
criteria calculated from the ENMevaluate package ([47]; 
version 0.3.1). Maxent practitioners commonly make 
model selections based on the corrected Akaike informa-
tion criterion (AICc), but this approach suffers from poor 
geographic prediction accuracy [48]. On the other hand, 
models built by optimizing prediction accuracy may fail 
to detect environmental features of biological impor-
tance [49]. In acknowledgment of these shortcomings, we 
implemented a custom procedure to select our final mod-
els. First, we subsetted the models to only consider the 
half of the models with the lowest absolute bias in omis-
sion rates. For the omission rate, we used the percent of 
testing presences that had a predicted suitability of less 
than the 10th quantile of the predicted suitability among 
the training presences (avg.test.or10pct; [50]). Second, 
we further subsetted the models to include those that 
passed a threshold based on the difference between the 
training and testing area under the curve (AUC) averaged 
across the ten k-fold bins (avg.diff.AUC). That threshold 
was set as the median average AUC difference among 
the fitted models. After these two steps, we selected the 
model with the lowest AICc. This ad hoc procedure bal-
ances prediction accuracy in geographic space and model 
explainability in ecological space.

After selecting the best Maxent model for each spe-
cies (i.e., feature classes and regularization parameters; 
Additional file 1: Table S2), we obtained ten model out-
put replicates to assess the variability in our predictions 
[35, 51]. For the ten replicates, we bootstrapped our 
mosquito presence data to use 80% of the available pres-
ence data. We used the difference between the maximum 
and minimum habitat suitability output among the ten 
bootstrapped replicates (i.e., the range) to show areas of 
higher or lower uncertainty in our models [51, 52].

We were able to analyze the role of each environmental 
variable in the Maxent models using the mean permuta-
tion importance and mean percent variable contribution 
calculated across the ten bootstrapped models [53]. The 
permutation importance describes the most important 
factors in determining the habitat suitability. For each 
environmental variable in turn, its values are randomly 
permuted, the model performance is recalculated based 
on the permuted training data, and the change in model 
performance is recorded. These differences are then nor-
malized to percentages, where a higher percentage means 
the model depends heavily on that variable [54]. Maxent 
also calculates percent contributions from each variable, 
but these are heuristically defined based on the path the 
algorithm takes to a locally optimal solution. Although 
they should be interpreted with caution, together the 
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percent variable contribution and variable permuta-
tion importance highlight important environmental 
predictors.

After training the Maxent models with species-specific 
background environments (Additional file 1: Figs. S1, S2), 
we extrapolated each bootstrapped model to create mean 
species distribution maps across the continents in which 
we expected the mosquito species to occur. We analyzed 
Cx. pipiens, Cx. tarsalis, Cx. salinarius, and Cx. restuans 
for North America and Cx. erraticus, Cx. quinquefascia-
tus, and Cx. nigripalpus for North America and South 
America. For a large number of background points, a 
Maxent model can be viewed as a Poisson regression 
model and its outputs can be interpreted as occurrence 
intensities from a spatial point process [31]. This equiva-
lency motivates the complementary log–log transforma-
tion applied to these model intensities as probabilities of 
presence, subject to some assumptions about the sam-
pling scheme [30]. We used these transformed model 
outputs because they are normalized to the [0, 1] range, 
but we caution against the aforementioned interpreta-
tion; instead, we describe the outputs as “relative habitat 
suitability” with “low” suitability marked at 0, “medium” 
suitability marked at 0.5, and “high” suitability marked 
at 1. These measures of relative suitability are unique for 
each Culex species based on the unique Maxent model 
development.

We also created maps to identify any areas with novel 
climate or environmental conditions outside of the back-
ground environmental training data, so that decisions 
can be weighed appropriately where the model is extrap-
olated. To do this, we calculated the species-specific 
ranges of background environmental data variables and 
highlighted any geographical areas on the map in which 
at least one variable was outside of these ranges.

Results
Environmental drivers of Culex mosquito distributions
We surveyed the literature to identify the geographic 
region in which each Culex species has been documented 
and which diseases each species may transmit (Table 1). 
While all seven species have been documented in North 
America, only three of the seven have been documented 
in South America.

We also identified environmental drivers that may be 
important in structuring the geographical distribution 
of the seven Culex species of interest (Additional file  1: 
Table S3) [16, 17, 42, 55–85]. Each Culex species is sensi-
tive to both natural and human-influenced environmen-
tal factors, especially land cover and vegetation type. For 
example, some Culex species were less likely to be found 
in urban areas, such as Cx. tarsalis [55] and Cx. nigripal-
pus [56], whereas others were more likely to be found in 

these, such as Cx. pipiens [55, 57, 58] and Cx. quinquefas-
ciatus [59]. To account for these differences, we used 12 
different land cover types as predictors in our species dis-
tribution models, including an “urban/built up” layer. We 
found evidence that temperature and measures of envi-
ronmental moisture are important drivers for most Culex 
species (Additional file 1: Table S3). For this reason, we 
incorporated both temperature and humidity variables as 
predictors in our models.

Species distribution maps of Culex mosquitoes
We gathered contemporary mosquito presence data for 
the Culex mosquito species in North America (Fig. 1) and 
North America and South America (Fig. 2) for use in the 
Maxent models. We tried to find presence data to cover 
the hypothesized geographical range within the USA and 
Canada highlighted by Darsie and Ward [14]. Though the 
study of Darsie and Ward [14] was limited to estimating 
the range within the USA and Canada, many of the pres-
ence data points fell within the estimated range. All seven 
species also had contemporary presence points further 
north than depicted by Darsie and Ward [14].

The feature classes and regularization parameters var-
ied among the species for the best Maxent model con-
figuration (Additional file 1: Table S2). We also reported 
measures of prediction accuracy in geographic space 
(omission rates and AUC) and model explainability 
(AICc). After selecting the final model configuration and 
running the bootstrapped models, the resulting mean 
species distribution maps showed variability in the spe-
cies ranges between all seven species, both in North 
America (Fig.  3) and North America and South Amer-
ica (Fig. 4). In North America, Cx. pipiens had the most 
disparate habitat suitability surrounding urban areas, 
whereas Cx. tarsalis had the most widespread suitability 
across the temperate and subtropical regions of North 
America, throughout both urban and rural areas. The 
geographical ranges of Cx. restuans and Cx. salinarius 
were more limited to the  eastern and Midwestern USA 
and the Central Plains of Canada, with the range for Cx. 
salinarius dropping further south into Central America 
and the Caribbean. In North America and South Amer-
ica, Cx. erraticus and Cx. quinquefasciatus had a larger 
range of habitat suitability compared to Cx. nigripalpus, 
which was more limited to the tropics and subtropics. In 
North America, Cx. erraticus showed a similar pattern of 
habitat suitability to Cx. salinarius. 

The geographical range of Cx. pipiens was largely 
driven by the urban/built-up land cover variable, which 
was also an important driver for the distributions of 
Cx. salinarius, Cx. tarsalis, and Cx. quinquefasciatus 
(Table  2; Additional file  1: Table  S4). Measures of tem-
perature were important drivers for five of the Culex 
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species, while not as important for characterizing the 
distributions of Cx. nigripalpus and Cx. salinarius. The 
distributions of all species besides Cx. quinquefasciatus 
were driven by measures of specific humidity. Cultivated 
and managed vegetation was another land cover variable 

that was important for several species, including Cx. 
erraticus, Cx. pipiens, Cx. salinarius, and Cx. tarsalis—
all of which are noted as predominant mosquitoes in the 
agricultural plains of the USA. Taken in combination, the 
percent variable contribution (Additional file 1: Table S4) 

Fig. 1  The presence data points used in Maxent model development from several data repositories for a Culex pipiens, b Culex restuans, c Culex 
salinarius, and d Culex tarsalis. The estimated distribution of each species within the USA and Canada is shaded in gray (from Darsie et al. [14]). PHON 
Public Health of Ontario, WADOH Washington State Department of Health, NEON National Ecological Observatory Network

Fig. 2  The presence data points used in Maxent model development from several data repositories for a Culex erraticus, b Culex nigripalpus, and 
c Culex quinquefasciatus. The estimated distribution of each species within the USA and Canada is shaded in gray (from Darsie et al. [14]). For 
abbreviations, see Fig. 1
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and variable permutation importance (Table 2) highlight 
particularly important variables in structuring habitat 
suitability for different Culex mosquito species.

Although each model was developed from a unique set 
of background environmental training data, we extrapo-
lated the models to all of North America and/or South 

Fig. 3  Mean geographical distribution maps averaged across the ten bootstrapped models for predominant Culex species in North America, 
including a Culex pipiens, b Culex restuans, c Culex salinarius, and d Culex tarsalis. The relative habitat suitability is unique to each species based on 
the Maxent model development

Fig. 4  Mean geographical distribution maps averaged across the ten bootstrapped models for predominant Culex species in North America and 
South America, including a Culex erraticus, b Culex nigripalpus, and c Culex quinquefasciatus. The relative habitat suitability is unique to each species 
based on the Maxent model development
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America. By doing so, in some areas the models are 
applied to novel climate or environmental conditions. We 
created maps to identify these areas (Additional file  1: 
Figs. S3, S4). If using the map for decision support, these 
areas should be addressed with caution. These areas 
mostly include northern boreal and arctic regions, some 
tropical regions, areas with high elevation, or areas with 
exceptionally dry conditions.

The range in habitat suitability across the boot-
strapped models was low for Cx. pipiens, Cx. salinarius, 
and Cx. tarsalis, displaying confidence in the model 
output across North America (Additional file  1: Fig. 

S5). The suitability range for Cx. restuans was highly 
variable in Central America, so caution should be used 
when interpreting the results for that region. This area 
was outside the background environmental data used 
to train the Maxent model for Cx. restuans and coin-
cides with areas where the model was applied to novel 
environmental conditions (Additional file  1: Figs. S1, 
S4). The ranges for Cx. erraticus, Cx. nigripalpus, and 
Cx. quinquefasciatus all have relatively higher levels 
of uncertainty, especially across South America (Addi-
tional file 1: Fig. S6).

Table 2  Percent permutation importance of each environmental variable from Maxent models for each Culex species

Temp. Temperature, EVI enhanced vegetation index

Environmental variable Culex pipiens Culex restuans Culex salinarius Culex tarsalis Culex erraticus Culex nigripalpus Culex 
quinquefasciatus

Climate

 Annual mean temp. 26.7 4.8 6.5 6.6 0.0 1.3 2.9

 Temp. annual range 0.3 5.4 0.0 0.0 1.6 0.0 0.0

 Mean diurnal temp. range 1.1 1.8 0.0 0.0 0.0 0.0 18.4

 Maximum temp. in the warmest 
month

0.0 9.0 0.0 9.5 0.0 0.3 8.9

 Minimum temp. in the coldest 
month

12.5 0.4 2.3 8.4 18.7 0.0 15.1

 Annual mean specific humidity 3.3 13.5 12.6 3.8 0.0 0.0 0.0

 Specific humidity in the most 
humid month

10.8 1.1 1.7 30.0 18.4 60.3 2.8

 Specific humidity in the least 
humid month

0.5 14.6 0.0 0.0 3.4 7.4 1.4

Land cover

 Evergreen/deciduous needleleaf 
trees

0.1 9.2 0.1 0.2 0.4 3.3 1.0

 Evergreen broadleaf trees 0.0 0.7 0.0 0.0 1.1 0.4 13.3

 Deciduous broadleaf trees 0.2 2.0 0.3 0.8 0.1 1.5 0.4

 Mixed/other trees 0.3 1.8 0.0 0.0 12.1 0.5 1.8

 Shrubs 0.0 1.9 2.4 0.0 2.1 0.7 4.9

 Herbaceous vegetation 0.1 12.1 0.8 0.1 10.1 0.5 2.0

 Cultivated and managed vegeta‑
tion

12.3 2.0 30.2 27.2 13.8 1.6 3.2

 Regularly flooded vegetation 0.0 3.3 0.0 0.0 0.0 0.0 0.0

 Urban/built-up 25.6 1.2 21.9 12.4 5.7 0.8 14.1

 Snow/ice 0.0 0.0 0.0 0.5 0.0  < 0.1 0.0

 Barren 0.0  < 0.1 0.0 0.0 0.0 0.0 0.5

 Open water 0.4 1.6 0.9 0.0 0.4 0.2 0.6

Habitat

 Evenness of EVI 0.1 7.5 0.0 0.0 3.7 2.9 0.0

Topography

 Elevation 5.7 0.7 11.9 0.5 8.4 9.6 5.9

 Roughness index 0.0 0.0 0.0 0.0 0.0 0.0 0.0

 Slope 0.0 5.3 8.4 0.0 0.0 3.1 2.5

 Terrain ruggedness index 0.0 0.0 0.0 0.0 0.0 5.5 0.1
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Discussion
We used contemporary mosquito data, environmental 
drivers, and an ecological niche model to create updated 
estimates of the geographical range of seven predominant 
Culex species in North America and South America. We 
found that the geographical range varied across the seven 
species, but measures of temperature, humidity, urban/
built-up land class, and cultivated and managed veg-
etation were especially important environmental driv-
ers structuring the spatial distribution of these species. 
The geographical distributions highlighted known pref-
erences of the different species; for example, the range 
of Cx. pipiens indicated that urban environments were 
more favorable for this species, whereas the range of Cx. 
tarsalis indicated that the environments throughout the 
Great Plains of the USA, the Central Valley of Califor-
nia, and other agricultural areas, were most favorable for 
this species. Urban/build-up land cover was an impor-
tant variable for structuring the spatial distribution of 
Cx. pipiens, Cx. quinquefasciatus, Cx. salinarius, and Cx. 
tarsalis; however, the complexities of the Maxent model 
structure make it challenging to identify the relationship 
between environmental drivers and the presence of these 
mosquitoes since there are numerous parameters and 
model coefficients that could be compensating for other 
similar drivers.

Our Culex species distribution maps leverage con-
temporary mosquito presence data from several sources 
to update the hypothesized distribution for seven 
important disease vectors. The majority of these data 
sources classify which Culex species is present by using 
morphology, which is prone to error [86]. The Cx. pipi-
ens species complex consists of several morphologically 
similar species that are difficult to visually identify [87], 
which includes Cx. pipiens and Cx. quinquefasciatus 
within our study. In fact, some databases allow generic 
species identification entries of “Culex pipiens morpho-
logical group”, which we did not include in our Maxent 
models to reduce uncertainty. However, one of our data 
sources, VectorBase, includes Culex species identified 
from genomics data, eliminating some of the error from 
misidentification. Creating a species distribution map 
using genomics data alone would increase the precision 
of the estimated geographical ranges; currently, this 
approach is not feasible given the limited number of 
presence data from sequencing. Identifying the correct 
species is important since they can play different roles 
in disease transmission. For example, for WNV, while 
Cx. pipiens primarily feeds on birds, Cx. quinquefascia-
tus feeds on both birds and mammals, which may act as 
a bridge to amplify the transmission of WNV between 
avian and mammalian hosts [88]. Using genomics data 
can also highlight areas where there are hybrids, which 

can alter disease transmission dynamics [89]. With so 
many agencies in the USA collecting mosquito data for 
both abatement and control measures and scientific 
research, it would be transformative to have a central 
data repository for mosquito species and disease inci-
dence data.

Our maps may be suitable for estimating where a spe-
cies could readily spread if introduced to a new area, tar-
geting potential environmental sampling for a species, or 
analyzing potential disease pathways in response to an 
emergent mosquito-borne disease. However, there are 
several considerations when analyzing the maps. First, 
the majority of our presence data points were limited to 
North America, which could potentially generate more 
uncertainty for the hypothesized distributions in South 
America. Second, these distribution maps are a measure 
of relative habitat suitability rather than the true presence 
of the organism. Other factors, such as interannual cli-
mate conditions, land use, and species migration, govern 
the presence of the organism within the potential distri-
bution [90]. Lastly, due to the complex nature of Max-
ent models, they may behave in unexpected ways when 
extrapolated to novel climate conditions. It is important 
to recognize areas with novel climate conditions rela-
tive to the background environmental data; we note that 
these areas should be flagged as more uncertain when 
using these maps for applications.

Our distribution maps corroborate niche models 
recently developed for Culex species using different data 
sources and modeling techniques at other spatial scales. 
A global study of the distribution of Cx. quinquefasciatus 
using more presence data points in Central America and 
South America but fewer in the USA and Canada shows 
a similar pattern of Cx. quinquefasciatus limited to the 
southern part of the USA and suitable habitat throughout 
Central America and much of South America [24]. How-
ever, our map also shows a low level of habitat suitabil-
ity throughout much of the Amazon rainforest. A study 
using logistic regression models of Cx. pipiens in Canada 
shows similar results of the geographical range limited 
to the extreme southeastern portion of Canada, includ-
ing southern Ontario, Quebec, and Nova Scotia [17]. 
Our maps are limited by a lower spatial resolution to 
encompass a greater physical distance, so we cannot cap-
ture high resolution nuances in habitat suitability for a 
species compared to smaller-scale, high resolution stud-
ies. For example, our map highlights St. Johns County, 
Florida, USA as suitable for both Cx. nigripalpus and Cx. 
quinquefasciatus. However, a county-level species dis-
tribution map using Maxent and seropositive records of 
sentinel chickens as presence data points shows hetero-
geneity in suitability of habitats for these mosquito spe-
cies within the county [60].
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Understanding the contemporary distributions of the 
predominant Culex mosquitoes is critical, as their dis-
tributions will likely shift in response to climate change. 
This may expose new communities to mosquito-borne 
diseases, or result in emerging diseases [12]. Maxent 
models can also be used to project future mosquito dis-
tributions in response to climate change scenarios, pend-
ing reliable projections of future environmental and 
climate conditions (e.g., [24]). Warming temperatures 
may cause the geographical range of mosquito species 
to expand further north [17, 24]. However, increasing 
temperatures throughout the tropics and subtropics may 
begin to push some Culex species above their thermotol-
erance, causing mortality and making certain habitats or 
regions unsuitable for them [91]. The exact response to 
increasing temperatures varies between Culex species; 
for example, Cx. quinquefasciatus is likely more adapted 
to survive higher temperatures, while Cx. pipiens may be 
more sensitive to them [42].

Conclusions
Understanding the geographical distributions of disease 
vectors, such as mosquitoes, is critical for understand-
ing disease risk. We created updated distribution maps 
of Culex mosquitoes, which are vectors for numerous 
diseases, throughout North America and South Amer-
ica using contemporary observation data and a machine 
learning ecological niche model. Our distribution maps 
provide insight on the key drivers structuring the spa-
tial distribution of Culex mosquitos. Understanding the 
distribution of vectors is particularly important when a 
new disease emerges and rapid assessments need to be 
made for disease mitigation strategies. These estimates 
can help identify which communities are most at risk 
based on the primary disease vectors, and provide deci-
sion support regarding where to spray pesticides, and/or 
where to allocate healthcare resources. Further, a base-
line understanding of which environmental conditions 
structure the geographical distributions of vector species 
is necessary in order to create projections of disease risk 
in response to climate change. As temperatures warm, 
precipitation patterns change, and landscapes shift in 
response to climate change, the geographical distribu-
tions of disease vectors, and therefore the diseases they 
carry, will also change. Since the key environmental driv-
ers and resultant distribution maps for each Culex spe-
cies were different, we hypothesize that each species will 
show a unique response to climate change.
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