Skip to main content
. 2021 Oct 25;2(12):100389. doi: 10.1016/j.patter.2021.100389

Table 1.

Binary outcome prediction performance on different models using full sample data (positive label percentage: 23% for mortality, 10% for intubation, 17% for ICU transfer)

Time window Event Model type AUROC AUPRC
24 h Mortality LG 0.85 (0.02) 0.65 (0.01)
RF 0.82 (0.02) 0.63 (0.01)
SVM 0.79 (0.02) 0.61 (0.02)
XGB 0.83 (0.02) 0.65 (0.02)
RNN + CEL 0.91 (0.01) 0.82 (0.01)
RETAIN + CEL 0.92 (0.01) 0.82 (0.02)
RNN + CL 0.91 (0.02) 0.83 (0.01)
RETAIN + CL 0.92∗ (0.01) 0.84∗ (0.02)
Intubation LG 0.82 (0.01) 0.47 (0.02)
RF 0.81 (0.01) 0.46 (0.01)
SVM 0.76 (0.02) 0.42 (0.01)
XGB 0.78 (0.02) 0.46 (0.01)
RNN + CEL 0.83 (0.02) 0.49 (0.02)
RETAIN + CEL 0.85 (0.02) 0.48 (0.02)
RNN + CL 0.91∗ (0.02) 0.56∗ (0.02)
RETAIN + CL 0.91 (0.02) 0.56 (0.03)
ICU transfer LG 0.81 (0.01) 0.52 (0.01)
RF 0.82 (0.02) 0.55 (0.01)
SVM 0.79 (0.01) 0.52 (0.01)
XGB 0.78 (0.02) 0.55 (0.01)
RNN + CEL 0.83 (0.01) 0.57 (0.02)
RETAIN + CEL 0.81 (0.02) 0.57 (0.02)
RNN + CL 0.86∗ (0.01) 0.62∗ (0.02)
RETAIN + CL 0.85 (0.01) 0.59 (0.02)
48 h Mortality LG 0.85 (0.01) 0.64 (0.02)
RF 0.81 (0.01) 0.61 (0.02)
SVM 0.81 (0.01) 0.63 (0.01)
XGB 0.88 (0.01) 0.69 (0.01)
RNN + CEL 0.90 (0.02) 0.82 (0.02)
RETAIN + CEL 0.92 (0.01) 0.83 (0.01)
RNN + CL 0.92 (0.02) 0.82 (0.01)
RETAIN + CL 0.93∗ (0.01) 0.84∗ (0.01)
Intubation LG 0.79 (0.01) 0.45 (0.02)
RF 0.77 (0.02) 0.44 (0.01)
SVM 0.73 (0.01) 0.39 (0.01)
XGB 0.82 (0.01) 0.49 (0.02)
RNN + CEL 0.69 (0.04) 0.40 (0.03)
RETAIN + CEL 0.78 (0.03) 0.39 (0.03)
RNN + CL 0.86 (0.03) 0.54 (0.02)
RETAIN + CL 0.93∗ (0.01) 0.51∗ (0.03)
ICU transfer LG 0.79 (0.02) 0.50 (0.01)
RF 0.81 (0.01) 0.54 (0.01)
SVM 0.77 (0.02) 0.49 (0.02)
XGB 0.81 (0.01) 0.57 (0.02)
RNN + CEL 0.80 (0.01) 0.54 (0.02)
RETAIN + CEL 0.81 (0.02) 0.52 (0.02)
RNN + CL 0.83 (0.02) 0.60 (0.02)
RETAIN + CL 0.83∗ (0.01) 0.59∗ (0.02)

All predictions are calculated from 10-fold cross-validation, for which we record the mean value and standard deviation as confident intervals across folds. Asterisks (∗) indicate best model performance per event.