Skip to main content
. 2021 Oct 25;2(12):100389. doi: 10.1016/j.patter.2021.100389

Table 2.

Binary outcome prediction performance on different models using restricted sample data (positive label percentage: 7% for mortality, 5% for intubation, 7% for ICU transfer)

Time window Event Model type AUROC AUPRC
24 h mortality LG 0.78 (0.02) 0.51 (0.02)
RF 0.61 (0.02) 0.24 (0.03)
SVM 0.60 (0.02) 0.22 (0.02)
XGB 0.65 (0.02) 0.25 (0.01)
RNN + CEL 0.83 (0.03) 0.53 (0.05)
RETAIN + CEL 0.86 (0.02) 0.50 (0.05)
RNN + CL 0.91∗ (0.03) 0.62∗ (0.04)
RETAIN + CL 0.91 (0.01) 0.59 (0.05)
intubation LG 0.76 (0.02) 0.33 (0.02)
RF 0.75 (0.01) 0.34 (0.01)
SVM 0.75 (0.02) 0.32 (0.02)
XGB 0.77 (0.02) 0.39 (0.02)
RNN + CEL 0.79 (0.03) 0.35 (0.03)
RETAIN + CEL 0.80 (0.02) 0.35 (0.03)
RNN + CL 0.88∗ (0.02) 0.48∗ (0.03)
RETAIN + CL 0.88 (0.02) 0.45 (0.02)
ICU transfer LG 0.77 (0.01) 0.39 (0.02)
RF 0.74 (0.01) 0.36 (0.02)
SVM 0.76 (0.02) 0.38 (0.01)
XGB 0.78 (0.02) 0.36 (0.01)
RNN + CEL 0.78 (0.01) 0.41 (0.02)
RETAIN + CEL 0.76 (0.03) 0.43 (0.04)
RNN + CL 0.86 (0.02) 0.53∗ (0.03)
RETAIN + CL 0.85∗ (0.02) 0.51 (0.03)
48 h mortality LG 0.77 (0.02) 0.33 (0.02)
RF 0.57 (0.02) 0.12 (0.02)
SVM 0.62 (0.02) 0.19 (0.03)
XGB 0.69 (0.02) 0.29 (0.02)
RNN + CEL 0.85 (0.03) 0.55 (0.04)
RETAIN + CEL 0.90 (0.03) 0.53 (0.03)
RNN + CL 0.92∗ (0.03) 0.63 (0.04)
RETAIN + CL 0.91 (0.02) 0.64∗ (0.04)
intubation LG 0.79 (0.01) 0.36 (0.02)
RF 0.78 (0.02) 0.35 (0.01)
SVM 0.79 (0.01) 0.34 (0.01)
XGB 0.82 (0.02) 0.40 (0.01)
RNN + CEL 0.70 (0.03) 0.34 (0.04)
RETAIN + CEL 0.74 (0.02) 0.31 (0.03)
RNN + CL 0.83 (0.02) 0.44 (0.02)
RETAIN + CL 0.85∗ (0.02) 0.44∗ (0.03)
ICU transfer LG 0.79 (0.02) 0.41 (0.01)
RF 0.75 (0.01) 0.35 (0.01)
SVM 0.77 (0.01) 0.37 (0.02)
XGB 0.79 (0.01) 0.41 (0.02)
RNN + CEL 0.72 (0.04) 0.38 (0.03)
RETAIN + CEL 0.75 (0.04) 0.43 (0.04)
RNN + CL 0.82∗ (0.01) 0.51∗ (0.02)
RETAIN + CL 0.82 (0.02) 0.50 (0.03)

All predictions are calculated from 10-fold cross-validation, for which we record the mean value and standard deviation as confident intervals across folds. Asterisks (∗) indicate best model performance per event.