Table 5.
Hyperparameter values.
Hyperparameter | Value/Description |
---|---|
Text embedding | Dimension: 250 |
BLSTM layer | 2 layers; 250 hidden units in each (Forward and backward) |
Dense layer | 3 layers; First 2 layers have 150 and 75 units respectively and the last one is output (Dense) |
Drop-out rate | Word embedding: 0.3; Dense layer: 0.2 each; |
Activation function | Conv1D, BLSTM, Dense: ReLU; Output dense layer: Sigmoid; |
Adam optimizer | Learning rate 0.001–0.00001; 0.8; |
Validation | Training and validation split 80/20; |
Epochs and batch | Epochs 50; batch size 68; |