Skip to main content
. 2021 May 16;23:100135. doi: 10.1016/j.osnem.2021.100135

Table 5.

Hyperparameter values.

Hyperparameter Value/Description
Text embedding Dimension: 250
BLSTM layer 2 layers; 250 hidden units in each (Forward and backward)
Dense layer 3 layers; First 2 layers have 150 and 75 units respectively and the last one is output (Dense)
Drop-out rate Word embedding: 0.3; Dense layer: 0.2 each;
Activation function Conv1D, BLSTM, Dense: ReLU; Output dense layer: Sigmoid;
Adam optimizer Learning rate 0.001–0.00001; beta1= 0.8;
Validation Training and validation split = 80/20;
Epochs and batch Epochs = 50; batch size = 68;