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Abstract 
Determining the composition of bacterial communities beyond the 
level of a genus or species is challenging because of the considerable 
overlap between genomes representing close relatives. Here, we 
present the mSWEEP pipeline for identifying and estimating the 
relative sequence abundances of bacterial lineages from plate sweeps 
of enrichment cultures. mSWEEP leverages biologically grouped 
sequence assembly databases, applying probabilistic modelling, and 
provides controls for false positive results. Using sequencing data 
from major pathogens, we demonstrate significant improvements in 
lineage quantification and detection accuracy. Our pipeline facilitates 
investigating cultures comprising mixtures of bacteria, and opens up 
a new field of plate sweep metagenomics.
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Introduction
High-throughput sequencing technologies have enabled research-
ers to study bacterial populations in unprecedented detail using 
whole-genome sequencing of pure individual bacterial colonies.  
Sequencing of individual isolates has provided insights into anti-
microbial resistance and the complex ecology of the spread of  
antimicrobial resistant variants globally. The application of  
community profiling metagenomics, in which the 16S rRNA gene 
is sequenced from complex multi-species samples, can provide  
information about the composition and dynamics of highly diverse 
bacterial populations. However, the resolution of this approach 
is limited due to insufficient nucleotide variation1 and profiling  
beyond the level of genus/species is generally not possible.  
Whole-genome shotgun metagenomics delivers a much higher 
resolution than 16s rRNA sequencing2 but widespread applica-
tion is hindered by the cost associated with sequencing a sample 
to a sufficient depth to capture the diverse set of organisms and  
strain-level variation that may be present in the sample3.

Current methods for taxonomic profiling of bacteria from  
sequencing data4 typically perform well only up to the species-
level5 or focus on analysing predetermined single nucleotide 
variants (SNVs) and/or marker genes to capture the variation con-
tained in a mixed colony of closely related strains6–8. Sequencing 
isolated colonies offers means to ignore this variation but only  
focusing on pure colonies is insufficient for many potential appli-
cations9,10. Furthermore, whilst the SNV-based approach has been 
successful in studies of the history of the human population,  
focusing solely on SNVs inadequately captures the greater 
variability and different modalities of variation in bacterial  
genomes. Conversely, solely gene-based approaches can cap-
ture some of this while potentially losing finer detail. Therefore, 
we aimed to strike a balance between these two approaches by  
making use of a complete genome reference database.

Here, we have developed the mSWEEP pipeline, which is  
designed to make efficient use of large collections of refer-
ence genomes that are available for numerous important human  
pathogens and other culturable bacterial species. mSWEEP 
combines clustering of the reference genomes into biologically 
relevant groups, fast pseudoalignment of reads to the references,  
fast and accurate probabilistic inference of the cluster abundances 

and a method for controlling false positive detections. Similar  
methods taking advantage of pseudoalignment either with11,12  
or without13 the application of probabilistic modelling have  
been developed but we show that our combination of cluster-
ing with large reference collections vastly increases the accuracy  
of obtained estimates.

Although applicable to any scenario where reference genomes 
for the sequenced bacteria are available, mSWEEP specifically 
enables a new kind of high-resolution analysis in plate sweep  
metagenomics, where a mixture of colonies is harvested 
from an enrichment culture by sweeping the whole plate in  
contrast to isolating a single colony. Plate sweep experiments  
fall between whole-genome sequencing of single colonies and  
culture-independent metagenomics by analysing the entire  
complexity of a community from a specific growth medium. 
Since the potential species are restricted in advance by the 
growth medium, plate sweeps offer a cost-effective way to  
obtain high-depth sequencing data from only the target organ-
isms of interest and reduce potential sources for bias when 
comparing enrichment cultures from different timepoints. As  
illustrated in our experiments, this setting is ideal for analys-
ing samples representing populations of pathogenic bacteria, 
where the infecting species of primary interest have gener-
ally been previously encountered and sequenced frequently.  
By leveraging on existing high-resolution genomic pictures of 
pathogen populations, mSWEEP provides means to address 
a range of novel biological questions related to within-host  
variation, transmission and the effect of ecological factors on  
the microbial diversity present in samples.

Results
Lineage identification
Abundance estimation with mSWEEP is performed in two phases: 
reference preparation, performed once for a given reference  
collection, and analysis of samples (Figure 1). Reference prepa-
ration consists of defining a reference sequence database and  
grouping the sequences according to biological criteria such 
as sequence type (ST), clonal complexes (CC), or by using a  
clustering algorithm for bacterial genomes. Grouping related  
reference sequences is essential in enabling identification of the 
taxonomic origin of each read11 and enables abundance estima-
tion when the sequencing reads originate from a sequence having  
no exact match in the reference database but which is represented 
by sequences from closely related organisms within the same  
group (typically bacterial lineage). Consequently, accuracy of 
the abundance estimates provided by mSWEEP is reliant on an  
extensive reference database and a biologically meaningful  
grouping.

We constructed detection thresholds for the groups during the  
reference preparation from the reads used to assemble the  
reference sequences (Figure 1). We performed repeated in silico 
experiments in each reference group, where we randomly chose 
one reference sequence from the group, removed it from the  
reference set, resampled from the sequencing reads used to  
assemble the removed sequence, and estimated abundances 
from the resampled reads with mSWEEP. This process was  
repeated within the group for a predetermined number of itera-
tions, and then repeated in all other groups within the reference  

           Amendments from Version 1

We have revised our manuscript based on the feedback provided 
by the two reviewers. Notably, we have added a new synthetic 
experiment assessing the performance of mSWEEP in a setting 
with many Escherichia coli lineages simultaneously present at 
wildly varying coverages ranging from 50× to 0.10×. The results 
from this assessment are included as Figure 5 in the revised 
manuscript. Additionally, we have expanded the Discussion 
section to cover a limitation of our method related to the 
presence of novel or uncharacterized lineages in the samples, 
and also made several changes and additions throughout the 
manuscript related to the minimum sequencing depth required 
to use mSWEEP. Finally, we would like to thank both reviewers for 
their time and apt comments that have enabled us to improve 
the quality of our manuscript.
Any further responses from the reviewers can be found at 
the end of the article
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set. The detection threshold for a given group was deter-
mined by first examining abundance estimates for the given 
group from the repeated experiments where a different group 
was the true source (meaning estimates for the given group 
should ideally be zero), and determining from those estimates  
a source-specific cutoff point where only a preset number 
of estimates exceed the cutoff. After determining the  
source-specific cutoffs in all other groups, the detection thresh-
old of the given group is obtained by taking the maximum  
of the source-specific cutoffs. The detection thresholds are 
used to filter the relative abundance estimates by setting the  
estimates below the cutoff point to zero. Our approach also  
provides a statistical confidence score for estimates exceeding  
the detection thresholds with the confidence determined by 
the number of estimates from the resampled reads allowed  
to exceed the source-specific cutoffs.

The first phase of analysis is pseudoaligning14 sequencing reads 
to the reference sequences. Pseudoalignment produces binary  
compatibility vectors indicating which reference sequences a read 
pseudoaligns to. Based on the pseudoalignment count to each  
reference group, we defined the likelihood of a read originating 
from each of the groups. We assumed that 1) if multiple groups 
have the same total number of reference sequences, the group  
with a higher fraction of pseudoalignments is more likely the source 

for the read, and 2) the likelihood of the read to originate from a 
group is not dependant on the number of reference sequences 
in the group. Basing the likelihood on the pseudoalignment  
counts defines an extension of a probabilistic model that has  
previously been applied in RNA-sequencing15,16 and to bac-
terial data11. The extended model utilizes multiple reference 
sequences from each group as opposed to the previous attempts  
that rely on selecting a single, best-representative sequence 
from each of the groups11 . Our model obtained the relative  
abundances of the reference groups by considering the gen-
erating process for a sample as a pooling of sequencing  
reads originating from the reference groups according to some 
unknown proportions, corresponding to a statistical mixture 
model. We fit the model and inferred the mixing proportions  
using variational inference16.

Assigning single-colony isolates to lineage
We compared the performance of the mSWEEP pipeline (using 
kallisto14 version 0.45 for pseudoalignment and mSWEEP 
software version 1.1.0 for abundance estimation) against two  
existing methods capable of identification beyond the species-level 
based on leveraging reference sequence collections: metakallisto13 
(version 0.45) and the BIB pipeline11 (commit hash 2999540). 
We additionally attempted to compare mSWEEP with ditasic12  
(commit hash 90fee24b), but the comparison proved infeasible  

Figure 1. Flowchart of the mSWEEP pipeline describing a typical workflow for relative abundance estimation. The input part 
refers to the input data, reference preparation to the operations that need to be performed once per set of reference sequences, and 
analysis contains the steps run for every sample.
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due to ditasic’s quadratic scaling in the number of refer-
ence sequences — based on running the indexing step in dita-
sic for one day, indexing the reference data would have taken  
roughly 90 days and over 30 terabytes of disk space. The  
main differences between the chosen methods are that metaka-
llisto attempts to identify individual strains based on all  
available sequences, BIB uses grouped reference sequences  
with a single representative sequence from each group to  
assign abundances to the groups, and mSWEEP identifies the 
presence of lineages by using grouped reference sequences  
with all the available sequence representatives.

As the reference data, we used bacterial sequence assemblies  
from four studies17–20 augmented by single representa-
tive sequences from 27 species; a total of 3815 reference 
sequences. We grouped the sequences in either clonal complexes  
based on multilocus sequence typing21, lineages identified 
with the BAPS clustering algorithm22, or on the species-level.  
We removed 504 sequences from all groups represented by  
more than one sequence to create a dataset where the true 
group is known but the true sequence is not available to the 
method pipelines being compared (Table 1). In addition to the  
test data described in Table 1, we referred to a study sequenc-
ing 77 K. pneumoniae, K. variicola, and K. quasipneumonae 
isolates from Thailand23 to assess the accuracy of all methods 
when the reference sequences and the test samples were not  
obtained from the same source. 

mSWEEP significantly outperformed BIB and metakallisto in 
cases measuring accuracy of abundance estimates in the true group  
(Figure 2; p < 10-9, in all comparisons, Wilcoxon signed-rank 
test; median error in all estimates for mSWEEP was 0.00003, for 
BIB 0.23, and for metakallisto 0.54). When measured by high-
est estimates in the incorrect groups, mSWEEP outperformed the 
other two methods in all cases except the S. epidermidis 11-group  
clustering and the K. pneumoniae out-of-reference samples  
(Figure 2; p < 0.0012, Wilcoxon signed-rank test; median error 

in all estimates for mSWEEP was 0.000002, for BIB 0.05, and  
for metakallisto 0.01). In these two latter cases, mSWEEP and 
metakallisto performed similarly (Figure 2; p > 0.10 when  
testing for the difference in accuracy in either direction, Wilcoxon 
signed-rank test). Since metakallisto attempts to identify strains 
rather than lineages, the observed behaviour is likely a result  
of the majority of the abundance estimates being spread  
across strains belonging to the true lineage. We also examined 
the performance of a modified version of metakallisto, where 
the estimates for individual sequences within the lineages are 
pooled together by summing them up. However, this modifica-
tion did not increase the performance of metakallisto enough to 
realistically compete with the results from mSWEEP (Extended  
Data Figure S124).

We additionally compared mSWEEP and BIB by measuring 
accuracy in classification based on assigning the samples to the 
lineage with the highest abundance estimate. With this criterion, 
both methods correctly identified the true clonal complex in all  
100 C. jejuni and C. coli isolates, and in all 81 S. epidermidis  
isolates when using the 3-cluster grouping. In the 11-cluster  
S. epidermidis grouping, mSWEEP correctly identified the true 
lineage in 78 and BIB in 80 samples. In the 188 E. coli and 129  
K. pneumoniae isolates, mSWEEP identified the lineage  
correctly in 187 and 126 samples, while BIB correctly identified 
184 and 117. The K. pneumoniae and E. coli isolates that were  
misidentified by mSWEEP likely contain a sequence type that 
is missing from the reference, or are mixtures of K. pneumoniae 
and E. coli lineages (Extended Data Figures S1a and S1b24). Out 
of the last 61 out-of-reference K. pneumoniae samples, mSWEEP  
identified the true origin in all 61 isolates and BIB in 53.

The least accurate estimates for all methods (measured by the 
true positives and highest true negatives) were obtained for the 
81 S. epidermidis isolates when using the second level of the  
hierarchical BAPS clustering with 11 groups (Figure 2), where 
none of the three methods reached the level of accuracy observed 

Table 1. Reference data used to perform the analyses and to evaluate the performance of mSWEEP, 
metakallisto, and BIB. Clonal complexes are defined as either single-locus variants from the central sequence 
type (Campylobacter jejuni, Campylobacter coli) or double-locus variants (Klebsiella pneumoniae and Escherichia 
coli). The Staphylococcus epidermidis lineages were identified in the original study with the BAPS clustering 
algorithm.

Grouping Species Sequences Test 
sequences

Groups Test groups

Clonal complex Campylobacter coli 120 27 1 1

Campylobacter jejuni 462 73 13 11

Escherichia coli 1509 188 132 54

Klebsiella pneumoniae 1351 129 79 39

Species Klebsiella quasipneumoniae 9 3 1 1

Klebsiella variicola 12 3 1 1

Staphylococcus aureus 181 1

Lineage Staphylococcus epidermidis 143 81 3 3

Species Multiple species with single sequences 28 28

total 3815 504 259 110
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Figure 2. Error of abundance estimates in single-colony isolates (lower is better). True positives refer to the relative abundance 
estimates in the true lineage (mSWEEP and BIB) or the highest estimate for a strain within the true lineage (metakallisto). Highest true 
negatives refer to the highest estimate in the incorrect lineages. The absolute error is the difference from an abundance of one (True 
positives) or from zero (Highest true negatives).

in the other cases. These inaccuracies are explained by the compa-
rably small reference for the S. epidermidis population (Table 1),  
which does not exhibit a clear cluster structure (Extended Data  
Figure S3a24) beyond the coarsest BAPS clustering into three 
groups. The lack of structure causes the abundance estimates  
to spread across the new groups defined within each of the three 
top-level clusters (Extended Data Figure S2c24).

We examined the grouping of the reference sequences by 
producing t-SNE25 plots of 31-mer distances estimated with 
mash26 (version 2.0) between the reference sequences including 
the test isolates (Figure 3; Extended Data Figures S2a-c24). The  
C. jejuni and C. coli reference conforms to the clonal complex  
grouping while the S. epidermidis population only conforms  
to the coarsest 3-group BAPS clustering. The t-SNE plots  
correctly place the assemblies into the true groups but the 
method does not preserve the distances between the points or the  
clusters25 and is on its own unsuited to analysing mixed isolate 
data.

Processing the 504 single-colony isolates with mSWEEP 
took an average of 23 minutes and 50 seconds per sample,  
metakallisto an average of 24 minutes and 42 seconds, and BIB 
an average of 143 minutes and 46 seconds per sample using 
the same reference data. mSWEEP used a maximum of 79.5 
GB RAM (maximum of 24.6 GB counting only the abundance  
estimation step), metakallisto 108.1 GB, and BIB 31.5 GB. Resource 
usage was obtained by running each sample separately with a  
total of eight processor cores available. Reads were pseudoaligned 

with kallisto14 (version 0.45) against the test reference of 3311 
sequences (obtained from the 3815 reference sequences in Table 1  
by removing the 504 single-colony isolates) in 259 groups 
(mSWEEP and metakallisto), or aligned with bowtie227 (version 
2.3.5.1) against a reference consisting of randomly selected repre-
sentative sequences from each of the 259 groups (BIB).

Quantifying synthetic mixtures of single-colony reads
We investigated the performance of mSWEEP in quantifying 
samples containing multiple lineages of bacteria from the same  
species by synthetically mixing reads from the single-colony  
samples. Each mixture sample was set to contain a total of one  
million reads from three single-colony samples from three line-
ages, with randomly assigned proportions from the set (0.20, 0.30,  
0.50). We used a balanced incomplete block design to ensure 
that all lineages appear in at least 13 mixture samples, and each  
single-colony isolate appears at least once, producing 161  
C. jejuni and C. coli, 477 E. coli, 584 K. pneumoniae, and  
100 S. epidermidis synthetic mixture samples in total.

Compared to abundance estimates from the single-colony sam-
ples, estimates obtained from the synthetic mixture samples show 
that the presence of sequencing reads from multiple lineages in a  
synthetic mixture results in an error distribution resembling the 
one observed in the single-colony samples (Figure 4; Extended  
Data Figure S424). Estimates from the synthetic S. epidermidis  
mixture samples using the 11-group split produce an error  
distribution that differs from the single-colony error distribution 
more than that observed with the other groupings.
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Figure 3. C. jejuni and C. coli reference 31-mer embedding. t-SNE embedding of the 31-mer distances between the reference isolates 
shows that the reference population conforms relatively well to the clonal complex grouping. The test cases, indicated by circles, are all 
correctly identified by mSWEEP and t-SNE also places them within or near the true source group.

Figure 4. False positives in single-colony samples versus synthetic mixtures. Abundance estimates from synthetic mixtures of 
three lineages do not result in higher number of false positive estimates when compared to estimates from the single-colony samples, as 
measured by the largest estimate for a lineage that does not contribute any sequencing reads. The only exception is the S. epidermidis 11-
cluster case which is not accurately identified in neither the synthetic mixtures nor the single-colony samples.
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Comparing the empirical distributions of the errors from the 
synthetic mixtures and the single-colony isolates (Extended 
Data Figures S3 and S424) shows that for estimates exceeding a  
threshold of 0.016, the accuracy of estimates from the mixture 
samples stochastically dominates the accuracy observed in the sin-
gle-colony samples, except in the S. epidermidis 11-cluster case  
where stochastic dominance is observed only above a threshold of 
0.17. Stochastic dominance establishes a partial ordering between 
two random variables and, in this case, implies that estimates 
from the mixture samples are more accurate (in a probabilistic 
sense) than estimates from the single-colony samples when the  
estimates are large enough. In the S. epidermidis 11-cluster case 
we do not establish the mixture estimates as more accurate since  
the distribution (Extended Data Figure S424) and the observed 
threshold differ considerably from the other cases.

The results indicate that above this relatively low background 
noise level of 0.016, quantifying mixture samples is not expected 
to produce more false positive results than would be obtained  
from single-colony samples. In the synthetic mixtures, the observed 
background noise level corresponds to sequencing depths of around 
0.30x (E. coli and K. pneumoniae) and 0.65x (S. epidermidis), 
which provides the bare minimum sequencing depth required to 
distinguish between the lineages of each species in samples with 
similar read lengths and sequencing depth. This justifies simplifying 
the problem of determining the detection thresholds accompanying 
mSWEEP, which provide a threshold for reliable detection of the  
reference groups in mixture samples, to determining the thresh-
olds based on the single-colony isolates. Due to the require-
ment that the abundance estimates must be large enough for this  
assumption to hold, we incorporate the threshold observed in  

comparing the estimates into the detection thresholds by using 
it as the minimum threshold regardless of the results from the  
resampling procedure.

We also evaluated the performance of mSWEEP with syn-
thetic mixtures containing more complex strain compositions. 
Namely, we produced 87 synthetic mixture samples each con-
sisting of 10 E. coli strains from 10 different lineages mixed 
together at varying relative abundances (0.50, 0.25, 0.125, 
0.0625, 0.0312, 0.0156, 0.0078, 0.0039, 0.0020, 0.001). The 
total number of reads in each sample was set to correspond to  
sequencing a single typical E. coli genome at 100× sequenc-
ing depth (around 5 million 100bp reads), resulting in sequenc-
ing depths ranging from 50× to 0.10× for the 10 different strains.  
Overall the design is intended to mimic performing plate sweeps 
with a similar amount of sequencing resources that would  
be available for the same number of colony picks.

The boxplot displays the relative error in the relative  
abundance estimates from mSWEEP compared against the true 
values. Error of >0% (horizontal axis) denotes estimates from  
mSWEEP exceeding the true value, while error of <0% denotes 
estimates lower than the true value. The dashed gray line  
corresponds to 0% error. The rows (vertical axis) separate 
the estimates by their approximate sequencing depth, with 
each sample contributing one value (estimate for one lineage)  
to each row.

The results from the complex synthetic mixtures (Figure 5) show 
that mSWEEP accurately recovers the relative abundances for 
the dominant lineages (50× to 12.50× sequencing depths) and 

Figure 5. Relative error in 87 complex synthetic mixtures comprising 10 E.coli lineages at varying sequencing depths.
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Figure 6. Difference in Escherichia coli clonal complex (CC) and sequence type (ST) lineage abundances during and after 
diarrhoea. The plot displays the differences in unfiltered relative abundance estimates before and after treatment in 20 most common 
(defined by the sum of relative abundances; blue denotes increase, red decrease) E. coli reference lineages or other species across all 47 
paired samples represented in the columns.

identifies the mid-range lineages (6.25× to 1.56×) correctly but 
underestimates their relative abundance. As a result, the rela-
tive abundances of the two most dominant lineages are slightly 
overestimated because, taken together, the relative abundance  
estimates must sum up to 1. As for the lineages with < 1× 
sequencing depth, their relative abundances are not recov-
ered at all, likely because the differences between the E. coli 
lineages are not pronounced enough to separate the strains at  
this sequencing depth. Coincidentally, the observed accuracy  
cut-off point roughly corresponds to the previously estab-
lished background noise level of 0.016, or approximately 1.6×  
sequencing depth.

Results from plate sweeps
We applied the mSWEEP pipeline to three datasets containing 
multiple lineages of the same species: 116 samples from C. coli 
and C. jejuni, 96 paired samples from E. coli, and 179 samples  
from K. pneumoniae. The E. coli samples were obtained from 
MacConkey plate sweeps from a cohort study of 48 Vietnamese  
children during a diarrhoeal episode (48 samples), and when 
healthy (48 samples), purposefully expecting multiple lineages in 
each sweep. Conversely, the C. coli/C. jejuni and K. pneumoniae 
datasets were presumed pure cultures but flagged during down-
stream analysis as mixed. In all three experiments, we applied 
the detection threshold procedure (described in more detail in 
the Methods section) to filter the resulting abundance estimates.  
We used two thresholds, corresponding to confidence scores  
of 0.99 and 0.90, from now on referred to as filtering by 0.99 or  
0.90 confidence thresholds.

Population structure of commensal Escherichia coli 
from Vietnamese children
The most abundant sequence type complex identified in over 
half the samples (diarrhoeal and control samples) was CC10  

(Figure 6; Extended Data Table S128). Notably, 95% of the sam-
ples (46/48 Diarrheal and 45/48 Healthy) harboured multi-
ple antimicrobial resistance genes (identified using the ARIBA  
software29) that belonged to three or more classes of drugs 
(Extended Data Figure S624), which we defined as multi-drug 
resistance30. One sample was found to contain the plasmid  
associated resistance gene MCR-1, which confers resistance to 
colistin, a last line antimicrobial drug31. We found no significant  
difference in the antimicrobial resistance gene profile between 
the healthy and diarrhoeal samples (Two tailed, Fisher’s 
exact test p=0.5). Extended Data Table S232 details how many  
samples harboured antimicrobial resistance genes in each  
antimicrobial drug class; the full antimicrobial resistance gene  
data can be found in Extended Data Table S333.

We additionally examined differences between the commu-
nity composition in the healthy and diarrhoeal samples based on  
both the distribution of the relative abundance estimates (alpha 
diversity), and changes in the identified strains (beta diversity). 
The alpha diversity, measured by Shannon entropy (Extended 
Data Figure S724), showed no significant differences between the 
two paired samples (p > 0.90, Wilcoxon signed-rank test; median 
Shannon entropy in the diarrhoeal samples was 0.60, and in the 
healthy samples 0.59). However, we found significant shifts in 
lineage composition (see Figure 6) when comparing the beta 
diversity, measured by Bray-Curtis dissimilarity, between the two  
samples (p < 0.005, multivariate-ANOVA). Tests were performed 
on relative abundance estimates filtered by both 0.99 and 0.90  
confidence thresholds.

Co-occurrence patterns in Campylobacter lineages
The network diagram (Figure 7a) shows ST-clonal complex 
(CC) (nodes) of the isolate genomes with the thickness of edges  
representing the number of times that isolates from these CCs 
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are found together in a single plate sweep sample, and the size 
of the node the total number of observations. The overall amount 
of co-occurrence between CCs (Figure 7b) provides basic  
information about the frequency that CCs are found together 
in natural populations. C. jejuni CCs 45, 661, 607, 353, 48, and  
C. coli CC828 are all found in samples with 4 or more other 
CCs and there is evidence that isolates from some CC’s cohabit 
with other species including Campylobacter lari and Bacillus  
subtilis. While the sample set in this study was deliberately 
selected to include mixed isolate samples, quantifying the  
co-occurrence of species and lineages can provide information 
about different ecologies or lineage interactions, particularly  
when CCs are known to have varied sources, such as different 
hosts.

There is some preliminary evidence that common clinical line-
ages CC45 and CC21 are rarely found together in a single sample 
(plate sweep) while other lineages, such as the chicken associated  
CC353, are frequently isolated from samples containing multi-
ple strains. From an evolutionary perspective, it is unlikely that 
closely related strains can stably occupy identical niches because 
competition would be expected to lead one to prevail. The results  
demonstrate co-occurrence of strains within individual host  
animals and multi-strain infections in humans and provide  
information about the complex ecology of co-occurring interact-
ing species that leads to the observed community structure in a  
given sample.

Multi-drug resistant Klebsiella pneumoniae coexist with 
other lineages
The coexistence network (Figure 8) and the sample-lineage heat-
map (Extended Data Figure S824) for the 179 human clinical  
samples of K. pneumoniae demonstrates common co-occur-
rence of K. pneumoniae with a wide variety of E. coli lineages, 
as well as occasional co-occurrence with Acinetobacter bau-
manii and other species. Since both E. coli and A. baumanii 
grow on the media used for culture of K. pneumoniae, frequent  
co-occurrence in samples selected for their diversity is expected. 
Clonal complexes of K. pneumoniae centered on sequence types 
associated with high levels of multi-drug resistance (e.g. ST258, 
ST147 and ST101) were frequently observed co-existing with 
a variety of other K. pneumoniae lineages as well as with each 
other, and with other important Gram-negative pathogens. 
Developing a deeper understanding of these community struc-
tures and interactions will be critical for monitoring horizontal  
transfer of antimicrobial resistance genes between taxa.

Discussion
Metagenomics using high-throughput sequencing has become a 
common approach when investigating the bacterial composition 
of different environments or changes introduced by intervention,  
such as in the human gut microbiome. In most epidemiological 
applications, the relevant target organisms are culturable using 
established media which offers a clear advantage to obtaining  

Figure 7. C. jejuni and C. coli clonal complex (CC) coexistence in 116 samples. The coexistence network in panel a was constructed 
from relative abundance estimates filtered by detection thresholds constructed using a confidence score of either 0.90 (dashed edges) or 
0.99 (solid edges). An edge between two groups represents coexistence in at least two samples with the chosen threshold. Edge size is 
proportional to the number of times the joined nodes were observed together, and node size to the total times the group was detected. 
Panel b visualizes the unfiltered relative abundance estimates in the same reference groups (rows) as in panel a, across 116 samples 
(columns).

Page 10 of 28

Wellcome Open Research 2021, 5:14 Last updated: 22 OCT 2021



high sequencing depths in a cost-effective manner. We developed 
the mSWEEP pipeline to enable high-resolution inference of the 
lineages present in plate sweeps of enrichment cultures. mSWEEP 
can be used to infer the detailed population structure of a single  
species, or the diverse populations of bacteria typically encoun-
tered in clinical and public health settings where standard cultur-
ing media is routinely used to isolate epidemiologically relevant 
organisms. This pipeline also estimates the relative abundance of  
lineages and provides means to construct reliability cut-offs with 
accompanying confidence scores. Since the cut-offs are constructed 
before analysing any sequencing data by synthetically mimick-
ing the properties of the in vitro data, the cut-offs and confidence 
scores can be used to assess the necessary sequencing depth to 
identify rare and low abundance lineages with confidence as well 
as the total number of reads required. mSWEEP was designed to 
have a minimal execution time using the latest advances in RNA-
seq analysis and its maximum memory footprint is determined 
by the pseudoalignment algorithm. We demonstrated significant  
improvements in accuracy over the previous state-of-the-art  
method in our experiments.

mSWEEP provides considerable power for improving our under-
standing of infection by recovering a true representation of  
bacteria in a complex sample. For example, genotyping stud-
ies have shown that C. jejuni and C. coli colonizing the primary 
host (birds and mammals) form clusters of related isolates that are 

host-associated34, which can be used to identify the reservoir for 
human infection35. However, multiple organisms can be isolated 
from the same sources36,37. The co-occurrence of different organ-
isms could be a snapshot in time of a wider process of lineage  
succession38 in which the resident microbiota might resist new 
colonizations or be displaced by recently acquired bacteria39,40. 
Further, we suggest we may be able to infer complex interactions  
between organisms that occupy different microniches41 and are 
not in direct competition42,43 by analysing their co-occurrence.  
Therefore, this approach provides a means to investigate the 
nature of polymicrobial infections to improve our understanding 
of the spread of a specific organism between hosts and transmis-
sion to humans in addition to enabling characterization of physi-
cal and temporal variation in the distribution of lineages among  
multi-strain samples.

Because of limitations in the initial culture and DNA iso-
lation processes, we can only infer relative (not absolute)  
abundances and spike-in methods44 must be used if an estimate 
of the absolute abundances is desired. However, only inferring 
relative abundances is not a significant limitation as the absolute 
abundances of target organisms are also subject to large biologi-
cal and technical variation45. Memory requirements for large ref-
erence collections or simultaneous analysis of multiple samples 
necessitate a dedicated computer cluster to run the analysis pipe-
line, but even for very large reference collections the resource 

Figure 8. K. pneumoniae lineage coexistence in 179 mixture samples. The coexistence network was constructed from relative 
abundance estimates remaining after filtering by the detection thresholds. Visible edges denote coexistence in at least three samples. 
Dashed edges represent coexistence when using detection thresholds corresponding to the 0.90 confidence score, and solid edges using 
the 0.99 detection threshold. Node sizes are proportional to the number of times the lineage was observed; edge sizes to the number of 
times coexistence was established.
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usage is still at the level available at most bioinformatics centres.  
Alternatively, the reference sequences can be modified to include 
only the directly relevant species, which makes mSWEEP 
widely applicable to biologists; or traditional alignment algo-
rithms employed to trade decreased memory usage for increased  
runtime. 

As with any method intended to identify sequence variation, 
the target species need to be relatively well known to allow 
building of sufficiently informative reference databases. Simi-
larly, to allow for sensible and easily interpretable inferences, 
the biological clustering of the reference database should be 
based on well-established biological entities, such as multi-
locus sequence types (STs) or clonal complexes (CCs) which 
are frequently employed as labels of lineages. These limitations  
suggest that mSWEEP is most relevant for extensively studied  
bacteria, such as pathogens, and has only limited applications  
when working with samples containing high numbers of novel 
or uncharacterized species. Some of these limitations may 
be overcome by using gene flow network based approaches 
to perform the biological clustering, better capturing the  
population structure in species strongly shaped by horizontal  
gene transfer or ecological barriers46,47, but further study in 
this area is needed. However, following the introduction of 
mSWEEP, a separate computational tool has been developed 
to assess the suitability of the reference sequences to specific  
samples and to identify cases where mSWEEP struggles due  
to the presence of reads originating from novel genome  
sequences (https://github.com/harry-thorpe/demix_check). Con-
sequently mSWEEP can also be used to estimate the quality  
of the reference collection and to discard contaminated  
or mis-identified genomes.

Strain identification from metagenomic data has been recently 
suggested by the StrainPhlAn method48. mSWEEP, and similar 
methods, are complementary to StrainPhlAn as these methods  
analyse similar data but from different directions. mSWEEP 
assigns strains present in the sample to biologically established  
genetically separated lineages and estimates the relative 
abundance of these, whereas StrainPhlAn infers SNPs and  
phylogenetic relations within the whole sample. Given the flex-
ibility and generality of the mSWEEP approach, we anticipate 
this pipeline will pave the way for numerous novel applications  
of plate sweep metagenomics in many fields of microbiology.

Conclusions
mSWEEP represents a novel means to quantify the composition 
of bacterial communities beyond the resolution offered by bacte-
rial identification methods based on 16S ribosomal RNA gene  
sequencing or whole-genome shotgun metagenomics. We have 
demonstrated significant improvements in accuracy over simi-
lar methods, and novel co-existence analyses using plate sweeps 
of enrichment cultures of the human pathogens Campylobacter  
jejuni, Campylobacter coli, Escherichia coli, Klebsiella pneu-
moniae and Staphylococcus epidermidis. We expect that 
mSWEEP will find use in similar studies of bacterial pathogens, 
where high-resolution inference is required, ample reference  
collections for the species of interest are available, and the plate  
sweep metagenomic approach can be applied in-depth at a  
fraction of the current cost of single-colony sequencing.

Methods
Reference construction
The reference sequences (Table 1, Extended Data Table S449) are 
the genomic assemblies of a number of strains or species that  
represent the organisms of interest in a sample. We used a  
collection of assemblies from four studies17–20 augmented with 
the genomes of a representative strain from 27 species that were  
identified in the real mixture data by MetaPhlAn50.

Grouping the reference sequences
We used multilocus sequence typing (MLST) of the C. coli,  
C. jejuni, E. coli and K. pneumoniae reference sequences to 
group them into clonal complexes defined by the allelic profile  
of a central sequence type, and all other sequence types that 
vary in at most a single MLST locus (C. coli and C. jejuni) 
or in at most two loci (E. coli and K. pneumoniae). The  
K. pneumoniae reference contained sequences belonging to  
K. variicola, K. quasipneumoniae, and K. quasivariicola 
which we assigned to three groups defined by the three species.  
We similarly treated the 181 S. aureus contained in the  
S. epidermidis study as a single group, and split the 143  
S. epidermidis sequences using the first and second levels  
of the hierarchical clustering produced by the hierBAPS22  
software (version 6.0). The complete grouping is provided in  
Extended Data Table S449.

Pseudoalignment
We used kallisto14 (version 0.45) with default settings to  
perform pseudoalignment. Pseudoalignment produces binary 
compatibility vectors which indicate whether the read pseudoa-
ligns to a reference sequence or not. In our model, we sum the 
pseudoalignment counts within each reference group and thus 
consider the observations of N reads r

n
 = (r

n,1
, ... , r

n,k
, ... , r

n,K
),  

n = 1, ... , N, k = 1, …, K as containing only the information 
about the number of pseudoalignments r

n,k
 within each of the K  

groups.

Abundance estimation model
We assume that the reads r

n
 are conditionally independent given 

the mixing proportions of the groups θ = (θ
1
, ..., θ

K
), and augment  

the model with the latent indicator variables I = I
1
, ..., I

N
  

which denote the true source group of each read. The joint  
distribution of the collection of reads R = r

1
, ..., r

N
, the indicator  

variables I = I
1
, ..., I

N
 for the source group, and the mixing  

proportions of the groups θ = (θ
1
, ..., θ

K
) is defined as 

             ( ) ( ) ( ) ( )
1 1

, , .
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n n n
n k

p R I p p r I k p I kθ θ θ
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The formulation in Equation (1) corresponds to a standard  
mixture model with observations r

n
, categorically distributed  

latent variables I
n
, event probability parameters θ, and the  

likelihood p(r
n
 | I

n
 = k) of observing the full pseudoalignment  

count vector r
n
 given that the group k is the true source.

Likelihood
The likelihood p(r

n
 | I

n
 = k) needs to be defined carefully in 

order to satisfy the goals of invariance to group identity and 
size, and monotonicity with increasing pseudoalignment counts 
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within a group. Given the vector r
n
, we define the likelihood  
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where B(a, b) is the beta function and a
k
,β

k
 > 0 are  

hyperparameters for the group k. 

Equation (2) and Equation (3) zero inflate the model by an 
amount roughly corresponding to the error rate in both the 
sequencing data and the reference sequences. The denomina-
tor Z(r

n
) in Equation (4) and Equation (5) is a normalizing  

constant for the likelihood and arises from normalizing  

f(r
n,k

, k) over r
n
. The derivation follows from using the identity 
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the form that f(r
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, k) has in Equation (5). Then, Z(r
n
) is obtained by  

considering normalizing over the full vector f(r
n
) = (f(r

n,1
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, K)), where k = {1,..., K : M
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The formulation of f(r
n,k

, k) in Equation (4) and Equation (5) 
intuitively arises when the probability mass function of a  
beta-binomial random variable with hyperparameters (α

k
, β

k
) is 

multiplied by the factor ( )
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 This factor is the inverse 

of the value of the probability mass function when the observed 
value is equal to the total number of sequences M

k 
in the group, 

meaning in our context a read which is compatible with all  
reference sequences in a group. Formulating the likelihood in 
this manner (Equation (4) and Equation (5)) causes groups where 
all sequences in the group are compatible with the read to have 
equal likelihoods. Compared to a model assuming independence 
between the groups, this formulation reduces the effect of the  
likelihoods being flattened in groups with large numbers of 
assigned reference sequences when compared to small groups,  
which is necessary to compare groups that differ greatly in  
size.

Reads with identical pseudoalignment count vectors r
n
 have the 

same likelihood and can be assigned into equivalence classes 

defined by the count of compatible sequences in each group.  
This enables a computational optimization where the likelihoods 
need only be calculated for the observed equivalence classes and 
then multiplied by the total number of times each equivalence  
class was observed.

Model hyperparameters
Instead of using the parametrization (α

k
, β

k
) in Equation (5), we  

use a reparameterization where 

                         
1

, .k
k k

k k k k

απ φ
α β α β

= =
+ +

                          (6)

In this parametrization, the first parameter π
k
  ∈ (0, 1) cor-

responds to the mean of the beta distribution that has been 
compounded with a binomial distribution to obtain the  
beta-binomial-derived component in Equation (5), and the 
second parameter φ

k
 > 0 represents a measure of variation in  

the success probability of each observation51.

We constrain the mean success rate π
k
 in Equation (6) to π

k
 ∊ 

(0.5, 1), which produces beta-binomial distributions with an 
increasing probability mass function52 in the number of compat-
ible sequences r

n,k
, which leads to the definition in Equation (5)  

having the same property. Increasing probability mass func-
tions fulfil our requirement for the likelihood that of two 
equally sized groups with different number of compatible  
reference sequences, the one with more compatible sequences is  
always a better candidate for being the true source. The values 
of the parameters (π

k
, φ

k
) are set to 110.65, 1 0.01k k k kMπ φ π

−−= = − +  to  
capture the variance in the alignment count distributions and  
perform well across the set of experiments presented.

Inference
We perform inference over the mixing proportions θ of the dif-
ferent groups using fast collapsed variational inference53. The  
method collapses the mixing proportions θ and uses natural  
gradients to optimise an approximation to the posterior distribu-
tion over the indicator variables I

n
, assuming the distribution  

factorises over θ and I
n
. The same variational Bayesian method 

was also used in BitSeqVB16 to obtain transcript expression 
levels and has been applied to estimate mixing proportions 
in bacterial sequencing data in BIB11 using a different likeli-
hood. The prior distribution on the mixing proportions θ is  
set to Dirichlet (δα, ..., δα) with δα = 1. The same prior was 
also used by BIB. Since reads originating from the same equiva-
lence class have the same likelihood, variational inference will 
yield identical posterior inferences for them. This allows us to 
perform the inference on the smaller number of equivalence  
classes rather than all reads, leading to faster inference.

Detection thresholds
Detection thresholds define a means to quantify reliable iden-
tification of the reference groups through constructing a mini-
mum relative abundance threshold on the groups. Abundance  
estimates that fall under the threshold are considered unreliable 
and set to zero. To obtain the detection thresholds (Figure 1), we  
generate 100 samples from each reference group within a species  
by resampling one million sequencing reads from a randomly 
chosen reference sequence for that group, roughly matching the 
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number of reads in our study samples, from the reads used to 
assemble the chosen sequence. Only reads corresponding to one 
sequence are used in each new sample. Reads included in the new 
samples are sampled with replacement with each read having the 
same probability of being included. The sequences used for resa-
mpling were chosen at random such that the number of reference 
sequences from each group corresponds to the square root of the 
total size of the group. Each group is represented at least once, 
except for groups which contain only one reference sequence 
where we apply the maximum detection threshold observed 
for other groups of the same species. Similarly, species that are  
represented in the reference by a single group were not resampled 
from, and the detection threshold was instead fixed at 0.05. After 
resampling, the new samples are put through pseudoalignment and 
mSWEEP abundance estimation without including the sequences 
used in resampling as pseudoalignment reference sequences.

In defining the detection thresholds, the relative abundance  
estimates obtained from the resampled sequencing reads are rep-
resented by , , ,n i jθ


 where n = 1, ..., N (in our examples we chose 

N = 100) indicates the new samples resampled from the refer-
ence group i = 1, ..., K. The third index j = 1, ..., K denotes the  
reference group that the abundance estimate was obtained for. 
We first define source-specific thresholds q

i,j
 that give a thresh-

old on the reference groups j assuming that the true group i in the  
sample is known. The source-specific threshold q

i,j
 on group  

j ≠ i is defined by ordering the relative abundance estimates for  

the cluster j, , , ,n i jθ


 in an ascending order in n, and determining 
the cutoff point q

i,j
 where m,m ∊ {1, ..., N}, relative abundance  

estimates fall below the cutoff. Using the source-specific  
thresholds q

i,j
, we define the detection threshold q

i
 on group i as 

{ }{ },: , ,i i jq max max j q= 𝜖  where 𝜖 is the constant minimum 

threshold for a specific grouping of the sequences within a spe-
cies that is observed when comparing the empirical cumulative  
distribution functions in Extended Data Figure S624. We recom-
mend that 𝜖 be determined for new species by a synthetic mixing  
procedure similar to what was used to compare the accuracy of 
mixture estimates to their single-colony counterparts in Figure 4.

Based on the selected value of m, we may further define a sta-
tistical confidence score for the M = N - m + 1 remaining  
abundance estimates that exceed the detection threshold q

i
 as 

                              ( ) 1
1 ,

1 1

N m m
N N
− +

− =
+ +

                               (7)

which corresponds roughly to the fraction of resampled sam-
ples that exceed the threshold obtained with the selected  
value of m. Using values of m closer to the number of sam-
ples N in constructing the detection thresholds will result in 
stricter thresholds and thus higher confidence in the abundance  
estimates that exceed the threshold. The results reported in our 
experiments include thresholds constructed with m = 100 and 
m = 90, corresponding to confidence scores (Equation 7) of  
approximately 0.99 and 0.90, respectively.

Implementation
The mSWEEP software provides a C++ implementation of 
the abundance estimation part of the pipeline described in 
this manuscript. After pseudoaligning the sequencing reads,  
mSWEEP can be called from the command line to construct 
the abundance estimation model and infer the relative abun-
dances of the reference lineages as described above in the 
Abundance estimation model, Likelihood, Model hyperparam-
eters, and Inference sections. The mSWEEP pipeline consists of  
running both the pseudoalignment and the mSWEEP abundance  
estimation software.

Operation
Precompiled binaries and the source code for the mSWEEP soft-
ware are available in GitHub. Compiling mSWEEP from source 
requires a compiler with full support for the C++11 standard  
(for example clang version 3.3 or later, or GCC version 4.8.1 
or later) and the build process utility CMake (version 2.8.12  
or later). The mSWEEP software itself does not have addi-
tional external dependencies. Prospective users of the mSWEEP  
pipeline will also need to install kallisto14 for pseudoalign-
ment, and possibly construct a set of scripts tailored to their 
reference data should they wish to take advantage of the detec-
tion threshold approach. The GitHub repository includes usage 
information, a general pipeline for abundance estimation with  
mSWEEP, and a toy dataset for an example workflow.

A typical workflow with mSWEEP begins by indexing the set of 
reference sequences (reference.fasta below) for pseudoalignment 
(here using kallisto version 0.45)

kallisto -i kallisto_index reference.fasta

The reference sequences need to be indexed only once and the  
same index can be used multiple times.

Analysing sequencing data (below the paired-end reads in two 
files: reads_1.fastq.gz and reads_2.fastq.gz) is done by first using  
kallisto to pseudoalign the reads

kallisto pseudo -i kallisto_index -o pseudoalignments reads_1.fastq.
gz reads_2.fastq.gz

and then running the mSWEEP software (here using version 
1.1.0) to produce the relative_abundances.txt file containing the  
relative abundance estimates.

mSWEEP -f pseudoalignments -i lineages.txt -o relative_abun-
dances.txt

The lineages.txt file defines the reference lineages, with 
each line in the file containing the name of the lineage the  
corresponding sequence in the reference.fasta file has been  
assigned to. Entries in the lineages.txt file must be in the same  
order as the sequences are in the reference.fasta file.
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E. coli plate sweeps from Vietnamese children
In Ho Chi Minh City, 750 children were recruited into a diar-
rhoeal cohort study and followed for 2 years. Stool samples were  
collected at routine sampling points and when the children had 
an episode of diarrhoea. All stool samples were cultured to iden-
tify pathogens and onto MacConkey plates to isolate E. coli 
and other Enterobacteriaceae. The MacConkey plates were  
scraped and stored in 20% glycerol at -80°C. The frozen plate 
sweeps from 48 diarrhoea episodes, paired with 48 asympto-
matic samples (96 in total), were revived on MacConkey media;  
plates were scraped and total genomic DNA was extracted using 
the Wizard genomic DNA purification kit (Promega, USA). The 
extracted DNA was sequenced using the Illumina HiSeq platform 
using the method described elsewhere54. Antimicrobial resist-
ance genes were detected using the ARIBA software27. The raw  
sequence data can be found in the ENA under the accession  
numbers detailed in Extended Data Table S5.

Ethics approval and consent to participate
Ethical approval was required for the cohort study contributing 
the E. coli organisms. Approvals were provided by the Oxford  
University Tropical Research Ethics Committee (OxTREC 
approval 1058–13) as well as from the local partners  
(Institutional Review Board at the Hospital for Tropical Dis-
eases and Hung Vuong Hospital). Written informed consent 
was obtained from the parent or guardian of all children for  
participation in the study.

Data availability
Underlying data
Figshare: mSWEEP_reference_v1-0-0.tgz, https://doi.org/10.6084/
m9.figshare.8222636.v255. This project contains the reference 
sequences and the grouping used in producing the results.

Data are available under the terms of the Creative Commons 
Zero “No rights reserved” data waiver (CC0 1.0 Public domain  
dedication).

Accession numbers for the reference data can be found in 
Extended Data Table S449. Accession numbers for the 96  
Vietnamese E. coli plate sweeps are available in Extended Data 
Table S556. Accession numbers for the K. pneumoniae mixture 
samples and 39 Campylobacter mixture samples are available 
in Extended Data Table S657. The remaining 77 Campylobacter  
mixture samples have been submitted to Figshare:

-   �campylobacter_mixtures_1.tgz, https://doi.org/10.6084/m9. 
figshare.6445136.v158.

-   �campylobacter_mixtures_2.tgz, https://doi.org/10.6084/m9. 
figshare.6445190.v159.

The synthetic E. coli mixture samples, and associated metadata, 
that were the basis for the results presented in Figure 5 are available 
have been submitted to Zenodo:

-   �mSWEEP_revision_mixture_samples_v1-0-0.tar, https://
doi.org/10.5281/zenodo.553571360.

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).

Extended data
All extended data files have been submitted to Figshare  
under the mSWEEP project (https://figshare.com/projects/
mSWEEP/64172).

Figshare: Extended Data Figures S1–S8. Additional figures 
supporting claims in the manuscript, https://doi.org/10.6084/
m9.figshare.11379648.v324.

Figshare: Extended Data Table S1. Table of the most common  
clonal complexes and sequence types identified in the Viet-
namese E. coli samples, https://doi.org/10.6084/m9.figshare. 
11379705.v128.

Figshare: Extended Data Table S2. Antimicrobial classes found 
in the Vietnamese E. coli samples; separated by diarrheal 
and healthy samples, https://doi.org/10.6084/m9.figshare. 
11379753.v132.

Figshare: Extended Data Table S3. Full antimicrobial  
resistance gene data in the Vietnamese E. coli samples, as identified 
by ARIBA, https://doi.org/10.6084/m9.figshare.11379756.v133.

Figshare: Extended Data Table S4. Description, accession 
numbers, and source studies for the reference sequence data 
used with mSWEEP, https://doi.org/10.6084/m9.figshare. 
11379762.v149.

Figshare: Extended Data Table S5. Accession numbers, status,  
and names of the Vietnamese E. coli samples, https://doi.
org/10.6084/m9.figshare.11379771.v156.

Figshare: Extended Data Table S6. Accession numbers for the 
Klebsiella and Campylobacter mixture samples available in  
public repositories, https://doi.org/10.6084/m9.figshare.11379777.
v157.

Data are available under the terms of the Creative Commons  
Attribution 4.0 International license (CC-BY 4.0).

Software availability
Source code and precompiled binaries (generic Linux and  
macOS) for the mSWEEP software: https://github.com/PROBIC/
mSWEEP

Archived source code as at time of publication: https://doi.
org/10.5281/zenodo.358500961

License: MIT
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The work is well written and easy to understand but some limitations should be pointed out:

The work is most relevant for well studied bacteria (like pathogens) for which there are 
good genome reference databases. 
 

○

The comparison with metakallisto is slightly unfair, as pointed out by the authors, since it 
tries to tackle the more complex job of strain (rather than lineage) identification. A fairer 
comparison would be to pool the strains into the same group as mSWEEP and assess how it 
performs for those groups. This is especially important as the groups used in mSWEEP are 
well separated (see Fig. 3 t-SNE plot) and thus the task of assigning single-colony isolates to 
those groups is much easier than assigning them to strains.  
 

○

The synthetic mixtures are not very adverse to the methods: 3 samples from 3 lineages with 
abundances in the mix higher than 20% is a very simple mix. The Vietnamese example 
already correspond to more complex mixes (~10 lineages / sample) and it would have been 
nice to stress mSWEEP under those conditions. 
 

○

The noise level of 0.016 used as detection threshold would prevent the detection / 
quantification of rare lineages and means that whole plates can't be mixed if they 
encompass many lineages with abundances spanning several orders of magnitude. This 
appears to be the case for the K. pneumionae dataset. 

○

How does the method compare to other strain identification tools (like DUDes1) that are not 
specific to plate sweeps? I expect the reduction in complexity induced by plate sweeps to benefit 
mSWEEP but it would be useful to prove it. Finally, how does the method behave when the single-
colony isolate from the sweep is very far from all lineages / groups in the database? Does mSWEEP 
then fail with an informative message / warning? 
 
References 
1. Piro V, Lindner M, Renard B: DUDes: a top-down taxonomic profiler for metagenomics. 
Bioinformatics. 2016; 32 (15): 2272-2280 Publisher Full Text  
 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
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Partly

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Statistics, Metagenomics.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 29 Sep 2021
Tommi Mäklin, University of Helsinki, Finland 

We have thoroughly utilized the excellent feedback provided by both reviewers and made 
adjustments to our manuscript based on their recommendations and suggestions. Notably, 
we have added a new synthetic experiment assessing the performance of mSWEEP under 
conditions more resembling those found in the Vietnamese E. coli sequencing data as 
suggested by Mahendra Mariadassou. Included below is a point-by-point response to the 
concerns raised by both reviewers. We would also like to thank both reviewers for their time 
and outstanding feedback that has enabled us to improve the quality of our manuscript. 
 
Review 2 — Mahendra Mariadassou 
 
Mahendra Mariadassou: 
The work is most relevant for well studied bacteria (like pathogens) for which there are good 
genome reference databases. 
 
Author reply: 
We have made it more clear in the revised manuscript that the intended application of our 
method is for extensively studied bacteria that have readily available reference sequences 
by including the following sentence in the Discussion section of our manuscript: 
As with any method intended to identify sequence variation, the target species need to be 
relatively well known to allow building of sufficiently informative reference databases. This means 
that mSWEEP is most relevant for extensively studied bacteria, such as pathogens, and has only 
limited applications when working with samples containing high numbers of novel or 
uncharacterized species. 
 
Thank you for pointing out the potential for a misunderstanding. 
 
Mahendra Mariadassou: 
The comparison with metakallisto is slightly unfair, as pointed out by the authors, since it tries to 
tackle the more complex job of strain (rather than lineage) identification. A fairer comparison 
would be to pool the strains into the same group as mSWEEP and assess how it performs for 
those groups. This is especially important as the groups used in mSWEEP are well separated (see 
Fig. 3 t-SNE plot) and thus the task of assigning single-colony isolates to those groups is much 
easier than assigning them to strains. 
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Author reply: 
We agree that the comparison is slightly unfair since the methods are designed to solve 
different, yet related, problems. In the revised manuscript we have addressed this issue by 
adding a supplementary figure (Extended Data Figure 1 in the new manuscript), where the 
estimates from metakallisto for the sequences within the lineages have been pooled 
together by summing them up. While pooling improves the performance of metakallisto, 
the method still does not perform as well as mSWEEP, demonstrating that the probabilistic 
model leveraged by mSWEEP is necessary for resolving lineage-level differences, and that 
the conclusions in our manuscript remain largely the same. 
 
Mahendra Mariadassou: 
The synthetic mixtures are not very adverse to the methods: 3 samples from 3 lineages with 
abundances in the mix higher than 20% is a very simple mix. The Vietnamese example already 
correspond to more complex mixes (~10 lineages / sample) and it would have been nice to stress 
mSWEEP under those conditions. 
 
Author reply: 
We thank the reviewer for this suggestion and have accordingly added a new set of 
experiments, where 10 different E. coli lineages per sample are mixed at varying sequencing 
depths, resulting in coverages ranging between 50x to 0.10x. Although the new 
experiments are more complex, the accuracy of the results (Figure 5 in the revised 
manuscript) remain largely the same and, in fact, support the conclusion derived from the 
existing set of synthetic mixtures that mSWEEP performs well up to around the 0.016 
relative abundance (corresponding to about 1.6x coverage), which was the background 
noise level we previously established. 
 
Mahendra Mariadassou: 
The noise level of 0.016 used as detection threshold would prevent the detection / quantification 
of rare lineages and means that whole plates can't be mixed if they encompass many lineages 
with abundances spanning several orders of magnitude. This appears to be the case for the K. 
pneumionae dataset. 
 
Author reply: 
The noise level of 0.016 is specific to the sequencing depth that was used to generate the 
synthetic mixtures. Since each mixture contains 1 000 000 reads that are 100 bases long, a 
relative abundance of under 0.016 would correspond to less than 16 000 reads and <0.65x 
sequencing depth (the exact value depending on the organism) in the species that we 
investigated. Considering that the differences between the lineages can be quite minimal, 
identification at these sequencing depths will naturally be less reliable and depend heavily 
upon the quality and nature of the reference sequences. Due to these factors, some sort of 
thresholding is, in our opinion, necessary. 
 
Presumably the sequencing depth could be increased in order to better identify rare 
lineages but our data unfortunately did not provide grounds to evaluate mSWEEP in this 
kind of setting. Nevertheless, there is some preliminary support for this argument in the 
revised manuscript, where the complex synthetic mixtures contained approximately 5 times 
more reads than the experiments the noise level was derived from, and consequently we 
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were able to recover lineages at 0.0156 relative abundance (1.56x sequencing depth) and 
even a few of the lineages at 0.0078 relative abundance (0.78x sequencing depth). However, 
in general we do not expect mSWEEP to be able to separate lineages with < 1x sequencing 
depth unless they are far from each other in terms of genetic distance. 
 
In any case, we thank the reviewer for pointing this issue out and have clarified the 
implications of the noise level in the manuscript with the following changes to the section 
where the noise level is mentioned: 
The results indicate that above this relatively low background noise level of 0.016, quantifying 
mixture samples is not expected to produce more false positive results than would be obtained 
from single-colony samples. In the synthetic mixtures, the observed background noise level 
corresponds to sequencing depths of around 0.30x (E. coli and K. pneumoniae) and 0.65x (S. 
epidermidis), which provides the bare minimum sequencing depth required to distinguish 
between the lineages of each species in samples with similar read lengths and sequencing depth. 
 
Mahendra Mariadassou: 
How does the method compare to other strain identification tools (like DUDes) that are not 
specific to plate sweeps? I expect the reduction in complexity induced by plate sweeps to benefit 
mSWEEP but it would be useful to prove it. 
 
Author reply: 
We thank you for pointing out other relevant strain identification tools. However, we would 
like to point out that our tool is designed to be used with large, bespoke reference 
databases with the goal of leveraging detailed information about strain-level variation in 
identification. This approach necessitates replacing the traditional alignment methods, such 
as bowtie2 used by for example DUDes and many other strain identification tools, with 
pseudoalignment to achieve practical runtimes. 
 
Additionally, DUDes specifically utilizes a version of the NCBI taxonomy standard that is no 
longer in use, which restricts the applications of the method. The author points out this 
issue, as well as the scaling issue in bowtie2 alignment, in their  doctoral dissertation (
http://dx.doi.org/10.17169/refubium-1123), published after the DUDes paper. To our 
knowledge, and based on the DUDes GitHub repository, DUDes has not been updated to 
address these issues nor, in fact, been maintained after its initial publication. In our opinion 
a comparison with mSWEEP is thus unwarranted and would likely add little of value to the 
comparisons already presented in our manuscript. 
 
Moreover, other strain identification tools that make use of curated databases, such as 
subsets of the NCBI RefSeq database, are unsuited to analysing strain and lineage-level 
variation in clinical sequencing data due to the fact that for many of the strains the correct 
— both in-time and geographically — reference sequence is simply not necessarily included 
in the database. These types of databases are designed to provide a general overview of 
representative high-quality sequences for the species rather than something representative 
of the possibly highly localized variation, which renders their application beyond species-
level identification conditional on the samples containing only distantly related strains. 
Although some methods do offer means to use customized reference databases, they are 
typically designed to be run with the precompiled databases and may not extend well when 
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stretched beyond their intended purposes to the types of application that we have designed 
mSWEEP for. 
 
Mahendra Mariadassou: 
Finally, how does the method behave when the single-colony isolate from the sweep is very far 
from all lineages / groups in the database? Does mSWEEP then fail with an informative message / 
warning? 
 
Author reply: 
While this is truly a limitation of our method that we did not directly tackle, as also pointed 
out by Fabiano L. Thompson in the review, there fortunately has been further work in 
solving this exact limitation. In particular, a computational tool (https://github.com/harry-
thorpe/demix_check) has been developed  to check whether the contents of a mixed sample 
correspond to a related reference sequence, or sequences from the same lineage, in 
mSWEEP's reference database, and produce results that can be used to verify the fact. For 
further explanation, we would like to refer to our answer to Fabiano L. Thompson to the 
similar question about the presence of a novel bacteria in the analysed sample. We have 
rewritten a part of our discussion section to address this concern, with the relevant 
paragraph now reading as: 
As with any method intended to identify sequence variation, the target species need to be 
relatively well known to allow building of sufficiently informative reference databases. Similarly, 
to allow for sensible and easily interpretable inferences, the biological clustering of the reference 
database should be based on well-established biological entities, such as multi-locus sequence 
types (STs) or clonal complexes (CCs) which are frequently employed as labels of lineages. These 
limitations suggest that mSWEEP is most relevant for extensively studied bacteria, such as 
pathogens, and has only limited applications when working with samples containing high 
numbers of novel or uncharacterized species. However, following the introduction of mSWEEP, a 
separate computational tool has been developed to assess the suitability of the reference 
sequences to specific samples and to identify cases where mSWEEP struggles due to the presence 
of reads originating from novel genome sequences (https://github.com/harry-
thorpe/demix_check). Consequently mSWEEP can also be used to estimate the quality of the 
reference collection and to discard contaminated or mis-identified genomes.  

Competing Interests: No competing interests were disclosed.

Reviewer Report 16 March 2020
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© 2020 Thompson F. This is an open access peer review report distributed under the terms of the Creative 
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, 
provided the original work is properly cited.
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Laboratory of Microbiology, Institute of Biology, Federal University of Rio de Janeiro, Rio de 
Janeiro, Brazil 

Maklin et al. propose a new tool for the study of lineages and strains obtained from 
metagenomics. First of all, congratulations for this excellent study. 
  
Indeed, bioinformatics tools to tap into the microbial diversity beyond genus and species level 
using metagenomics are limited. And particularly for those approaches involving an initial 
culture/plate medium step. The authors have closed this gap with mSWEEP but they have not 
taken advantage of this to mention in their title that the novel tool addresses strain/lineage 
diversity). Mathematical modelling, including maximum likelihood and binomial distances were 
used and formulas were shown. The author studied samples from a group of infected children to 
validate their system. They used MacConkey plates to obtain bacterial cells for metagenomics. 
Reference data comprised Campylobacter, Escherichia, Klebsiella, Staphylococcus. False positives 
were estimated and in general were below 0.3 (Fig 4; y axis %?). mSWEEP output is depicted in the 
frame of clonal complexes (CC; Figs 3, 7) which is useful in the context of previous studies on 
population structure of pathogens. 
 
Some minor remarks to be incorporated in a revised version:

Seven formulas were provided. However, the elements of each of these formulas were not 
explained. Please include an explanation in the new version. 
 

○

The Hiseq sequencing coverage (and read numbers) were not informed. How many ilumina 
reads does one need to use mSWEEP with confidence? 
 

○

Also another limitation is the need to select a reference genome for comparison. The 
sample may contain a novel genome, a novel pathogen. How does the system handle such 
possible situation? 
 

○

It is not clear why certain CC, eg. Escherichia coli CC405 and CC95 are connected to Klebsiella 
pneumoniae CC36, CC45 (Fig 7). This figure seems rather mixed in taxonomic terms. Is this a 
result of co-occurrence? 
 

○

It seems to me that relevant references need to be considered in the revised final version as 
they address similar questions. Arevalo et al. (2019)1 and Bobay et al. (2018)2. 

○

 
 
References 
1. Arevalo P, VanInsberghe D, Elsherbini J, Gore J, et al.: A Reverse Ecology Approach Based on a 
Biological Definition of Microbial Populations.Cell. 2019; 178 (4): 820-834.e14 PubMed Abstract | 
Publisher Full Text  
2. Bobay L, Ellis B, Ochman H: ConSpeciFix: classifying prokaryotic species based on gene flow. 
Bioinformatics. 2018; 34 (21): 3738-3740 Publisher Full Text  
 
Is the rationale for developing the new method (or application) clearly explained?
Yes

Is the description of the method technically sound?
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Yes

Are sufficient details provided to allow replication of the method development and its use 
by others?
Yes

If any results are presented, are all the source data underlying the results available to 
ensure full reproducibility?
Yes

Are the conclusions about the method and its performance adequately supported by the 
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Microbiology.

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard.

Author Response 29 Sep 2021
Tommi Mäklin, University of Helsinki, Finland 

We have thoroughly utilized the excellent feedback provided by both reviewers and made 
adjustments to our manuscript based on their recommendations and suggestions. Notably, 
we have added a new synthetic experiment assessing the performance of mSWEEP under 
conditions more resembling those found in the Vietnamese E. coli sequencing data as 
suggested by Mahendra Mariadassou. Included below is a point-by-point response to the 
concerns raised by both reviewers. We would also like to thank both reviewers for their time 
and outstanding feedback that has enabled us to improve the quality of our manuscript. 
 
Review 1 — Fabiano L. Thompson 
 
Fabiano L. Thompson: 
Seven formulas were provided. However, the elements of each of these formulas were not 
explained. Please include an explanation in the new version. 
 
Author reply: 
We thank the reviewer for pointing out the issue of missing explanations and have revised 
the manuscript so that all elements are explained close to the formulas where they are 
used. 
 
Fabiano L. Thompson: 
The Hiseq sequencing coverage (and read numbers) were not informed. How many ilumina reads 
does one need to use mSWEEP with confidence? 
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Author reply: 
While mSWEEP does not by itself require a specific number of Illumina reads to work, some 
practical guidelines can be derived based on the detection threshold analysis presented in 
the paper. In our analyses related to Extended Data Figures S3 and S4, we found that the 
minimum relative abundance required to accurately distinguish between strains of the 
same species in the same sample (“background noise level” in our manuscript) was 0.016 in 
synthetic samples containing 1 000 000 reads that were 100bp long. This translates to a 
minimum requirement of at least 16 000 reads from a specific lineage, corresponding to a 
coverage of about 0.30x on an average E. coli or K. pneumoniae genome and 0.65x on an S. 
epidermidis genome. Further down in the manuscript we define the detection thresholds to 
be either the background noise level or the value obtained from the threshold construction 
process, whichever of the two is higher, which results in lineage-specific thresholds that 
could be analysed in a similar way as the background noise level. 
 
Unfortunately, the results from this type of analysis are specific to the samples and 
reference sequences in question and do not generalize to different types of data. However, 
by replicating this type of analysis on one’s own prospective set of reference sequences, 
similar coverage and read number requirements could be derived before sequencing any 
mixed samples, providing some guidelines as to how many reads are required for mSWEEP 
to work accurately. The detection threshold analysis does additionally provide confidence 
scores for the abundance estimates exceeding the thresholds, which can be used to assess 
the reliability of the results. 
 
We have expanded our Discussion section to include a remark on the possibility of using the 
detection thresholds to assess the required sequencing coverage by including the following 
statement: 
This pipeline also estimates the relative abundance of lineages and provides means to construct 
reliability cut-offs with accompanying confidence scores. Since the cut-offs are constructed before 
analysing any sequencing data by synthetically mimicking the properties of the in vitro data, the 
cut-offs and confidence scores can be used to assess the necessary sequencing depth to identify 
rare and low abundance lineages with confidence as well as the total number of reads required.  
 
We further thank the reviewer for providing us the opportunity to better our manuscript by 
explaining this feature of our pipeline in more detail. 
 
Fabiano L. Thompson: 
Also another limitation is the need to select a reference genome for comparison. The sample may 
contain a novel genome, a novel pathogen. How does the system handle such possible situation? 
 
Author reply: 
As pointed out by the reviewer and also in Mahendra Mariadassou's review, the absence of 
a reference sequence for a novel bacterial strain or species is absolutely a limitation of our 
method. In cases where there is no related genome at all in the reference genomes, a very 
low percentage of the reads will pseudoalign to the reference sequences at all, interrupting 
the analysis. In cases where the novel genome is related to the reference genomes (either a 
new lineage of an existing species or a closely related novel species), our method will 
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naturally fail to identify the correct lineage. Based on our observations, the relative 
abundance estimates resulting from this scenario will be spread between the most closely 
related genomes that are contained in the reference which can, in some cases, produce 
results that appear deceptively similar to those from a real mixed sample.  
 
While our method does not address this concern — other than indirectly in some specific 
cases through the detection threshold analysis described in the manuscript — there have 
been excellent further developments of our method in solving this exact problem after the 
manuscript was published. In particular, a supplementary computational method (
https://github.com/harry-thorpe/demix_check) has been developed for assessing whether 
the reference sequences contain representative sequences for the strains present in a 
(mixed) sample that has been processed by mSWEEP. We believe this tool neatly solves this 
particular limitation of our method and provides researchers an additional tool to properly 
judge whether the results of their analyses are correct or contain errors related to the 
presence of novel strains. We have rewritten a part of our discussion section to take into 
account the limitations pointed out by the reviewer and include our suggested solution. The 
relevant paragraph has been changed to the following: 
As with any method intended to identify sequence variation, the target species need to be 
relatively well known to allow building of sufficiently informative reference databases. Similarly, 
to allow for sensible and easily interpretable inferences, the biological clustering of the reference 
database should be based on well-established biological entities, such as multi-locus sequence 
types (STs) or clonal complexes (CCs) which are frequently employed as labels of lineages. These 
limitations suggest that mSWEEP is most relevant for extensively studied bacteria, such as 
pathogens, and has only limited applications when working with samples containing high 
numbers of novel or uncharacterized species. However, following the introduction of mSWEEP, 
computational tools have been developed to assess the suitability of the reference sequences to 
specific samples and to identify cases where mSWEEP struggles due to the presence of reads 
originating from novel genome sequences (https://github.com/harry-thorpe/demix_check). 
Consequently mSWEEP can also be used to estimate the quality of the reference collection and to 
discard contaminated or mis-identified genomes. 
 
Fabiano L. Thompson: 
It is not clear why certain CC, eg. Escherichia coli CC405 and CC95 are connected to Klebsiella 
pneumoniae CC36, CC45 (Fig 7). This figure seems rather mixed in taxonomic terms. Is this a 
result of co-occurrence? 
 
Author reply: 
Indeed, the connections between the E. coli and K. pneumoniae clonal complexes are a result 
of co-occurrence in the samples. These samples were specifically selected for our study 
because they had been identified as contaminated or containing mixed species or strains 
during the culture step in another study aimed at isolating K. pneumoniae strains. As a 
result, many of the samples presented in our study are taxonomically diverse and contain 
several different species, or the strains of, that also grow on the types of plates that were 
used to culture K. pneumoniae. We thank the reviewer for pointing out the confusing parts in 
our text and have clarified the reasons for the co-occurrence in the text with the addition of 
the following sentence: 
Since both E. coli and A. baumanii grow on the media used for culture of K. pneumoniae, frequent 
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co-occurrence in samples selected for their diversity is expected. 
 
Fabiano L. Thompson: 
It seems to me that relevant references need to be considered in the revised final version as 
they address similar questions. Arevalo et al. (2019) and Bobay et al. (2018). 
 
Author reply: 
We thank you for referring us to these highly relevant studies that we missed in our 
literature review and have addressed the potential benefits of combining gene flow based 
approaches with mSWEEP analyses in the discussion section of our revised version of the 
manuscript.  
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