Table 2.
Maps | AUC (95% CI) | ||||
---|---|---|---|---|---|
RF | L1R-LR | PCA-LR | SVM | mAUC | |
ME-ADC0–1000 | 0.83 (0.80–0.87) | 0.83 (0.79–0.87) | 0.76 (0.70–0.81) | 0.81 (0.76–0.85) | 0.81 |
BE-IVIM-D | 0.85 (0.81–0.89) | 0.83 (0.78–0.87) | 0.75 (0.70–0.82) | 0.80 (0.75–0.85) | 0.81 |
ME-ADCall b | 0.84 (0.80–0.87) | 0.82 (0.79–0.87) | 0.77 (0.70–0.83) | 0.79 (0.74–0.85) | 0.81 |
DKI-D | 0.83 (0.80–0.86) | 0.83 (0.78–0.86) | 0.75 (0.74–0.82) | 0.80 (0.77–0.84) | 0.80 |
DKI-K | 0.84 (0.81–0.89) | 0.83 (0.78–0.87) | 0.74 (0.70–0.80) | 0.79 (0.75–0.85) | 0.80 |
RF: random forest; SVM: support vector machine; PCA: principal component analysis; L1R: L1 regularization; LR: linear regression; mAUC: mean values of AUCs of RF, L1R-LR, PCA-LR and SVM