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Abstract
Bonferroni mean (BM) operators have been established as a powerful tool for handling the interrelationship between the 
input arguments under various decision-making information. However, the existing BM operators do not take into account 
the overall interaction among decision makers or criteria. To overcome this limitation, this study considers the Shapley fuzzy 
measure (SFM) with the normalized weighted BM (NWBM) operator under a neutrosophic environment. In addition, the 
current research ignores the bipolarity and hesitancy during decision elicitations, resulting in the imprecise decision results. 
In this paper, the hesitant bipolar-valued neutrosophic set (HBNS) which is the extension of hesitant fuzzy set and bipolar 
neutrosophic set is employed. The main focus of this paper is in the development of an aggregation operator for HBNS. 
Based on the literature review, we would like to fill in the gaps by developing a hesitant bipolar-valued neutrosophic Shapley 
NWBM (HBN-SNWBM) operator where the overall interaction among decision makers can be considered. Besides that, a 
three-phase decision making framework is also proposed to show the applicability of the proposed aggregation operator to 
the real-world decision problems. The HBN-SNWBM operator and the decision making framework are applied to two exam-
ples of investment selection where evaluations are implemented using the proposed aggregations that based upon hesitant 
bipolar-valued neutrosophic sets. In the first example, it is found that a weapon company is the best alternative for investment 
followed by a food company. Sensitivity of parameters of the aggregation operator is also analysed and it is found that the 
ranking results are consistent despite of different parameter values used. This verifies the insensitivity of p,q parameters in 
the developed aggregation operator. The proposed decision making framework and hesitant bipolar-valued neutrosophic sets 
would be a great significance for the practical implementation of the aggregation operators.
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falsity of x to the set Ĥ
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h−
T
(x) 	� Possible satisfactory degree of 

truth of x to the implicit counter 
property to the set Ĥ

h−
I
(x) 	� Possible satisfactory degree 

of indeterminacy of x to the 
implicit counter property to the 
set Ĥ

h−
F
(x) 	� Possible satisfactory degree of 

falsity of x to the implicit coun-
ter property to the set Ĥ

�+
T

 	� Element of h+
T
(x)

�+
I

 	� Element of h+
I
(x)

�+
F

 	� Element of h+
F
(x)

�−
T

 	� Element of h−
T
(x)

�−
I

 	� Element of h−
I
(x)

�−
F

 	� Element of h−
F
(x)

� 	� A scalar value
s(h) 	� Score function of h
�

+
hT

 	� Number of elements of h+
T
(x)

�
+
hI

 	� Number of elements of h+
I
(x)

�
+
hF

 	� Number of elements of h+
F
(x)

�
−
hT

 	� Number of elements of h−
T
(x)

�
−
hI

 	� Number of elements of h−
I
(x)

�
−
hF

 	� Number of elements of h−
F
(x)

N =
{
Ci|i = 1, 2, ..., n

}
 	� A set of criteria

��	� �-Fuzzy measure
wi(�,N)	�  Weight criteria on set N
wi =

(
w1, w2, ..., wn

)T

	�  The weight vectors of Ai
̃̂
Hi	�  Any permutation of Ĥi
Ai(i = 1, 2, ..., n) and

Aj(j = 1, 2, ..., n)
  	� A collection of nonnegative 

numbers
wi(�,N) 	� Shapley fuzzy measure of Ĥi

Ai =
{
A1,A2, ...,Am

}
 	� A set of alternatives

cj =
{
c1, c2, ..., cn

}
 	� A set of criteria

Ek{k = 1, 2, 3} 	� A panel of decision makers

1  Introduction

Multi-criteria decision making involves with several deci-
sion makers and multiple conflicting criteria. The use of 
real numbers is inaccurate in the real-world decision situ-
ations. To deal with shortcomings in real-number applica-
tions, Zadeh (1965) suggested fuzzy sets. The concept of 
fuzzy sets has been thoroughly investigated and is widely 
accepted in the field of decision-making. To date, fuzzy sets 
have been extended to intuitionistic fuzzy set (IFS) (Atan-
assov 1986), interval-valued IFS (Ye 2009), hesitant fuzzy 
set (HFS) (Torra 2010) and many more. However, fuzzy sets 
cannot handle the indeterminacy elements in the real-world 
problems. This motivates Smarandache (1998) to introduce 

the neutrosophic set (NS) by extending the IFS theory with 
indeterminacy membership. In contrast to IFSs, the inde-
terminacy degree of an element in a universe of discourse 
is expressed explicitly in NSs. On the other hand, the mem-
bership degree (T) and non-membership degree (F) of the 
IFSs are dependent, hence the incomplete information or 
indeterminacy degree in IFSs is given as 1-T- F. Smaran-
dache (2005) has extensively discussed several distinctions 
between NS and IFS in his article entitled “Neutrosophic 
set—A generalization of the intuitionistic fuzzy set”. He also 
gave some examples of how the neutrosophic set generalises 
not only IFS but also fuzzy sets, classical sets, and paracon-
sistent sets. In recent study, Nagarajan et al. (2019) proposed 
some aggregation operators based on the triangular interval 
type-2 fuzzy set and interval neutrosophic set and applied 
them to traffic flow management. A comparison of traffic 
control management using classical, fuzzy, fuzzy type-2, 
neutrosophic set and interval-valued neutrosophic set was 
presented. Some limitations of using fuzzy sets were high-
lighted, such as the lack of adaptiveness when computing the 
connectedness of the interval-based input and the inability 
of fuzzy sets to handle uncertainty because they use crisp 
and accurate functions.

Later, the neutrosophic set has been extended to single-
valued neutrosophic set (SVNS) (Wang et al. 2010) and 
interval neutrosophic set (INS) (Wang et al. 2005) to over-
come the drawbacks in the non-standard subsets of neutro-
sophic set. SVNS is a useful representation of fuzziness, 
ambiguity, and indeterminacy of an element. Deli et al. 
(2015) extended the idea of SVNS to bipolar neutrosophic 
set (BNS). In BNS, decision makers could consider both 
positive and negative sides of the problem (Akram 2011). 
On the other hand, hesitancy concept which allows deci-
sion makers to state more than one judgment is also impor-
tant. Torra (2010) extended a fuzzy set to a hesitant fuzzy 
set (HFS) so that decision makers would be less hesitant 
while making decisions. Both of the bipolar and hesitancy 
concepts are important in achieving a realistic and precise 
decision. Awang et al. (2019a; b) initiated to combine both 
BNS and HFS and introduced a hesitant bipolar-valued neu-
trosophic set (HBNS).

The multiple decision makers in multi-criteria decision 
making problems need to be aggregated by using the appro-
priate aggregation operators. The Bonferroni mean (BM) 
is known for its capability to handle the interrelationship 
among the input arguments. This aggregation operator has 
been widely studied and refined to weighted BM (WBM) 
(Xu and Yager 2011), normalized weighted BM (NWBM) 
(Zhou and He 2012), partitioned BM (PBM) (Dutta and 
Guha 2015) and geometric BM (GBM) (Zhang 2018). How-
ever, the existing BMs do not reflect the overall interrelation-
ship of input arguments and their coalition, in which can 
be overcome by incorporating the Shapley fuzzy measure 
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(SFM). Traditionally, SFM is used to get the importance 
value of each player in a cooperative game (Zhou et al. 
2018). In decision making, SFM is incorporated not only to 
get the weightage of each decision maker, but also consider-
ing their individual contribution to the group decision (Nie 
et al. 2019). This fuzzy measure is more flexible than the 
probability in view of the fact that probability is constrained 
by its additivity property (Detyniecki 2001). Apart from 
that, SFM can handle the partial weight information of input 
arguments in which this measure can overcome the limita-
tion of incomplete information of most of the multi-criteria 
decision making methods (MCDMs) (Peng et al. 2019).

Based on the literature survey, there are only two studies 
that incorporated both SFM and BM in their aggregation 
operator. Nie et al. (2019) studied the combination between 
PBM, NWBM and SFM with Pythagorean fuzzy set. Soon 
after, Awang et  al. (2020) proposed the integration of 
NWBM and SFM considering the indeterminacy uncertainty 
information handled by the interval neutrosophic set (INS). 
However, the Pythagorean fuzzy set and INS in the existing 
combination of SFM and BM do not take into account the 
hesitancy and bipolarity information that are significant to 
acquire a precise decision making elicitation.

Considering these gaps, we aim to develop a hesitant 
bipolar-valued neutrosophic Shapley NWBM (HBN-
SNWBM) operator that integrated SFM, NWBM and hesi-
tant bipolar-valued neutrosophic set. The key contributions 
of this paper are listed as below:

	 (i)	 Introduce the Shapley fuzzy measure which can 
take into account the overall interaction of criteria 
weights.

	 (ii)	 Develop a new BM operator under hesitant bipolar-
valued neutrosophic environment and propose a hesi-
tant bipolar-valued neutrosophic Shapley normalized 
weighted BM operator.

	 (iii)	 Formulate a MCDM method using the proposed 
HBN-SNWBM operator to effectively solve the hesi-
tant bipolar neutrosophic problems.

	 (iv)	 The proposed method is applied to investment prob-
lems with hesitant bipolar neutrosophic information.

The rest of this article is organized as follows: Sect. 2 
reviews some existing aggregation operators. Section 3 
provides the preliminary concepts of HBNS, SFM, and 
some existing BM operators. In Sect. 4, the HBN-SNWBM 
operator is defined and discuss several special cases of the 
proposed aggregation operator. Section 5 presents a deci-
sion-making model with HBN-SNWBM operator in hesi-
tant bipolar-valued neutrosophic elements (HBNEs) form. 
Section 6 presents a simple illustrative example to verify 
its applicability in solving multi-criteria decision making 
problems. Next, a comparative study is conducted in Sect. 7 

to verify the advantages of the proposed aggregation opera-
tor. Finally, Sect. 8 outlines the conclusion to this study and 
suggests several future research directions.

2 � Literature review

Aggregation operators is an interesting research topic and 
significant in group decision making analysis. The classical 
aggregation operators are usually based on arithmetic and 
geometric mean methods, which also known as algebraic 
sum and algebraic product respectively. These basic aggre-
gation operators were often assuming that the individual 
decision makers are equal importance. However, the evalua-
tion made by multiple decision makers might carry different 
weights. Thus, Aczel and Saaty (1983) proposed a weighted 
geometric (WG) mean aggregation operator for the purpose 
of synthesizing ratio judgments in AHP method. Later, Dong 
and Wong (1987) introduced a weighted arithmetic (WA) 
aggregation operator using fuzzy set as its quantifier. Since 
then, there has been an increasing number of literatures on 
the extension to WA and WG mean aggregation operators 
in diverse kind of sets. Xu and Yager (2006) presented some 
WG aggregation operators based on IFSs.

Ordered weighted averaging (OWA) and ordered 
weighted geometric (OWG) are two popular extension of 
WA and WG respectively. OWA operator which originally 
introduced by Yager (1988) is a parameterized operator that 
provides aggregations between maximum and minimum. 
The weight vector of input arguments is according to the 
rearranged ordered position of all the input arguments. 
Later, Chiclana et al. (2000) presented OWG operator which 
grounded from WG and OWA operators. There are numer-
ous extensions of OWA and OWG operators under different 
sets (Peng et al. 2016; Garg 2018; Vluymans et al. 2019).

In 2011, Wang and Liu (2011) introduced some Einstein 
operations on IFSs and further developed some extension 
to geometric aggregation operators based on the Einstein 
operations. There are countless extended aggregation opera-
tors that have been developed based on Einstein operations. 
For instance, Zhao and Wei (2013) developed the Einstein 
hybrid averaging and Einstein hybrid geometric for aggre-
gating the intuitionistic fuzzy numbers. On the other hand, 
Peng et al. (2016) investigated Einstein aggregation opera-
tors under simplified neutrosophic information.

In the previous studies on aggregation operators, Choquet 
integral operator appears to be one of the favourite aggrega-
tion operators in aggregating decision information. Choquet 
integral which was first introduced by Choquet (1953) is a 
subadditive or superadditive to aggregate functions based 
on fuzzy measures. The Choquet integral is a generaliza-
tion form to the weighted arithmetic mean and able to take 
into account the importance of a criterion, as well as the 



6922	 N. A. Awang et al.

1 3

interactions between criteria. Its theories and applications 
have been extensively studied by scholars around the world. 
Ferreira et al. (2018) used Choquet integral in evaluating the 
ethical banking practices of four largest bank in Portugal. 
Pasi et al. (2019) applied fuzzy Choquet integral to evaluate 
the user-generated content.

Apart from that, Hamacher operator is also received 
extensive attention from researchers in the aggregation 
research direction. Hamacher was first introduced by 
Hamacher (1978) is a great alternative to the algebraic oper-
ators. The Hamacher t-norm and t-conorm are more flexible 
and a generalized form to the algebraic operators and Ein-
stein t-norm and t-conorm respectively. Thus far, a num-
ber of studies have developed and improved the Hamacher 
aggregation operators to be applied in decision making prob-
lems (Chen et al. 2019; Darko and Liang 2020).

Most of the existing aggregation operators are known for 
their assumption that the criteria are mutually independent 
which is characterized by an independent axiom. Unlike pre-
vious aggregation operators, Bonferroni mean introduced 
by Bonferroni (1950) considers the interaction between cri-
teria. Work on BM operator has progressed rapidly and a 
number of articles have been identified in extending BM. 
Zhang (2018) combined the traditional geometric mean and 
BM operator and defined the geometric Bonferroni mean 
(GBM) operator. The normalized weighted Bonferroni 
mean (NWBM) proposed by Zhou and He (2012) is a better 
extended version of BM that can overcome the limitations 
of assuming the same weights of input arguments in the tra-
ditional BM and the unsatisfied idempotency property of the 
WBM. Dutta and Guha (2015) proposed the partitioned BM 
(PBM) operator which are useful in partitioning the input 
arguments into several subparts as they assumed that the 
interrelationship is not always exist among all the attributes.

Work on BM operator has progressed rapidly and a num-
ber of articles have been identified in applying BM operator 
to solve multi-criteria decision making (MCDM) problems 
under all types of fuzzy and neutrosophic environments. 
Jamil and Rashid (2018) investigated weighted geometric 
Bonferroni mean and Choquet geometric Bonferroni mean 
operators for dual hesitant fuzzy set and applied in deci-
sion problem of energy policy for the society. Du and Yuan 
(2019) investigated some Bonferroni mean operators to 
aggregate the interval-valued intuitionistic 2-tuple linguis-
tic information. On the other hand, Liu and Zhang (2019) 
aggregated the attributes of intuitionistic uncertain linguistic 
variables by using some extended BM operators. Liu and 
Wang (2014) extended NWBM operator based on single-
valued neutrosophic sets. Later, Liang et al. (2018) studied 
the NWBM operator with single-valued trapezoidal neutro-
sophic information. Recently, Zhou et al. (2019) modified 
some NWBM operators and applied them to the sustainable 
selection of search and rescue robots.

In the literature, there are several aggregation opera-
tors that have been developed, motivated from the notion 
of Shapley fuzzy measure. Meng et al. (2013) defined the 
induced generalized interval-valued intuitionistic fuzzy 
hybrid Shapley averaging operator. Later, motivated by the 
idea of Shapley—Choquet integral operator by Meng et al. 
(2013). Qu et al. (2018) developed some generalized dual 
hesitant fuzzy generalized Choquet integral operators based 
on Shapley fuzzy measures. Nie et al. (2019) proposed an 
MCDM approach based on Shapley fuzzy measure and par-
titioned NWBM for Pythagorean fuzzy set.

There are a few other aggregation operators that have 
received considerable attention no less than the above men-
tion aggregation operators, among them are Heronian mean 
operator (Beliakov et al. 2007), prioritized average opera-
tor (Yager 2008), Archimedean aggregation operator (Liu 
et al. 2019), and Frank operation-based aggregation opera-
tor (Yahya et al. 2021). The summary of literature review is 
given as below (Table 1).

3 � Preliminaries

This section provides the fundamental theories that are use-
ful in the HBN-SNWBM operator development.

3.1 � The hesitant bipolar‑valued neutrosophic set 
(HBNS)

Definition 1  (Awang et al. 2019a, b) Let X be a reference 
set and with a generic element in X denoted by x . A hesitant 
bipolar-valued neutrosophic set Ĥ in X is defined as:

w h e r e  h+
T
(x), h+

I
(x), h+

F
(x) ∶ X → [0, 1]  a n d 

h−
T
(x), h−

I
(x), h−

F
(x) ∶ X → [−1, 0] . The positive elements 

h+
T
(x),h+

I
(x) and h+

F
(x) denote the possible satisfactory 

degree of truth, indeterminacy and falsity of an element 
x ∈ X with respect to a HBNS Ĥ while the negative ele-
ments h−

T
(x),h−

I
(x) and h−

F
(x) denote the possible satisfac-

tory degree of truth, indeterminacy and falsity of an ele-
ment x ∈ X  to the implicit counter property to the set 
Ĥ  respectively. Moreover, a HBNS Ĥ  must satisfy the 
condit ions 0 ≤ �+

T
, �+

I
, �+

F
≤ 1 ,  −1 ≤ �−

T
, �−

I
, �−

F
≤ 0 , 

0 ≤ max
{
�+
T

}
+max

{
�+
I

}
+max

{
�+
F

}
≤ 3   ,  a n d 

−3 ≤ max
{
�−
T

}
+max

{
�−
I

}
+max

{
�−
F

}
≤ 0 in which 

�
+

T
∈ h

+

T
(x),�+

I
∈ h

+

I
(x) , �+

F
∈ h+

F
(x) , �−

T
∈ h

−

T
(x) , �−

I
∈ h

−

I
(x) 

and �−

F
∈ h

−

F
(x) for x ∈ X . Throughout this paper, Ĥ is used 

that denotes the HBNSs and h =
⟨
h+
T
, h+

I
, h+

F
, h−

T
, h−

I
, h−

F

⟩
 

is used that denotes the hesitant bipolar-valued neutrosophic 
element (HBNE).

(1)
Ĥ =

{
x,
⟨
h+
T
(x), h+

I
(x), h+

F
(x), h−

T
(x), h−

I
(x), h−

F
(x)

⟩|x ∈ X
}
,
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The operational laws of HBNSs are given as below:

Definition 2   (Awang et   a l .  2019a ,  b )  Let 
h =

⟨
h+
T
, h+

I
, h+

F
, h−

T
, h−

I
, h−

F

⟩
 ,  ha =

⟨
h+
Ta
, h+

Ia
, h+

Fa
, h−

Ta
, h−

Ia
, h−

Fa

⟩
 

and hb =
⟨
h+
Tb
, h+

Ib
, h+

Fb
, h−

Tb
, h−

Ib
, h−

Fb

⟩
 be three HBNEs. Then,

(i) Addition

(ii) Product

(iii) Power

(2)

ha ⊕ hb =

⟨ ⋃
𝛾+
Ta
∈h+

Ta
,

𝛾+
Tb
∈h+

Tb

{
𝛾+
Ta
+ 𝛾+

Tb
− 𝛾+

Ta
⋅ 𝛾+

Tb

}
,

⋃
𝛾+
Ia
∈h+

Ia
,

𝛾 +
Ib
∈h+

Ib

{
𝛾 +
Ia
⋅ 𝛾 +

Ib

}
,

⋃
𝛾+
Fa
∈h+

Fa
,

𝛾+
Fb
∈h+

Fb

{
𝛾+
Fa
⋅ 𝛾+

Fb

}
,

⋃
𝛾−
Ta
∈h−

Ta
,

𝛾−
Tb
∈h−

Tb

{
−𝛾−

Ta
⋅ 𝛾−

Tb

}
,

⋃
𝛾−
Ia
∈h−

Ia
,

𝛾−
Ib
∈h−

Ib

{
−
(
−𝛾−

Ia
− 𝛾−

Ib
− 𝛾−

Ia
⋅ 𝛾−

Ib

)}
,

⋃
𝛾−
Fa
∈h−

Fa
,

𝛾−
Fb
∈h−

Fb

{
−
(
−𝛾−

Fa
− 𝛾−

Fb
− 𝛾−

Fa
⋅ 𝛾−

Fb

)}⟩

h
a
⊗ h

b
=

⟨ ⋃
𝛾+
Ta
∈h+

Ta
,

𝛾+
Tb
∈h+

Tb

{
𝛾+
T
a

⋅ 𝛾+
T
b

}
,

⋃
𝛾+
Ia
∈h+

Ia
,

𝛾 +
Ib
∈h+

Ib

{
𝛾 +
I
a

+ 𝛾+
I
b

− 𝛾+
I
a

⋅ 𝛾+
I
b

}
,

⋃
𝛾+
Fa
∈h+

Fa
,

𝛾+
Fb
∈h+

Fb

{
𝛾+
F
a

+ 𝛾+
F
b

− 𝛾+
F
a

⋅ 𝛾+
F
b

}
,

(3)

⋃
�−
Ta
∈h−

Ta
,

�−
Tb
∈h−

Tb

{
−
(
−�−

T
a

− �−
T
b

− �−
T
a

⋅ �−
T
b

)}
,

⋃
�−
Ia
∈h−

Ia
,

�−
Ib
∈h−

Ib

{
−�−

I
a

⋅ �−
I
b

}
,

⋃
�−
Fa
∈h−

Fa
,

�−
Fb
∈h−

Fb

{
−�−

F
a

⋅ �−
F
b

}⟩

(4)

h
� =

⟨ ⋃
�+
T
∈h+

T

{(
�+
T

)�}
,

⋃
�+
I
∈h+

I

{
1 −

(
1 − �+

I

)�}
,

⋃
�+
F
∈h+

F

{
1 −

(
1 − �+

F

)�}
,

⋃
�−
T
∈h−

T

{
−
(
1 −

(
1 −

(
−�−

T

))�)}
,

⋃
�−
I
∈h−

I

{
−
(
−�−

I

)�}
,

⋃
�−
F
∈h−

F

{
−
(
−�−

F

)�}
⟩

where 𝜌 > 0 . It is invalid for � ≤ 0 since the obtained set is 
not in HBNE form.

(iv) Scalar multiplication

where 𝜌 > 0 . It is invalid for � ≤ 0 since the obtained set 
is not in HBNE form.

The following example is provided to illustrate scalar 
multiplication and what happen when � = 0 and 𝜌 < 0 in 
the computation. Let us consider the following HBNE:

Then by using the scalar multiplication in Definition 2 
iv),

where 𝜌 > 0.
When 𝜌 > 0 (let � = 0.5),

(5)

�h =

⟨ ⋃
�+
T
∈ h

+
T

{
1 −

(
1 − �+

T

)�}
,

⋃
�+
I
∈ h

+
I

{(
�+
I

)�}
,

⋃
�+
F
∈ h

+
F

{(
�+
F

)�}
,

⋃
�−
T
∈ h

−
T

{
−
(
−�−

T

)�}
,

⋃
�−
I
∈ h

−
I

{
−
(
1 −

(
1 −

(
−�−

I

))�)}
,

⋃
�−
F
∈h−

F

{
−
(
1 −

(
1 −

(
−�−

F

))�)}
⟩

h = ⟨0.5, {0.1, 0.3}, 0.2, {−0.2,−0.3}, −0.7, {−0.4,−0.6}⟩

�h =

⟨ ⋃
�+
T
∈ h

+
T

{
1 −

(
1 − �+

T

)�}
,

⋃
�+
I
∈ h

+
I

{(
�+
I

)�}
,

⋃
�+
F
∈ h

+
F

{(
�+
F

)�}
,

⋃
�−
T
∈ h

−
T

{
−
(
−�−

T

)�}
,

⋃
�−
I
∈ h

−
I

{
−
(
1 −

(
1 −

(
−�−

I

))�)}
,

⋃
�−
F
∈h−

F

{
−
(
1 −

(
1 −

(
−�−

F

))�)}
⟩
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The obtained �h when 𝜌 > 0 is still a HBNE. Thus, the 
computation/definition is valid.

If � = 0,

This is the obtained �h when � = 0 , regardless of any 
HBNEs used. Thus, the computation/definition is invalid 
when � = 0.

If 𝜌 < 0 (let � = −0.5),

The obtained �h when 𝜌 < 0 is definitely not a HBNE. 
Thus, the computation/definition is invalid when 𝜌 < 0.

The score function of HBNS is provided below to com-
pare two HBNSs:

Definit ion 3   (Awang  e t   a l .  2019a ,  b )  Le t 
h =

⟨
h+
T
, h+

I
, h+

F
, h−

T
, h−

I
, h−

F

⟩
 be a HBNE, then the score 

function s(h) is as below:

where � +
hT
,� +

hI
,� +

hF
,� −

hT
,� −

hI
  and �−

hF
 are the number of 

elements in h+
T
, h+

I
, h+

F
, h−

T
, h−

I
 and h−

F
 , respectively. �+

T
∈ h

+

T

,�+

I
∈ h

+

I
 , �+

F
∈ h+

F
 , �−

T
∈ h

−

T
 , �−

I
∈ h

−

I
 and �−

F
∈ h

−

F
 . If s ( h1) > s 

( h2 ), then h1 is bigger than h2 , represented by h1 > h2 and if 

�h =
⟨
1 − (1 − 0.5)0.5,

{
(0.1)0.5, (0.3)0.5

}
, (0.2)0.5,

{
−(− − 0.2)0.5,−(− − 0.3)0.5

}
,

−1
(
1 − (1 − (− − 0.7))0.5

)
,
{
−1

(
1 − (1 − (− − 0.4))0.5

)
,−1

(
1 − (1 − (− − 0.6))0.5

)}⟩

�h =⟨0.29, {0.32, 0.55}, 0.45, {−0.45,−0.55},
−0.45, {−0.23,−0.37}⟩

�h =
⟨
1 − (1 − 0.5)0,

{
(0.1)0, (0.3)0

}
, (0.2)0,{

−(− − 0.2)0,−(− − 0.3)0
}
,

−1
(
1 − (1 − (− − 0.7))0

)
,{

−1
(
1 − (1 − (− − 0.4))0

)
, . − 1

(
1 − (1 − (− − 0.6))0

)}⟩

�h = ⟨0, 1, 1,−1, 0, 0⟩

�h =
⟨
1 − (1 − 0.5)−0.5,

{
(0.1)−0.5, (0.3)−0.5

}
, (0.2)−0.5,{

−(− − 0.2)−0.5,−(− − 0.3)−0.5
}
,

−1
(
1 − (1 − (− − 0.7))−0.5

)
,{

−1
(
1 − (1 − (− − 0.4))−0.5

)
,−1

(
1 − (1 − (− − 0.6))−0.5

)}⟩

�h = ⟨−0.41, {3.16, 1.83}, 2.24, {−2.24,−1.83}, 0.83, {0.29, 0.58}⟩

(6)
s(h) =

�
1

�
+
hT

∑
�+
T
∈ h+

T

�+
T
+ 1 −

1

�
+
hI

∑
�+
I
∈ h+

I

�+
I
+ 1 −

1

�
+
hF

∑
�+
F
∈ h+

F

�+
F
+ 1 +

1

�
−
hT

∑
�−
T
∈ h−

T

�−
T
−

1

�
−
hI

∑
�−
I
∈ h−

I

�−
I
−

1

�
−
hF

∑
�−
F
∈ h−

F

�−
F

�

6

s ( h1) = s ( h2 ), then h1 is equivalent to h2 , represented by 
h1 = h2.

3.2 � Shapley fuzzy measure (SFM)

Recently, the concept of SFM has showed a rapid interest 
among researchers where it has been recognized for meas-
uring the overall interaction among the arguments and its 
coalition. In this regard, the concepts of �-fuzzy measure 
and SFM are given as follows:

Definition 4  (Zhang et al. 2017) Let N =
{
Ci|i = 1, 2, ..., n

}
 

be a set of criteria. Then a �-fuzzy measure on N is:

where �� is a �-fuzzy measure on N and the � values can be 
obtained by solving the following formula:

On the basis of fuzzy mesures and fuzzy integral, Shapley 
(1953) introduced SFM. In the following, the SFM,wi(�,N) 
is as follows:

where � is a fuzzy measure on N. |N| and |V| indicates the 
cardinality of the set N and V respectively. wi(�,N) repre-
sents the weight criteria on set N as wi(𝜇,N) > 0 and 
n∑
i=1

wi(�,N) = 1.

3.3 � Bonferroni mean (BM)

Bonferroni mean is a powerful tool for handling the correla-
tion among the individual input arguments. The definition 
of BM is provided as below:

(7)��(N) =

⎧
⎪⎨⎪⎩

1

�

�
∏
Ci∈N

�
1 + ���

��
Ci

���
− 1

�
, if � ≠ 0;

∑
Ci∈N

��

��
Ci

��
, if � = 0

(8)
∏
Ci∈N

(
1 + ���

({
Ci

}))
= � + 1.

(9)

wi(𝜇,N) =
∑

V⊆N∕i

(|N| − |V| − 1)!|V|!
|N|! (𝜇 (V ∪ i) − 𝜇(V ) ), ∀i ∈ N
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Definition 5   (Bonfer roni  1950)  Let  p, q ≥ 0

.Ai(i = 1, 2, ..., n) and Aj(j = 1, 2, ..., n) be a set of nonnega-
tive numbers, then BM operator is defined as follows:

The BM has satisfied the properties of monotonic-
ity, idempotency, commutativity and boundedness. Later, 
Xu and Yager (2006) improved BM operator by introduc-
ing weight vectors of input arguments to BM, called the 
weighted BM (WBM) and its definition is as follows:

Definition 6  (Xu and Yager 2011) Let p, q ≥ 0 . 
Ai(i = 1, 2, ..., n) and Aj(j = 1, 2, ..., n) be a collection of non-
negative numbers. wi =

(
w1, w2, ..., wn

)T

 are the weight vec-
tors of Ai where wi represents the importance degree of Ai , 
satisfying wi > 0 and 

n∑
i=1

wi = 1 . wj =
(
w1, w2, ..., wn

)T

 are 

the weight vectors of Aj where wj represents the importance 
degree of Aj , satisfying wj > 0 and 

n∑
i=1

wj = 1 . Then WBM is 

defined as follows:

The WBM operator does not satisfy the idempotency 
property. Thus, Zhou and He (2012) introduced the normal-
ized weighted BM (NWBM). The definition of NWBM is 
given as below:

Definition 7  (Zhou and He 2012) Let p, q ≥ 0 . p, q ≥ 0

.Ai(i = 1, 2, ..., n) and Aj(j = 1, 2, ..., n) be a set of nonnega-
tive numbers.wi =

(
w1,w2, ...,wn

)T is the weight vector of 
Ai where wi represents the importance degree of Ai , satisfy-
ing wi > 0 and 

n∑
i=1

wi = 1 . wj =
(
w1, w2, ..., wn

)T

 are the 

weight vectors of Aj where wj represents the importance 
degree of Aj , satisfying wj > 0 and 

n∑
i=1

wj = 1 . Then,

These definitions are prevalently used in the following 
proposed work.

(10)BMp, q
�
Ai

�
=

⎛
⎜⎜⎜⎝

1

n (n − 1)

n�
i,j=1
i≠j

A
p

i
A
q

j

⎞
⎟⎟⎟⎠

1

p+ q

.

(11)WBMp, q
�
Ai

�
=

⎛
⎜⎜⎜⎝

1

n (n − 1)

n�
i,j=1
i≠j

�
wiAi

�p�
wjAj

�q
⎞
⎟⎟⎟⎠

1

p+q

.

(12)NWBMp,q
�
Ai

�
=

⎛
⎜⎜⎜⎝

n�
i,j=1
i≠j

wi ⋅ wj

1 − wi

A
p

i
A
q

j

⎞
⎟⎟⎟⎠

1

p+q

4 � Proposed hesitant bipolar‑valued 
neutrosophic shapley normalized 
weighted bonferroni mean

This section develops the hesitant bipolar-valued neutro-
sophic Shapley NWBM (HBN-SNWBM) operator which is 
a combination between the SFM and BM concepts under the 
hesitant bipolar-valued neutrosophic environment. Before 
introducing the HBN-SNWBM in detail, we define the hesi-
tant bipolar-valued neutrosophic Bonferroni mean (HBN-
BM) as below:

Definition 8  Let Ĥi =
⟨
h+
T
, h+

I
, h+

F
, h−

T
, h−

I
, h−

F

⟩
(i = 1, 2, ..., n) 

and Ĥj =
⟨
h+
T
, h+

I
, h+

F
, h−

T
, h−

I
, h−

F

⟩
(j = 1, 2, ..., n) be a collec-

tion of HBNSs and p, q ≥ 0 . If

where HBN − BMp,q refers to the hesitant bipolar-valued 
neutrosophic BM (HBN-BM). In the following, we define 
the HBN-SNWBM operator as below:

Definition 9  Let Ĥi =
⟨
h+
T
, h+

I
, h+

F
, h−

T
, h−

I
, h−

F

⟩
(i = 1, 2, ..., n) 

and Ĥj =
⟨
h+
T
, h+

I
, h+

F
, h−

T
, h−

I
, h−

F

⟩
(j = 1, 2, ..., n) be a collec-

tion of HBNSs and p, q ≥ 0 . If

where wi(�,N) is the SFM of Ĥi with its corresponding 
fuzzy measure � on N and satisfies wi(�,N) ∈ [0, 1] and 
n∑
i=1

wi(�,N) = 1 while wj(�,N) is the SFM of Ĥj with its cor-

responding fuzzy measure � on N and satisfies 
wj(�,N) ∈ [0, 1]  a n d  

n∑
i=1

wj(�,N) = 1  .  T h e n 

HBN − SNWBMp,q is called the hesitant bipolar-valued neu-
trosophic Shapley NWBM (HBN-SNWBM).

The theorems that satisfied the proposed HBN-SNWBM 
are presented and followed by mathematical proofs. Theo-
rem 3 shows the theorem of equality of HBN-SNWBM that 
is proved based on the arithmetic law of HBNSs. The proof 
is provided in the appendix.

T h e o r e m   3    ( E q u a l i t y ) .  L e t  p, q ≥ 0  a n d 
Ĥi =

⟨
h+
T
, h+

I
, h+

F
, h−

T
, h−

I
, h−

F

⟩
(i = 1, 2, ..., n) be a set of 

HBNSs, then the aggregated value by the Eq. (14) is also 
a HBNS and.

(13)HBN − BMp, q
�
Ĥi

�
=

⎛
⎜⎜⎜⎝

1

n(n − 1)

n�
i, j=1
i≠j

�
Ĥ

p

i
⊗ Ĥ

q

j

�⎞⎟⎟⎟⎠

1

p+q

,

(14)

HBN − SNWBMp,q
�
Ĥi

�
=

⎛
⎜⎜⎜⎝

n�
i,j=1
i≠j

wi(𝜇,N)wj(𝜇,N)

1 − wi(𝜇,N)

�
Ĥ

p

i
⊗ Ĥ

q

j

�⎞⎟⎟⎟⎠

1

p+q

,
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where i, j = 1, 2, ..., n and �+

T
∈ h

+

T
(x),�+

I
∈ h

+

I
(x) , �+

F
∈ h+

F
(x) , 

�−
T
∈ h

−

T
(x) , �−

I
∈ h

−

I
(x) and �−

F
∈ h

−

F
(x) for x ∈ X . wi(�,N) is 

the SFM of Ĥi with its corresponding fuzzy measure � on N 
and satisfies wi(�,N) ∈ [0, 1] and 

n∑
i=1

wi(�,N) = 1 while 

wj(�,N) is the SFM of Ĥj with its corresponding fuzzy meas-
ure � on N and satisfies wj(�,N) ∈ [0, 1] and 

n∑
i=1

wj(�,N) = 1

.

Next, we investigate the algebraic properties of HBN-
SNWBM operator that are important when develop any 
new aggregation operator. Theorem 4 shows the reducibility 
property of the HBN-SNWBM.

Theorem 4.  (Reducibility) If wi(�,N) =
(

1

n
,
1

n
, ...,

1

n

)T

 , then

Further, the theorem of idempotency of HBN-SNWBM 
operator is given as follows:

Theorem 5.  (Idempotency) Let Ĥi(i = 1, 2, ..., n) be a set of 
HBNSs and are all equal, i.e., Ĥi = Ĥ , for all i . Then,

Commutativity is a theorem that can exchange order of 
numbers but still obtain the same value. This theorem is 
satisfied for the proposed HBN-SNWBM. Theorem 6 shows 
the commutativity and its proof.

Theorem 6.  (Commutativity) Let ̃̂Hi be any permutation of 
Ĥi , then.

(15)

HBN − SNWBMp,q
�
Ĥi

�
=

� �
𝛾 +
Ti
∈h+

Ti
,

𝛾 +
Tj
∈h+

Tj

⎧⎪⎪⎨⎪⎪⎩

⎛⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
𝛾 +
Ti

�p�
𝛾 +
Tj

�q� wiwj

1−wi

⎞⎟⎟⎟⎠

1

p+q

⎫⎪⎪⎬⎪⎪⎭

,

�
𝛾 +
Ii
∈h+

Ii
,

𝛾+
Ij
∈h+

Ij

⎧⎪⎪⎨⎪⎪⎩

1 −

⎛⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
1 − 𝛾+

Ii

�p�
1 − 𝛾+

Ij

�q� wiwj

1−wi

⎞⎟⎟⎟⎠

1

p+q

⎫⎪⎪⎬⎪⎪⎭

,

�
𝛾+
Fi
∈h+

Fi
,

𝛾+
Fj
∈h+

Fj

⎧⎪⎪⎨⎪⎪⎩

1 −

⎛⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
1 − 𝛾+

Fi

�p�
1 − 𝛾+

Fj

�q� wiwj

1−wi

⎞⎟⎟⎟⎠

1

p+q

⎫⎪⎪⎬⎪⎪⎭

,

�
𝛾 −
Ti
∈h −

Ti
,

𝛾 −
Tj
∈h −

Tj

⎧⎪⎪⎨⎪⎪⎩

−

⎛⎜⎜⎜⎜⎝
1 −

⎛⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
1 −

�
−𝛾 −

Ti

��p�
1 −

�
−𝛾 −

Tj

��q� wiwj

1−wi

⎞⎟⎟⎟⎠

1

p+q ⎞⎟⎟⎟⎟⎠

⎫⎪⎪⎬⎪⎪⎭

,

�
𝛾 −
Ii
∈h−

Ii
,

𝛾−
Ij
∈h−

Ij

⎧
⎪⎪⎨⎪⎪⎩

−

⎛⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
−𝛾−

Ii

�p�
−𝛾−

Ij

�q� wiwj

1−wi

⎞⎟⎟⎟⎠

1

p+q

⎫
⎪⎪⎬⎪⎪⎭

,

�
𝛾 −
Fi
∈h−

Fi
,

𝛾 −
Fj
∈h−

Fj

⎧
⎪⎪⎨⎪⎪⎩

−

⎛⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
−𝛾 −

Fi

�p�
−𝛾 −

Fj

�q� wiwj

1−wi

⎞⎟⎟⎟⎠

1

p+q

⎫
⎪⎪⎬⎪⎪⎭

�

(16)HBN − SNWBMp,q
(
Ĥi

)
= HBN − BMp,q

(
Ĥi

)
.

(17)HBN − SNWBMp,q
(
Ĥi

)
= Ĥ.

Monotonicity is a property to examine the proposed 
HBN-SNWBM to be either constant, or constantly increas-
ing or constantly decreasing. Theorem 7 investigates this 
property.

Theorem 7.  (Monotonicity) Let Ĥi =
⟨
h+
Ti
, h+

Ii
, h+

Fi
, h−

Ti
, h−

Ii
, h−

Fi

⟩
 

and Ĥ∗
i
=
⟨
h+∗
Ti
, h+∗

Ii
, h+∗

Fi
, h−∗

Ti
, h−∗

Ii
, h−∗

Fi

⟩
 be any two sets of HBNSs 

where i = 1, 2, ..., n . If Ĥi ≤ Ĥ∗
i
 , then.

Finally, we would like to verify the boundedness theorem 
of the proposed HBN-SNWBN operator. This theorem states 
that if the HBN-SNWBM is continuous over the closed and 
bounded interval, then the HBN-SNWBM is a bounded 
function. Theorem 8 discusses this property.

T h e o r e m   8 .   ( B o u n d e d n e s s s )  L e t 
Ĥi =

⟨
h+
Ti
, h+

Ii
, h+

Fi
, h−

Ti
, h−

Ii
, h−

Fi

⟩
(i = 1, 2, ..., n) be a set of 

HBNSs and Ĥ− =
⟨
min

{
h
+
T
i

}
, min

{
h
+
I
i

}
, max

{
h
+
F
i

}
,

max

{
h
−
T
i

}
, max

{
h
−
I
i

}
, min

{
h
−
F
i

}⟩
 ,  Ĥ+

=

⟨
max

{
h
+

T
i

}
,

max

{
h
+
I
i

}
, min

{
h
+
F
i

}
, min

{
h
−
T
i

}
, min

{
h
−
I
i

}
, max

{
h
−
F
i

}⟩
 , 

then

Subsequently, some special cases of HBN − SNWBM 
operator is presented as below:

Case 1. If q = 0 , then HBN-SNWBM operator reduces 
as follows:

(18)HBN − SNWBMp, q
(
̃̂
Hi

)
= HBN − SNWBMp,q

(
Ĥi

)
.

(19)HBN − SNWBMp,q
(
Ĥi

)
≤ HBN − SNWBMp,q

(
Ĥ∗

i

)
.

(20)Ĥ− ≤ HBN − SNWBMp,q
(
Ĥi

)
≤ Ĥ+
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i.e.,

(a) If p = 1 and q = 0 , then

(21)HBN − SNWBMp,q
�
Ĥi

�
=

⎛
⎜⎜⎜⎝

n�
i,j=1
i≠j

wiwj

1 − wi

�
Ĥ

p

i
⊗ Ĥ

q

j

�⎞⎟⎟⎟⎠

1

p+q

=

⎛
⎜⎜⎜⎝

n�
i,j=1
i≠j

wiĤ
p

i

⎞
⎟⎟⎟⎠

1

p

(22)

HBN − SNWBMp,0
�
Ĥi

�
=

� �
𝛾+
Ti
∈h+

Ti

⎧
⎪⎪⎨⎪⎪⎩

⎛
⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
𝛾+
Ti

�p�wi

⎞
⎟⎟⎟⎠

1

p

⎫
⎪⎪⎬⎪⎪⎭

,

�
𝛾+
Ii
∈h+

Ii

⎧
⎪⎪⎨⎪⎪⎩

1 −

⎛
⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
1 − 𝛾+

Ii

�p�wi

⎞
⎟⎟⎟⎠

1

p

⎫
⎪⎪⎬⎪⎪⎭

,

�
𝛾 +
Fi
∈h+

Fi

⎧
⎪⎪⎨⎪⎪⎩

1 −

⎛
⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
1 − 𝛾 +

Fi

�p�wi

⎞
⎟⎟⎟⎠

1

p

⎫
⎪⎪⎬⎪⎪⎭

,

�
𝛾 −
Ti
∈h−

Ti

⎧
⎪⎪⎨⎪⎪⎩

−

⎛⎜⎜⎜⎜⎝
1 −

⎛
⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
1 −

�
−𝛾 −

Ti

�p�wi
�⎞⎟⎟⎟⎠

1

p ⎞⎟⎟⎟⎟⎠

⎫⎪⎪⎬⎪⎪⎭

,

�
𝛾 −
Ii
∈h−

Ii

⎧
⎪⎪⎨⎪⎪⎩

−

⎛⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
−𝛾 −

Ii

�p�wi

⎞
⎟⎟⎟⎠

1

p

⎫
⎪⎪⎬⎪⎪⎭

,

�
𝛾 −
Fi
∈h−

Fi

⎧⎪⎪⎨⎪⎪⎩

−

⎛⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
−𝛾 −

Fi

�p�wi

⎞⎟⎟⎟⎠

1

p

⎫⎪⎪⎬⎪⎪⎭

�
.

(23)

HBN − SNWBM1,0

�
Ĥi

�
=

� �
𝛾+
Ti
∈h+

Ti

⎧
⎪⎨⎪⎩

⎛
⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
𝛾+
Ti

��wi

⎞
⎟⎟⎟⎠

⎫
⎪⎬⎪⎭
,

�
𝛾+
Ii
∈h+

Ii

⎧
⎪⎨⎪⎩
1 −

⎛
⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
1 − 𝛾+

Ii

��wi

⎞
⎟⎟⎟⎠

⎫
⎪⎬⎪⎭
,

�
𝛾 +
Fi
∈h+

Fi

⎧⎪⎨⎪⎩
1 −

⎛⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
1 − 𝛾 +

Fi

��wi

⎞
⎟⎟⎟⎠

⎫
⎪⎬⎪⎭
,

�
𝛾 −
Ti
∈h−

Ti

⎧
⎪⎨⎪⎩
−

⎛
⎜⎜⎜⎝
1 −

⎛
⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
1 −

�
−𝛾 −

Ti

���wi

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠

⎫⎪⎬⎪⎭
,

�
𝛾 −
Ii
∈h−

Ii

⎧
⎪⎨⎪⎩
−

⎛
⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
−𝛾 −

Ii

��wi

⎞
⎟⎟⎟⎠

⎫
⎪⎬⎪⎭
,

�
𝛾 −
Fi
∈h−

Fi

⎧
⎪⎨⎪⎩
−

⎛
⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
−𝛾 −

Fi

��wi

⎞
⎟⎟⎟⎠

⎫
⎪⎬⎪⎭

�
.

(24)

⇒

⟨ ⋃
�+
Tj
∈h+

Tj

{
1 −

n∏
j=1

(
1 − �+

Tj

)wj

}
,

⋃
�+
Ij
∈h+

Ij

{
n∏
j=1

(
�+
Ij

)wj

}
,

⋃
�+
Fj
∈h+

Fj

{
n∏
j=1

(
�+
Fj

)wj

}
,

⋃
�−
Tj
∈h−

Tj

{
−

n∏
j=1

(
−�−

Tj

)wj

}
,

⋃
�−
Ij
∈h−

Ij

{
−

(
1 −

n∏
j=1

(
1 −

(
−�−

Ij

))wj

)}
,

⋃
�−
Fj
∈h−

Fj

{
−

(
1 −

n∏
j=1

(
1 −

(
−�−

Fj

))wj

)}⟩

⇒ HBNWAw

(
h
1

, h
2

, ..., hn
)

where HBNWA refers to the hesitant bipolar-valued neutro-
sophic WA operator.
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(b) If p = 0, q = 0 , then

HBN − SNWBM 0,0
(
Ĥi

)
=

n∑
i=1

(
Hi

)wi

⇒

� �
�+
Ti
∈h+

Ti

⎧
⎪⎨⎪⎩

n�
i,j=1
i≠j

�
�+
Ti

�wi

⎫
⎪⎬⎪⎭
,

�
�+
Ii
∈h+

Ii

⎧
⎪⎨⎪⎩
1 −

n�
i,j=1
i≠j

�
1 − �+

Ii

�wi

⎫
⎪⎬⎪⎭
,

�
� +
Fi
∈h+

Fi

⎧
⎪⎨⎪⎩
1 −

n�
i,j=1
i≠j

�
1 − y+

Fi

�wi

⎫
⎪⎬⎪⎭
,

�
� −
Ti
∈h−

Ti

⎧
⎪⎨⎪⎩
−

⎛
⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
−� −

Ti

���i

⎞
⎟⎟⎟⎠

⎫
⎪⎬⎪⎭
,
�

� −
Ii
∈h−

Ii

⎧
⎪⎨⎪⎩
−

n�
i,j=1
i≠j

�
−� −

Ii

��i

⎫
⎪⎬⎪⎭
,
�

� −
Fi
∈h−

Fi

⎧
⎪⎨⎪⎩
−

n�
i,j=1
i≠j

�
−� −

Fi

��i

⎫
⎪⎬⎪⎭

�

(25)⇒ HBNWGw

(
h1, h2, ..., hn

)

where HBNWG refers to the hesitant bipolar-valued neutro-
sophic WG operator.

Case 2. If p = q , then HBN-SNWBM operator reduces 
to the following structure.

(26)

HBN − SNWBM
p,p
�
Ĥ

i

�
=

⎛
⎜⎜⎜⎝

n�
i,j=1
i≠j

w
i
w
j

1 − w
i

�
Ĥ

p

i
⊗ Ĥ

p

j

�⎞⎟⎟⎟⎠

1

p+p

=

⎛
⎜⎜⎜⎝

n�
i,j=1
i≠j

w
i
w
j

1 − w
i

�
Ĥ

i
Ĥ

j

�p
⎞
⎟⎟⎟⎠

1

2p

i.e.,

(27)

HBN − SNWBMp,p
�
Ĥi

�
=

� �
𝛾 +
Ti
∈h+

Ti
,

𝛾 +
Tj
∈h+

Tj

⎧⎪⎪⎨⎪⎪⎩

⎛⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
𝛾 +
Ti
𝛾 +
Tj

�p� wiwj

1−wi

⎞⎟⎟⎟⎠

1

2p

⎫⎪⎪⎬⎪⎪⎭

,

�
𝛾 +
Ii
∈h+

Ii
,

𝛾 +
Ij
∈h+

Ij

⎧⎪⎪⎨⎪⎪⎩

1 −

⎛⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
1 −

�
𝛾 +
Ii
+ 𝛾 +

Ij
− 𝛾 +

Ii
𝛾 +
Ij

��p� wiwj

1−wi

⎞⎟⎟⎟⎠

1

2p

⎫⎪⎪⎬⎪⎪⎭

�
𝛾+
Fi
∈h+

Fi
,

𝛾+
Fj
∈h+

Fj

⎧⎪⎪⎨⎪⎪⎩

1 −

⎛⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
1 −

�
𝛾+
Fi
+ 𝛾+

Fj
− 𝛾+

Fi
𝛾+
Fj

��p� wiwj

1−wi

⎞⎟⎟⎟⎠

1

2p

⎫⎪⎪⎬⎪⎪⎭

,

�
𝛾 −
Ti
∈h−

Ti
,

𝛾 −
Tj
∈h−

Tj

⎧⎪⎪⎨⎪⎪⎩

−

⎛⎜⎜⎜⎜⎝
1 −

⎛⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
1 −

�
−𝛾 −

Ti
− 𝛾 −

Tj
− 𝛾 −

Ti
𝛾 −
Tj

��p� wiwj

1−wi

⎞⎟⎟⎟⎠

1

2p ⎞⎟⎟⎟⎟⎠

⎫⎪⎪⎬⎪⎪⎭

�
𝛾 −
Ii
∈h−

Ii
,

𝛾−
Ij
∈h−

Ij

⎧
⎪⎪⎨⎪⎪⎩

−

⎛⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
𝛾 −
Ii
𝛾−
Ij

�p� wiwj

1−wi

⎞⎟⎟⎟⎠

1

2p

⎫
⎪⎪⎬⎪⎪⎭

,

�
𝛾 −
Fi
∈h−

Fi
,

𝛾 −
Fj
∈h−

Fj

⎧
⎪⎪⎨⎪⎪⎩

−

⎛⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
𝛾 −
Fi
𝛾 −
Fj

�p� wiwj

1−wi

⎞⎟⎟⎟⎠

1

2p

⎫
⎪⎪⎬⎪⎪⎭

�
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If p = q = 1 , then

that we refer to as the hesitant bipolar-valued neutro-
sophic weighted interrelated average (HBNWIA) operator. 
In the following, the proposed aggregation operators are 
employed to solve the hesitant bipolar neutrosophic deci-
sion making problem.

5 � A decision‑making approach 
with HBN‑SNWBM operator

This section presents a decision-making approach employing 
the proposed HBN-SNWBM operator (Fig. 1). The devel-
oped decision-making approach is carried out in three main 
processes as shown in a general diagram below:

Phase 1: Evaluation process
By considering a problem with a set of alternatives 

Ai =
{
A1,A2, ...,Am

}
 and a set of criteria cj =

{
c1, c2, ..., cn

}
 , 

an assessment is carried out by pair-wisely comparing i-th 
alternative with respect to j-th criterion. A group of experts 
is chosen among the experts of the related problem. They 

(28)

HBN − SNWBM1,1
�
Ĥi

�
=

� �
𝛾 +
Ti
∈h+

Ti
,

𝛾 +
Tj
∈h+

Tj

⎧
⎪⎪⎨⎪⎪⎩

⎛
⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 − 𝛾+

Ti
𝛾 +
Tj

� wiwj

1−wi

⎞
⎟⎟⎟⎠

1

2

⎫
⎪⎪⎬⎪⎪⎭

,

�
𝛾 +
Ii
∈h+

Ii

⎧⎪⎪⎨⎪⎪⎩

1 −

⎛⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
𝛾 +
Ii
+ 𝛾 +

Ij
− 𝛾 +

Ii
𝛾 +
Ij

� wiwj

1−wi

⎞⎟⎟⎟⎠

1

2

⎫⎪⎪⎬⎪⎪⎭

,
�

𝛾+
Fi
∈h+

Fi
,

𝛾+
Fj
∈h+

Fj

⎧⎪⎪⎨⎪⎪⎩

1 −

⎛⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
𝛾+
Fi
+ 𝛾+

Fj
− 𝛾+

Fi
𝛾+
Fj

� wiwj

1−wi

⎞⎟⎟⎟⎠

1

2

⎫⎪⎪⎬⎪⎪⎭

,

�
𝛾 −
Ti
∈h−

Ti
,

𝛾 −
Tj
∈h−

Tj

⎧⎪⎪⎨⎪⎪⎩

−

⎛⎜⎜⎜⎜⎝
1 −

⎛⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
−𝛾 −

Ti
− 𝛾 −

Tj
− 𝛾 −

Ti
𝛾 −
Tj

� wiwj

1−wi

⎞⎟⎟⎟⎠

1

2 ⎞⎟⎟⎟⎟⎠

⎫⎪⎪⎬⎪⎪⎭

,

�
𝛾 −
Ii
∈h−

Ii
,

𝛾−
Ij
∈h−

Ij

⎧⎪⎪⎨⎪⎪⎩

−

⎛⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 − 𝛾 −

Ii
𝛾−
Ij

� wiwj

1−wi

⎞⎟⎟⎟⎠

1

2

⎫⎪⎪⎬⎪⎪⎭

,
�

𝛾 −
Fi
∈h−

Fi
,

𝛾 −
Fj
∈h−

Fj

⎧⎪⎪⎨⎪⎪⎩

−

⎛⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 − 𝛾 −

Fi
𝛾 −
Fj

� wiwj

1−wi

⎞⎟⎟⎟⎠

1

2

⎫⎪⎪⎬⎪⎪⎭

�

are invited to discuss and give their consencus judgment 

values under hesitant bipolar-valued neutrosophic environ-
ment which are denoted as hij =

⟨
h+
Tij
, h+

Iij
, h+

Fij
, h−

Tij
, h−

Iij
, h−

Fij

⟩
 . 

Then, the obtained information is transform into a matrix 
form of hesitant bipolar-valued neutrosophic elements. The 
general form of the decision matrix is as below:

Phase 2: Aggregation process
In this phase, the proposed HBN-SNWBM aggregation 

operator is incorporated to get the complete evaluation. 
First of all, the Shapley fuzzy measure of each criterion is 
assigned by experts. Then, the Shapley fuzzy weights of cri-
teria can be computed by Eqs. (7–9). Further, the complete 
evaluation rate of each alternative Ai{i = 1, 2, ...,m} can 
be computed using the proposed HBN-SNWBM operator 

(29)D =

c1 c2 ⋯ cn
A1

A2

⋮

Am

⎛
⎜⎜⎜⎝

h11 h12 ⋯ h1m
h21 h22 ⋯ h2m
⋮ ⋮ ⋱ ⋮

hn1 hn2 ⋯ hnm

⎞⎟⎟⎟⎠

Evaluation process Aggregation process Ranking process

Decision making 

inputs

Start End

Analysis using HBN-

SNWBM operator

Decision making 

outputs

Fig. 1   General diagram of the proposed decision approach
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provided in Eq. (14). Different values of p,q parameters is 
assign based on the experts’ preferences. When q = 0 , the 
complete evaluation of each alternatives is computed by the 
special cases of the proposed HBN-SNWBM operators as in 
Eq. (21–28). On the other hand, if p = q , use Eq. (26–28) to 

calculate the complete evaluation. The different p,q param-
eter values may influence the ranking results of alternatives. 
The general form of the obtained complete evaluation rate 
of each alternative can be written as:

Start

Problem evaluation

Obtain the Shapley fuzzy 

weight of each criterion

Obtain the score functions

Rank the alternatives

End

Construct a decision making 

matrix in terms of HBNEs

Phase 1
Evaluation process

Phase 2
Aggregation process

Phase 3
Ranking process

Assign Shapley fuzzy measure 

of each criterion

Use special cases of 

HBN-SNWBM 

operators

Use the proposed 

HBNWIA operator

Identify the criteria 

and alternatives
Form a group of 

experts

Calculate the 

complete 

evaluation

Use the proposed HBN-

SNWBM operators

Fig. 2   Framework of the proposed decision approach
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Phase 3: Ranking process
Use the score function, s

(
hi
)
 defined in Eq. (6) to get the 

rating of each alternative Ai . Then, the set of alternatives can 
be ranked according to the obtained values of score func-
tion. The highest score values will be the most preferable 
alternative. In general, the score values of each alternatives 
can be written as:

Finally, the different values of parameters are analyzed to 
see the robustness of the final ranking results. The summary 
of the proposed decision making approach is given in Fig. 2.

6 � Illustrative examples

Two illustrative examples are given in this study to show 
the applicability of the proposed HBN-SNWBM aggrega-
tion operator.

Example 1  An illustrative example adapted from Ye (2014) 
is used to apply the proposed HBN-SNWBM operator. In 
choosing which company worth to be invested, the truth, 
indeterminacy and falsity elements exist during the deci-
sion process. The situations where investors are hesitating 
to state either truth or falsity is called the indeterminacy. The 
indeterminacy function in neutrosophic sets does not depend 
on truth or falsity functions unlike the IFS. Let us consider 
this investment problem. An investment firm intends to 

(30)

cj
A1

A2

⋮

Am

=

⎛
⎜⎜⎜⎝

h1
h2
⋮

hm

⎞
⎟⎟⎟⎠

(31)

cj
A1

A2

⋮

Am

=

⎛
⎜⎜⎜⎝

s
�
h1
�

s
�
h2
�

⋮

s
�
hm

�

⎞⎟⎟⎟⎠

capitalize a sum of money into one of the most capable 
company. There are four possible alternatives: a transport 
company 

(
A1

)
 , a food company 

(
A2

)
 , an IT company 

(
A3

)
 

and a weapons company 
(
A4

)
 with the following considered 

criteria: risk profile 
(
c1
)
 , growth profile 

(
c2
)
 and environ-

mental risk profile 
(
c3
)
 . The four alternatives are judged by 

a group of experts with respect to the considered criteria 
under the HBNS information. The obtained information is 
transformed into a decision matrix as shown in Table 2.

Based on the above table, the obtained data is analysed 
using the proposed HBN-SNWBM operator. First of all, 
experts gave the following SFM for each criterion:

�
(
c1
)
= 0.4 , �

(
c2
)
= 0.25 and �

(
c3
)
= 0.45.

Next, by Eq. (8) the �-value is obtained below:
� + 1 = (1 + 0.4�)(1 + 0.25�)(1 + 0.45�),
0.045�3 + 0.3925�2 + 0.1� = 0,

Since � ≥ −1 is only acceptable, we chose � = −0.263 . 
Then, the overall interaction of SFM of criteria is obtained 
by Eq. (7) as below:

�
(
c1, c2

)
= 0.624;

By similar calculation, we get
�
(
c1, c3

)
= 0.803,�

(
c2, c3

)
= 0.670 and �

(
c1, c2, c3

)
= 1.

The Shapley fuzzy weight of criteria can be computed 
using the SFM in Eq. (9)

� = 0,−0.263,−8.460

�
(
c1, c2

)
=

1

�

((
1 + ��

(
c1
))(

1 + ��
(
c2
))

− 1
)

�
(
c1, c2

)
=

1

−0.263
((1 − 0.263(0.4))(1 − 0.263(0.25)) − 1)

wi =
∑

V⊆N∕i

(|N| − |V| − 1)!|V|!
|N|! (𝜇(V ∪ i) − 𝜇(V)), ∀i ∈ N

Table 2   The decision data in HBNS information

c
1

c
2

c
3

A
1

⟨{0.4, 0.5}, {0.2, 0.3}, {0.3, 0.4},
−0.4,−0.2, {−0.4,−0.5}⟩

⟨0.5, {0.1, 0.3}, 0.2, {−0.2,−0.3},
−0.7, {−0.4,−0.6}⟩

⟨0.2, {0.2, 0.3}, {0.5, 0.6},−0.5,−0.8,
{−0.1,−0.3}⟩

A
2

⟨{0.6, 0.7}, {0.1, 0.2}, {0.2, 0.3},
{−0.2,−0.3},−0.2,−0.7⟩

⟨{0.6, 0.7}, {0.1, 0.2}, {0.2, 0.3} ,
{−0.2,−0.3}, −0.8,−0.7⟩

⟨{0.3, 0.6}, {0.3, 0.5}, 0.1,
−0.2,−0.4,−0.7⟩

A
3

⟨{0.3, 0.6}, 0.2, 0.4, {−0.3,−0.4},
{−0.2,−0.3},−0.5⟩

⟨{0.5, 0.6}, {0.2, 0.3}, 0.4,
−0.3,−0.7,−0.7⟩

⟨{0.5, 0.6}, 0.3, 0.2, {−0.1,−0.3},
−0.6,−0.4⟩

A
4

⟨0.7, {0.0, 0.1}, {0.1, 0.2},−0.2,−0.1,
{−0.7,−0.8}⟩

⟨0.6, 0.1, {0.1, 0.3},
−0.2,−0.8, {−0.6,−0.7}⟩

⟨0.4, 0.3, {0.1, 0.2}, {−0.1,−0.2},
−0.7,−0.3⟩
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In similar manner, we get
w2 = 0.223 and w3 = 0.413.

w1 =
(3 − 0 − 1)!0!

3!

(
�
(
c1
)
− �(�)

)
+

(3 − 1 − 1)!1!

3!

(
�
(
c1, c2

)
− �

(
c2
))
+

(3 − 1 − 1)!1!

3!

(
�
(
c1, c3

)
− �

(
c3
))

+
(3 − 2 − 1)!2!

3!

(
�
(
c1, c2, c3

)
− �

(
c2, c3

))

w1 =
2!0!

3!
(0.4 − 0) +

1!1!

3!
((0.624 − 0.25) + (0.803 − 0.45)) +

0!2!

3!
(1 − 0.670)

w1 = 0.364
After that, compute the complete evaluation rate of each 

alternative using the proposed HBN-SNWBM operators in 
Eqs. (14). The experts choose p = q = 1 , thus the proposed 

Fig. 3   An example of excel spreadsheet computation

Table 3   The ranking results 
with different used of p, q 
values

p, q Score value Ranking results

p = 0, q = 0 s
(
h
1

)
= 0.477, s

(
h
2

)
= 0.629, s

(
h
3

)
= 0.569, s

(
h
4

)
= 0.621

A
4

> A
2

> A
3

> A
1

p = 0.1, q = 0 s
(
h
1

)
= 0.635, s

(
h
2

)
= 0.756, s

(
h
3

)
= 0.702, s

(
h
4

)
= 0.777

A
4

> A
2

> A
3

> A
1

p = 1, q = 0 s
(
h
1

)
= 0.598, s

(
h
2

)
= 0.719, s

(
h
3

)
= 0.645, s

(
h
4

)
= 0.736

A
4

> A
2

> A
3

> A
1

p = 10, q = 0 s
(
h
1

)
= 0.644, s

(
h
2

)
= 0.753, s

(
h
3

)
= 0.682, s

(
h
4

)
= 0.785

A
4

> A
2

> A
3

> A
1

p = q = 1 s
(
h
1

)
= 0.536, s

(
h
2

)
= 0.669, s

(
h
3

)
= 0.609, s

(
h
4

)
= 0.682

A
4

> A
2

> A
3

> A
1

p = 0.1, q = 1 s
(
h
1

)
= 0.561, s

(
h
2

)
= 0.688, s

(
h
3

)
= 0.622, s

(
h
4

)
= 0.708

A
4

> A
2

> A
3

> A
1

p = 2, q = 1 s
(
h
1

)
= 0.547, s

(
h
2

)
= 0.676, s

(
h
3

)
= 0.614, s

(
h
4

)
= 0.694

A
4

> A
2

> A
3

> A
1

p = 10, q = 1 s
(
h
1

)
= 0.619, s

(
h
2

)
= 0.731, s

(
h
3

)
= 0.663, s

(
h
4

)
= 0.757

A
4

> A
2

> A
3

> A
1
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HBNWIA in Eq. (28) is used. The complete evaluation rate 
of each alternative Ai{i = 1, 2, ...,m} is attained as follows:

By Eq. (6), the score function values of each alternatives 
are as follows:

s
(
h1
)
= 0.536 , s

(
h2
)
= 0.669 , s

(
h3
)
= 0.609  a n d 

s
(
h4
)
= 0.682.

Based on the score function values, the alternatives is 
ranked as A4 > A2 > A3 > A1 . Thus, the best alternative is 
A4 which is a weapon company. In this investment case, the 
best alternative to invest is a weapon company followed by 
a food company. The least favourable company to invest is 
a transport company. The execution of computation in this 
paper is made using a spreadsheet software. To illustrate 
the computation, an example of a spreadsheet computation 
is given in Fig. 3.

To see the sensitivity of the ranking result, a sensitiv-
ity analysis is implemented. The sensitivity analysis of 
p, q parameters is carried out to see the influence of the 

A1 = ⟨{0.34, 0.37}, {0.17, 0.21, 0.21, 0.22, 0.25, 0.26, 0.26, 0.3}, {0.35, 0.39, 0.39, 0.43},
{−0.41,−0.39},−0.54, {−0.26,−0.29,−0.31,−0.34,−0.36,−0.39,−0.41,−0.44}⟩

A2 = ⟨{0.48, 0.5, 0.51, 0.54, 0.6, 0.63, 0.64, 0.66}, {0.17, 0.2, 0.21, 0.24, 0.24, 0.28, 0.29, 0.32},
{0.16, 0.19, 0.2, 0.22}, {−0.2,−0.22,−0.24,−0.26},−0.41,−0.7⟩

A3 = ⟨{0.42, 0.45, 0.46, 0.48, 0.54, 0.56, 0.57, 0.6}, {0.24, 0.26} , 0.33,
{−0.22,−0.26,−0.3,−0.34}, {−0.47,−0.51},−0.51⟩

A4 = ⟨0.55, {0.13, 0.17}, {0.1, 0.13, 0.13, 0.14, 0.17, 0.19, 0.19, 0.22}{−0.16,−0.2},−0.5,
{−0.51,−0.54,−0.54,−0.57}⟩

parameters of the proposed HBN-SNWBM operator. Table 3 
shows the ranking results after testing out different p, q 

values.
Based on the above table, it reveals that the obtained 

ranking order of alternatives is exactly same regardless of 

different values of parameters used. The parameters p, q 
in the proposed HBN-SNWBM operator did not influence 
the decision ranking results. In other words, final ranking 
results did not sensitive to the changes of parameters p, q 
in our proposed aggregation operator. Generally, p = q = 1 
can be assigned to the proposed HBN-SNWBM operator as 
it is easy to be computed and also taking into account the 
interrelationship among criteria. The graph in Fig. 4 below 
unveils the similar pattern of the obtained score functions 
when different p,q values are tested out.

Example 2  This example is a real investment problem 
adapted from Du and Yuan (2019). An investor would like 
to invest a high-technology product in China. Four alterna-
tives Ai{i = 1, 2, 3, 4} are available and the panel of deci-
sion makers Ek{k = 1, 2, 3} whose Shapley fuzzy measure is 

Fig. 4   The sensitivity analysis 
of the proposed method
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�
(
Ek

)
= (0.3, 0.5, 0.3)T are from various strategic decision-

making areas. There are five considered criteria which are 
innovative capacity 

(
C1

)
 , quality 

(
C2

)
 , marketing capacity (

C3

)
 , maintenance and after-sale service 

(
C4

)
 and risk taking 

capacity 
(
C5

)
 and their corresponding Shapley fuzzy meas-

ure is �
(
Cj

)
= (0.3, 0.4, 0.3, 0.1, 0.3)T, j = 1, 2, ..., 5 . The four 

alternatives are judged individually by three decision mak-
ers with respect to the considered criteria under the HBNS 
information. The obtained information is transformed into 
a decision matrix as shown in Table 4.

First of all, calculate the � values based on the Shapley 
fuzzy measure of decision makers �

(
Ek

)
= (0.3, 0.5, 0.3)T 

by Eq. (8):

� + 1 = (1 + 0.3�)(1 + 0.5�)(1 + 0.3�),

Since � ≥ −1 is only acceptable, we chose � = −0.264 . 
Then, the overall interaction of SFM of decision makers is 
obtained by Eq. (7) as below:

�
(
E1,E2

)
= 0.760;

By similar calculation, we get

� = 0,−0.264,−8.402

�
(
E1,E2

)
=

1

�

((
1 + ��

(
E1

))(
1 + ��

(
E2

))
− 1

)

�
(
E1,E2

)
=

1

−0.264
((1 − 0.264(0.3))(1 − 0.264(0.5)) − 1)

Table 4   Decision matrix under HBNS information

D
1

A
1

A
2

A
3

A
4

C
1

⟨{0.4, 0.6}, 0.2, 0.3,
{−0.2,−0.4}, −0.3,−0.5⟩

⟨{0.6, 0.7}, 0.2, 0.3,
{−0.2,−0.3},−0.7,−0.7⟩

⟨{0.5, 0.7}, 0.3, 0.2,
−0.2,−0.7, {−0.5,−0.6}⟩

⟨{0.6, 0.7}, 0.2, 0.3,
{−0.2,−0.3},−0.7,−0.7⟩

C
2

⟨0.7, 0.2, 0.2,{−0.1,−0.2}
,−0.6, {−0.7,−0.8}⟩

⟨0.5, 0.4, 0.3,
{−0.3,−0.4},−0.6,−0.7⟩

⟨{0.8, 0.9}, 0, 0.1,
{0,−0.1},−0.7,−0.8⟩

⟨{0.3, 0.4}, 0.2, 0.3,
{−0.5,−0.6}, −0.3,−0.5⟩

C
3

⟨{0.5, 0.7}, 0.3, 0.2,
−0.2,−0.7, {−0.5,−0.6}⟩

⟨{0.8, 0.9}, 0, 0.1,
{0,−0.1},−0.7,−0.8⟩

⟨{0.6, 0.7}, 0.2, 0.3,
{−0.2,−0.3},−0.7,−0.7⟩

⟨0.7, 0.2, 0.2,{−0.1,−0.2}
,−0.6, {−0.7,−0.8}⟩

C
4

⟨0.8, 0.1, 0.2,{0,−0.1}
,−0.6, {−0.7,−0.9}⟩

⟨0.7, 0.2, 0.2,{−0.1,−0.2}
,−0.6, {−0.7,−0.8}⟩

⟨{0.6, 0.8}, 0.2, 0.1,
−0.1,−0.7, {−0.7,−0.8}⟩

⟨0.7, 0.2, 0.2,{−0.1,−0.2}
,−0.6, {−0.7,−0.8}⟩

C
5

⟨{0.6, 0.8}, 0.2, 0.1,
−0.1,−0.7, {−0.7,−0.8}⟩

⟨0.5, 0.4, 0.3,
{−0.3,−0.4},−0.6,−0.7⟩

⟨0.7, 0.2, 0.2,{−0.1,−0.2}
,−0.6, {−0.7,−0.8}⟩

⟨{0.4, 0.6}, 0.2, 0.3,
{−0.2,−0.4}, −0.3,−0.5⟩

D
2

A
1

A
2

A
3

A
4

C
1

⟨{0.4, 0.6}, 0.2, 0.3,
{−0.2,−0.4}, −0.3,−0.5⟩

⟨{0.6, 0.7}, 0.2, 0.3,
{−0.2,−0.3},−0.7,−0.7⟩

⟨{0.5, 0.7}, 0.3, 0.2,
−0.2,−0.7, {−0.5,−0.6}⟩

⟨{0.6, 0.7}, 0.2, 0.3,
{−0.2,−0.3},−0.7,−0.7⟩

C
2

⟨0.7, 0.2, 0.2,{−0.1,−0.2}
,−0.6, {−0.7,−0.8}⟩

⟨0.5, 0.4, 0.3,
{−0.3,−0.4},−0.6,−0.7⟩

⟨0.7, 0.2, 0.2,{−0.1,−0.2}
,−0.6, {−0.7,−0.8}⟩

⟨0.5, 0.4, 0.3,
−0.5,−0.2,−0.2⟩

C
3

⟨{0.5, 0.7}, 0.3, 0.2,
−0.2,−0.7, {−0.5,−0.6}⟩

⟨0.5, 0.4, 0.3,
{−0.3,−0.4},−0.6,−0.7⟩

⟨0.7, 0.2, 0.2,{−0.1,−0.2}
,−0.6, {−0.7,−0.8}⟩

⟨0.4, 0.4, 0.5,
−0.5,−0.3,−0.4⟩

C
4

⟨0.7, 0.2, 0.2,{−0.1,−0.2}
,−0.6, {−0.7,−0.8}⟩

⟨{0.6, 0.7}, 0.2, 0.3,
{−0.2,−0.3},−0.7,−0.7⟩

⟨{0.6, 0.8}, 0.2, 0.1,
−0.1,−0.7, {−0.7,−0.8}⟩

⟨{0.5, 0.7}, 0.3, 0.2,
−0.2,−0.7, {−0.5,−0.6}⟩

C
5

⟨{0.6, 0.8}, 0.2, 0.1,
−0.1,−0.7, {−0.7,−0.8}⟩

⟨{0.6, 0.7}, 0.2, 0.3,
{−0.2,−0.3},−0.7,−0.7⟩

⟨{0.8, 0.9}, 0, 0.1,
{0,−0.1},−0.7,−0.8⟩

⟨0.5, 0.4, 0.3,
{−0.3,−0.4},−0.6,−0.7⟩

D
3

A
1

A
2

A
3

A
4

C
1

⟨0.5, 0.4, 0.3,
{−0.3,−0.4},−0.6,−0.7⟩

⟨{0.6, 0.7}, 0.2, 0.3,
{−0.2,−0.3},−0.7,−0.7⟩

⟨{0.5, 0.7}, 0.3, 0.2,
−0.2,−0.7, {−0.5,−0.6}⟩

⟨{0.6, 0.7}, 0.2, 0.3,
{−0.2,−0.3},−0.7,−0.7⟩

C
2

⟨0.7, 0.2, 0.2,{−0.1,−0.2}
,−0.6, {−0.7,−0.8}⟩

⟨0.5, 0.4, 0.3,
{−0.3,−0.4},−0.6,−0.7⟩

⟨0.7, 0.2, 0.2,{−0.1,−0.2}
,−0.6, {−0.7,−0.8}⟩

⟨0.4, 0.5, 0.6,
−0.6,−0.3,−0.4⟩

C
3

⟨0.5, 0.4, 0.3,
{−0.3,−0.4},−0.6,−0.7⟩

⟨{0.6, 0.8}, 0.2, 0.1,
−0.1,−0.7, {−0.7,−0.8}⟩

⟨0.7, 0.2, 0.2,{−0.1,−0.2}
,−0.6, {−0.7,−0.8}⟩

⟨0.5, 0.4, 0.3,
−0.5,−0.2,−0.2⟩

C
4

⟨0.7, 0.2, 0.2,{−0.1,−0.2}
,−0.6, {−0.7,−0.8}⟩

⟨{0.6, 0.7}, 0.2, 0.3,
{−0.2,−0.3},−0.7,−0.7⟩

⟨{0.6, 0.7}, 0.2, 0.3,
{−0.2,−0.3},−0.7,−0.7⟩

⟨{0.6, 0.7}, 0.2, 0.3,
{−0.2,−0.3},−0.7,−0.7⟩

C
5

⟨{0.6, 0.8}, 0.2, 0.1,
−0.1,−0.7, {−0.7,−0.8}⟩

⟨0.7, 0.2, 0.3,
−0.3,−0.7,−0.8⟩

⟨{0.8, 0.9}, 0, 0.1,
{0,−0.1},−0.7,−0.8⟩

⟨0.5, 0.4, 0.3,
{−0.3,−0.4},−0.6,−0.7⟩
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�
(
E1,E3

)
= 0.576 , �

(
E2,E3

)
= 0.760  a n d 

�
(
E1,E2,E3

)
= 1.

The Shapley fuzzy weight of decision makers can be 
computed using the SFM in Eq. (9)

w
(
Ek

)
=

∑
V⊆N∕i

(|N| − |V| − 1)!|V|!
|N|! (𝜇(V ∪ i) − 𝜇(V)), ∀i ∈ N

w
(
E1

)
=

(3 − 0 − 1)!0!

3!

(
�
(
E1

)
− �(�)

)
+

(3 − 1 − 1)!1!

3!

(
�
(
E1,E2

)
− �

(
E2

))
+

(3 − 1 − 1)!1!

3!

(
�
(
E1,E3

)
− �

(
E3

))
+

(3 − 2 − 1)!2!

3!

(
�
(
E1,E2,E3

)
− �

(
E2,E3

))

w
(
E1

)
=

2!0!

3!
(0.3 − 0) +

1!1!

3!
((0.760 − 0.5) + (0.576 − 0.3)) +

0!2!

3!
(1 − 0.760)

Thus, the Shapley fuzzy weights for second and third 
decision makers are w

(
E2

)
= 0.462 and w

(
E3

)
= 0.269.

In similar manner, we get the following combinations of 
Shapley fuzzy measure of criteria:

w
(
E1

)
= 0.269

Table 5   Aggregated decision matrix

A
1

A
2

A
3

A
4

C
1

⟨{0.42, 0.48, ...}, ... ,
−0.37,−0.55⟩

⟨{0.6, 0.63, 0.64, ...}, ...,
−0.7,−0.7⟩

⟨{0.5, 0.55, 0.57, ...}, ...,
{−0.5,−0.53 − 0.54, ...}⟩

⟨{0.6, 0.63, 0.64, ...}, ...,
−0.7,−0.7⟩

C
2

⟨0.7, 0.2, 0.2, ...,
{−0.7,−0.73,−0.74, ...}⟩

⟨0.5, 0.4, 0.3, ..., −0.7⟩ ⟨{0.74, 0.77}, 0.13, 0.16, ...,
..., {−0.74,−0.76,−0.78}⟩

⟨{0.39, 0.42}, 0.37, 0.42, ...,
..., −0.37,−0.51⟩

C
3

⟨{0.5, 0.55, ...}, 0.34, 0.24,
..., {−0.57,−0.6, ...}⟩

⟨{0.65, 0.68, ...}, 0.17, ...,
..., {−0.74,−0.78}⟩

⟨{0.66, 0.7}, 0.2, 0.24,
..., {−0.7,−0.73}⟩

⟨0.54, 0.33, 0.31, ...
, ..., {−0.4,−0.42}⟩

C
4

⟨0.74, 0.16, 0.2, ... ,
..., {−0.7,−0.73, ...}⟩

⟨{0.64, 0.66, ...}, 0.2, 0.26,
...,−0.66, {−0.7,−0.74}⟩

⟨{0.6, 0.64, ...}, 0.2, 0.17,
..., {−0.7,−0.73, ...}⟩

⟨{0.61, 0.65, ...}, 0.2, 0.24, ...,
..., {−0.65,−0.67, ...}⟩

C
5

⟨{0.6, 0.65, ...}, 0.2, 0.1, ...,
..., {−0.7,−0.73, ...}⟩

⟨{0.37, 0.41, ...}, 0.27, 0.3,
...,−0.66,−0.74⟩

⟨{0.76, 0.79, ...}, 0, 0.13, ...,
−0.66, {−0.76,−0.8}⟩

⟨{0.46, 0.54}, 0.33, 0.3,
..., −0.46,−0.63⟩

Table 6   The comparison with the existing aggregation operators

Method Criteria Weight Parameter Score Function Ranking Order

HBNA No No s
(
A
1

)
= 0.585, s

(
A
2

)
= 0.704,

s
(
A
3

)
= 0.633, s

(
A
4

)
= 0.735

A
4

> A
2

> A
3

> A
1

HBNG No No s
(
A
1

)
= 0.528, s

(
A
2

)
= 0.664,

s
(
A
3

)
= 0.603, s

(
A
4

)
= 0.658

A
2

> A
4

> A
3

> A
1

HBNWA
(Awang et al. 2019a, b)

Yes No s
(
A
1

)
= 0.570, s

(
A
2

)
= 0.695,

s
(
A
3

)
= 0.629, s

(
A
4

)
= 0.727

A
4

> A
2

> A
3

> A
1

HBNWG
(Awang et al. 2019a, b)

Yes No s
(
A
1

)
= 0.477, s

(
A
2

)
= 0.629,

s
(
A
3

)
= 0.569, s

(
A
4

)
= 0.621

A
2

> A
4

> A
3

> A
1

HBN-BM No Yes s
(
A
1

)
= 0.554, s

(
A
2

)
= 0.677,

s
(
A
3

)
= 0.614, s

(
A
4

)
= 0.694

A
4

> A
2

> A
3

> A
1

GHBN-WA Yes Yes s
(
A
1

)
= 0.604, s

(
A
2

)
= 0.730,

s
(
A
3

)
= 0.670, s

(
A
4

)
= 0.757

A
4

> A
2

> A
3

> A
1

HBN-SNWBM (Proposed method) Yes Yes s
(
A
1

)
= 0.536, s

(
A
2

)
= 0.669,

s
(
A
3

)
= 0.609, s

(
A
4

)
= 0.682

A
4

> A
2

> A
3

> A
1
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�
(
C1,C2

)
= 0.626   ,  �

(
C1,C3

)
= 0.544   , 

�
(
C1,C4

)
= 0.381 , �

(
C1,C5

)
= 0.544 , �

(
C2,C3

)
= 0.626 , 

�
(
C2,C4

)
= 0.4752   ,  �

(
C2,C5

)
= 0.626   , 

�
(
C3,C4

)
= 0.381 , �

(
C3,C5

)
= 0.544 , �

(
C4,C5

)
= 0.381 , 

�
(
C1,C2,C3

)
= 0.809 , �

(
C1,C2,C4

)
= 0.687   , 

�
(
C1,C2,C5

)
= 0.809   ,  �

(
C1,C3,C4

)
= 0.611   , 

�
(
C1,C3,C5

)
= 0.743   ,  �

(
C1,C4,C5

)
= 0.611   , 

�
(
C2,C3,C4

)
= 0.687   ,  �

(
C2,C3,C5

)
= 0.809

, �
(
C2,C4,C5

)
= 0.687   ,  �

(
C3,C4,C5

)
= 0.611   , 

�
(
C1,C2,C3,C4

)
= 0.859  ,  �

(
C1,C2,C4,C5

)
= 0.859

,�
(
C1,C2,C3,C5

)
= 0.959  ,  �

(
C1,C3,C4,C5

)
= 0.797  , 

�
(
C2,C3,C4,C5

)
= 0.859 , �

(
C1,C2,C3,C4,C5

)
= 1,

and the Shapley fuzzy weights of each criterion are as 
below:

By using the proposed HBN-SNWBM operators in 
Eqs. (14), the aggregated decision matrix is obtained as 
below:

The obtained aggregated decision matrix in Table 5 has 
more than two hesitancy elements which makes it more 
complex for computations. To reduce the complexity, the 
aggregated decision matrix is reduce to BNS informa-
tion. Then, the complete evaluation rate of each alternative 
Ai{i = 1, 2, ...,m} using the proposed HBN-SNWBM opera-
tors in Eqs. (14) with p = q = 1 is as follows:

By Eq. (6), the score function values of each alternatives 
are as follows:

s
(
A1

)
= 0.71 , s

(
A2

)
= 0.70 , s

(
A3

)
= 0.77  a n d 

s
(
A4

)
= 0.60.

w
(
C
1

)
= 0.213,w

(
C
2

)
= 0.293,w

(
C
3

)
= 0.213,

w
(
C
4

)
= 0.068,w

(
C
5

)
= 0.213

A1 = ⟨0.63, 0.24, 0.22,−0.19,−0.58,−0.69⟩

A2 = ⟨0.59, 0.26, 0.26,−0.25,−0.65,−0.72⟩

A3 = ⟨0.71, 0.15, 0.18,−0.14,−0.66,−0.71⟩

A4 = ⟨0.53, 0.31, 0.33,−0.36,−0.48,−0.57⟩

Based on the obtained score values, the alternatives is 
ranked as A3 > A1 > A2 > A4 . The obtained results is 
consistent with Du and Yuan (2019). This could be due to 
the similarities between the proposed method and Du and 
Yuan’s method of employing the Bonferroni mean operator. 
In the following section, we address in depth the comparison 
of the proposed method with the existing literature.

7 � Comparative analysis

A comparative analysis is carried out to confirm the effi-
cacy of the proposed decision making method. The proposed 
decision-making method's validity is confirmed in the first 
subsection. The proposed method's advantages over existing 
methods are discussed in the second subsection.

7.1 � Validity of the proposed method

Employing the Example 1 from Ye (2014), the proposed 
decision-making method based HBN-SNWBM operator is 
compared to the existing aggregation operators; arithmetic 
averaging, geometric averaging, weighted average (WA) 
(Dong and Wong 1987), weighted geometric (WG) (Aczel 
and Saaty 1983), generalised weighted average (GWA) and 
Bonferroni mean (BM) (Bonferroni 1950). For this purpose, 
we extend the mentioned aggregation operators under hesi-
tant bipolar-valued neutrosophic environment and developed 
the hesitant bipolar-valued neutrosophic average (HBNA), 
hesitant bipolar-valued neutrosophic geometric (HBNG), 
hesitant bipolar-valued neutrosophic Bonferroni mean 
(HBN-BM) and generalised hesitant bipolar-valued neutro-
sophic weighted average (GHBN-WA). Hesitant bipolar-val-
ued neutrosophic weighted average (HBNWA) and hesitant 
bipolar-valued neutrosophic weighted geometric (HBNWG) 
has been developed by Awang et al. (2019a, b). In the fol-
lowing, the definitions of HBNA, HBNG and GHBN-WA 
are given below:

Definition 10  Let Ĥi =
⟨
h+
T
, h+

I
, h+

F
, h−

T
, h−

I
, h−

F

⟩
(i = 1, 2, ..., n) 

be a collection of HBNSs, then HBNA operator is defined 
as follows:

HBNA
(
Ĥi

)
=

n∑
i=1

1

n

(
Ĥi

)
=

⟨ ⋃
𝛾 +
Ti
∈h+

Ti

{
1 −

n∏
i=1

(
1 − 𝛾 +

Ti

) 1

n

}
,
⋃

𝛾 +
Ii
∈h+

Ii

{
n∏
i=1

(
𝛾 +
Ii

) 1

n

}
,
⋃

𝛾+
Fi
∈h+

Fi

{
n∏
i=1

(
𝛾+
Fi

) 1

n

}

(32)
⋃

� −
Ti
∈h−

Ti

{
−

n∏
i=1

(
−� −

Ti

) 1

n

}
,
⋃

� −
Ii
∈h−

Ii

{
−

(
1 −

n∏
i=1

(
1 −

(
−� −

Ii

)) 1

n

)}
,

⋃
� −
Fi
∈h−

Fi

{
−

(
1 −

n∏
i=1

(
1 −

(
−� −

Fi

)) 1

n

)}⟩
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Definition 11  Let Ĥi =
⟨
h+
T
, h+

I
, h+

F
, h−

T
, h−

I
, h−

F

⟩
(i = 1, 2, ..., n) 

be a collection of HBNSs, then HBNG operator is defined 
as follows:

Definition 12  Let Ĥi =
⟨
h+
T
, h+

I
, h+

F
, h−

T
, h−

I
, h−

F

⟩
(i = 1, 2, ..., n) 

be a collection of HBNSs, then generalized HBNWA 
(GHBN-WA) operator is defined as follows.

where 𝜌 > 0.

HBNG
(
Ĥi

)
=

n∏
i=1

(
Ĥi

) 1

n =

⟨ ⋃
𝛾 +
Ti
∈h+

Ti

{
n∏
i=1

(
𝛾 +
Ti

) 1

n

}
,
⋃

𝛾 +
Ii
∈h+

Ii

{
1 −

n∏
i=1

(
1 − 𝛾 +

Ii

) 1

n

}
,
⋃

𝛾+
Fi
∈h+

Fi

{
1 −

n∏
i=1

(
1 − 𝛾+

Fi

) 1

n

}

(33)
⋃

� −
Ti
∈h−

Ti

{
−

(
1 −

n∏
i=1

(
1 −

(
−� −

Ti

)) 1

n

)}
,
⋃

� −
Ii
∈h−

Ii

{
−

n∏
i=1

(
−� −

Ii

) 1

n

}
,

⋃
� −
Fi
∈h−

Fi

{
−

n∏
i=1

(
−� −

Fi

) 1

n

}⟩

GHBN −WA
�
Ĥi

�
=

�
n�
i=1

𝜔iĤ
𝜌

i

� 1

𝜌

=

� �
𝛾 +
Ti
∈h+

Ti

⎧⎪⎨⎪⎩

�
1 −

n�
i=1

�
1 −

�
𝛾 +
Ti

�𝜌�𝜔i

� 1

𝜌
⎫⎪⎬⎪⎭
,

�
� +
Ii
∈h+

Ii

⎧
⎪⎨⎪⎩
1 −

�
1 −

n�
i=1

�
1 −

�
1 − � +

Ii

����i

� 1

�
⎫⎪⎬⎪⎭
,
�

�+
Fi
∈h+

Fi

⎧⎪⎨⎪⎩
1 −

�
1 −

n�
i=1

�
1 −

�
1 − �+

Fi

����i

� 1

�
⎫⎪⎬⎪⎭
,

�
� −
Ti
∈h−

Ti

⎧⎪⎨⎪⎩
−

⎛⎜⎜⎝
1 −

�
1 −

n�
i=1

�
1 −

�
1 −

�
−� −

Ti

�����i

� 1

� ⎞⎟⎟⎠

⎫⎪⎬⎪⎭
,
�

� −
Ii
∈h−

Ii

⎧⎪⎨⎪⎩
−

�
1 −

n�
i=1

�
1 −

�
−� −

Ii

����i

� 1

�
⎫⎪⎬⎪⎭
,

(34)
�

� −
Fi
∈h−

Fi

⎧⎪⎨⎪⎩
−

�
1 −

n�
i=1

�
1 −

�
−� −

Fi

����i

� 1

�
⎫⎪⎬⎪⎭

�

Table 6 shows the comparison analysis between the pro-
posed aggregation operator with several existing aggrega-
tion operators in hesitant bipolar-valued neutrosophic set 
(HBNS) information.

From Table 6, it can be seen that the ranking order of 
the proposed HBN-SNWBM aggregation operator is in con-
cordance with the existing aggregation operators of HBNA, 
HBNWA (Awang et al. 2019a, b), HBN-BM and GHBN-WA 
but slightly differ when compared to the geometric based 
aggregation operators, HBNG and HBNWG (Awang et al. 
2019a, b). This is because the proposed aggregation opera-
tor was developed based on an arithmetic operator. There 
is a difference in ranking order between geometric and 
arithmetic operators due to their differing focal points. The 
arithmetic operators focus on the the group’s major points 

whereas the geometric operators focus the individual major 
points. This comparative analysis shows the validity of the 
proposed aggregation operator. However, due to the same 

ranking outcomes, it cannot demonstrate the benefits of the 
proposed method. The benefits of the proposed method is 
analysed in more detail in the next subsection.

Table 7   The comparison with the existing methods

Method Ranking Order

SVNHFWA (Ye 2015) A
4

> A
2

> A
3

> A
1

SVNHFWG (Ye 2015) A
2

> A
4

> A
3

> A
1

CIFBM (p = q = 1) (Garg et al. 2016) A
1

> A
4

> A
3

> A
2

NNWBM (p = q = 1) (Liu and Li 2017) A
4

> A
2

> A
3

> A
1

NNWGBM (p = q = 1) (Liu and Li 2017) A
2

> A
4

> A
3

> A
1

IULWABM (p = q = 1) (Liu and Zhang 2019) A
2

> A
4

> A
1

> A
3

PFWBM (p = q = 1) (Yang et al. 2019) A
3

> A
4

> A
2

> A
1

HBN-SNWBM (Proposed method)(p = q = 1) A
4

> A
2

> A
3

> A
1
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7.2 � Advantages of the proposed method

In this subsection, a comparative analysis is presented to 
demonstrate the advantages and flexibility of the proposed 
HBN-SNWBM decision making method over the existing 
methods. Therefore, different existing methods in the lit-
erature (Ye 2015; Garg et al. 2016; Liu and Li 2017; Liu 
and Zhang 2019; Yang et al. 2019) are used to solve the 
same example (Example 1). Table 7 summarizes the ranking 
results of the comparison analysis.

The comparison condition parameter p = q = 1 has 
been used by Garg et al. (2016), Liu and Li (2017), Liu and 
Zhang (2019) and Yang et al. (2019) which is similar to 
the parameter used in our proposed method. However, the 
comparison methods from Ye (2015) do not use any param-
eters. This is because p, q parameters are presented for the 
Bonferroni mean based aggregation operators. The ranking 
order of the proposed method is consistent to the operator 
SVNHFWA (Ye 2015) and NNWBM (Liu and Li 2017). 
This could be owing to the fact that both existing operators 
and the proposed operator shared some common comparison 
conditions. The SVNHFWA uses arithmetic averaging with 
hesitant and neutrosophic theory, while NNWBM uses the 
NWBM operator. However, when compared to the SVN-
HFWG (Ye 2015), CIFBM (Garg et al. 2016), NNWGBM 
(Liu and Li 2017), IULWABM (Liu and Zhang 2019), and 
PFWBM (Yang et al. 2019) operators, the proposed operator 
produces a completely different ranking order. Despite the 
fact that the common comparison condition of Bonferroni 
mean was employed, the ranking outcomes are influenced 
by the different set used and geometrically based operator. 
Yet, the proposed method is practical for dealing with prob-
lems involving the total interaction of criteria and decision 
makers' weights, as well as the ability to manage interaction 
between input arguments and hesitant bipolar indeterminacy.

8 � Conclusion

The main objective of this paper is the development of a new 
BM operator in a hesitant bipolar-valued neutrosophic envi-
ronment and its application to decision-making problems. 
This paper studied the appropriate characteristics of aggre-
gation operators to handle the multiple indeterminacy, hesi-
tancy and bipolar uncertainty data. Considering the notions 
of SFM and BM, this study developed the hesitant bipolar-
valued neutrosophic Shapley NWBM (HBN-SNWBM) 
operator. Subsequently, some necessary properties were 
investigated and the special cases to the proposed HBN-
SNWBM operator was studied. A multi-criteria decision 
making model was formulated using the proposed HBN-
SNWBM operator to effectively solve the hesitant bipolar 
neutrosophic problems. Eventually, an illustrative example 

on an investment decision problem was provided under 
the hesitant bipolar-valued neutrosophic environment. The 
nature of the investment decision problem involves inde-
terminacy, hesitation and bipolarity during the decision-
making process. The proposed method is advantageous to 
investors because it eliminates hesitation and allows bipolar-
ity elements during decision elicitation. Furthermore, the 
problem with bipolarity information can be addressed effec-
tively as the proposed aggregation operator considered both 
the negative and positive aspects of the problem. In our case, 
the proposed approach assisted investors in making more 
realistic and practical decisions. A comparative analysis is 
presented in two directions: to validate the proposed aggre-
gation operator and to demonstrate its advantages. When 
compared to the previous operators, the analysis revealed 
that the proposed aggregation operator is more accurate and 
efficient.

The key contributions of this study can be summarized 
as follows. Firstly, this paper introduces the Shapley fuzzy 
measure which can take into account the overall interaction 
of criteria weights. Secondly, this study proposes a novel 
hesitant bipolar-valued neutrosophic aggregation operator 
that combines the NWBM operator and Shapley fuzzy meas-
ure to address the interrelationships between input argu-
ments as well as the overall interaction among criteria. The 
proposed aggregation operator incorporated Shapley fuzzy 
measure, while most of the previous aggregation opera-
tors simply assumed the criteria’ weights. Finally, based 
on the proposed aggregation operator, this paper develops 
a decision-making method for investment selection. The 
new method is then proven to be useful in selecting which 
companies are worth investing in. The proposed MCDM 
method incorporating the HBN-SNWBM operator outper-
forms existing methods in dealing with situations involving 
dependent criteria with varying weightages, which occur 
in the majority of real-world problems. In other words, the 
proposed method employing the HBN-SNWBM operator is 
more practical than existing methods.

Several future research directions appear to be very 
interesting. Firstly, the aggregation operator proposed in 
this study can be extended into other neutrosophic sets such 
as vague neutrosophic set, neutrosophic soft set and many 
others. Secondly, it may be possible to consider the applica-
tions of the proposed method to tackle the current real issues 
such as in automatic ship classification (Połap et al. 2021), 
coastal erosion (Awang et al. 2019a, b), energy policy (Jamil 
and Rashid 2018) and covid-19 decision-making (Albahri 
et al. 2020). The common feature of these real-world prob-
lems is the interdependence of multiple criteria and differ-
ent weights. In addition, in the case of the group MCDM 
problem, the Shapley fuzzy measure can be used to calculate 
the overall interaction of decision makers' weightages. Fur-
thermore, the applications can be further extended to the 
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development of new systems such as type-2 fuzzy control 
of non-linear system (Mohammadzadeh and Hashemzadeh 
2015) and fractional-order chaotic system (Balootaki et al. 
2020) of which the proposed operators could be used as a 
new aggregation method. Last but not least, with the help of 
integrated software, the complexity of the proposed method 
can be improved. In the future, we will focus on reducing the 
method's complexity while increasing its accuracy.

Appendix

Proof of Theorem 3

Proof  Since Ĥi =
⟨
h+
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, h+
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F
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(j = 1, 2, ..., n) , so by power rule 

of HBNSs in Eq. (4), we have

Using the product rule of HBNSs in Eq. (3), we have,

Hence, by applying the scalar multiplication rule of 
HBNSs in Eq. (5), we have
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The following explanation is presented to obtain equation 
when incorporating summation.

Let n = 2 , then
2∑

i,j=1
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Note that, only the truth-membership part of the positive 
HBNS is shown, the rest is similar, thus omitted

By addition rule of HBNS in (2), we have
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Then, by power rule of HBNS in (4), we have

Thus, Theorem 3 holds.

Proof of Theorem 4

Proof  Since wi(�,N) =
(
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,
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, ...,

1

n
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 , then according to 
Eq. (14), we have
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⇒
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Proof of Theorem 5

Proof  Since Ĥi = Ĥ for all i, we have
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Hence, the proof of Theorem 5 is completed.

Proof of Theorem 6

Proof  Since ̃̂Hi be any permutation of Ĥi , then
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then it proves the Theorem 6.

Proof of Theorem 7

Proof  (1) For the truth-function part of positive bipolar
Since h+

Ti
≤ h+∗

Ti
 and h+

Tj
≤ h+∗

Tj
 for all i and j with p, q > 0 , 

then for the lower bound of truth membership function, we 
have(

� +
Ti

)p

≤

(
� +∗

Ti

)p

,

(
� +

Tj

)q

≤

(
� +∗

Tj

)q

.
Hence,

1 −
(
� +
Ti

)p(
� +
Tj

)q

≥ 1 −
(
� +∗
Ti

)p(
� +∗
Tj

)q

⇒

n∏
i,j= 1
i≠j

(
1 −

(
� +
Ti

)p(
� +
Tj

)q) wiwj

1−wi
≥

n∏
i,j=1
i≠j

(
1 −

(
� +∗
Ti

)p(
� +∗
Tj

)q) wiwj

1−wi

⇒ 1 −

n∏
i,j= 1

i≠j

(
1 −

(
� +
T
i

)p(
� +
T
j

)q) wiwj

1−wi

≤ 1 −

n∏
i,j= 1

i≠j

(
1 −

(
� +∗
T
i

)p(
� +∗
T
j

)q) wiwj

1−wi

⇒

⎛⎜⎜⎜⎝
1 −

n�
i,j= 1

i≠j

�
1 −

�
�+
T
i

�p�
�+
T
j

�q� wiwj

1−wi

⎞⎟⎟⎟⎠

1

p+q

≤

⎛⎜⎜⎜⎝
1 −

n�
i,j= 1

i≠j

�
1 −

�
�+∗
T
i

�p�
�+∗
T
j

�q� wiwj

1−wi

⎞⎟⎟⎟⎠

1

p+q

⇒ 1 −

⎛⎜⎜⎝
1 −

n∏
i,j=1
i≠j

�
1 −

�
� +
Ti

�p�
� +
Tj

�q� wiwj

1−wi

⎞⎟⎟⎠

1

p+q

≤ 1 −

⎛⎜⎜⎝
1 −

n∏
i,j=1
i≠j

�
1 −

�
� +∗
Ti

�p�
� +∗
Tj

�q� wiwj

1−wi

⎞⎟⎟⎠

1

p+q

.



6944	 N. A. Awang et al.

1 3

(2) For the indeterminacy-function part of positive bipolar
Since �+

Ii
≤ � +∗

Ii
 for all i and �+

Ij
≤ � +∗

Ij
 for all j and p, q > 0 , 

hence we have(
1 − �+

Ii

)p

≥

(
1 − �+∗

Ii

)p

,
(
1 − �+

Ij

)q

≥

(
1 − �+∗

Ij

)q

⇒ 1 −

⎛⎜⎜⎝
1 −

n∏
i,j=1
i≠j

�
1 −

�
1 − �+

Ii

�p�
1 − �+

Ij

�q� wiwj

1−wi

⎞⎟⎟⎠

1

p+ q

≤

1 −

⎛⎜⎜⎝
1 −

n∏
i,j=1
i≠j

�
1 −

�
1 − �+∗

Ii

�p �
1 − �+∗

Ij

�q � wiwj

1−wi

⎞⎟⎟⎠

1

p+ q

.

(3) For the falsity-function part of positive bipolar.
Since � +

Fi
≥ � +∗

Fi
 for all i and � +

Fj
≥ � +∗

Fj
 for all j and 

p, q > 0 , therefore we have(
1 − � +

Fi

)p

≤

(
1 − � +∗

Fi

)p

,
(
1 − � +

Fj

)q

≤

(
1 − � +∗

Fj

)q

⇒

(
1 − �+

Ii

)p (
1 − �+

Ij

)q

≥

(
1 − �+∗

Ii

)p(
1 − �+∗

Ij

)q

⇒ 1 −
(
1 − �+

Ii

)p(
1 − �+

Ij

)q

≤ 1 −
(
1 − �+∗

Ii

)p(
1 − �+∗

Ij

)q

⇒

n∏
i,j=1
i≠j

(
1 −

(
1 − �+

I
i

)p(
1 − �+

I
j

)q) wiwj

1−wi

≤

n∏
i,j=1
i≠j

(
1 −

(
1 − �+∗

I
i

)p(
1 − �+∗

I
j

)q) wiwj

1−wi

⇒1 −

n∏
i,j=1
i≠j

(
1 −

(
1 − �+

I
i

)p(
1 − �+

I
j

)q) wiwj

1−wi

≥ 1 −

n∏
i,j=1
i≠j

(
1 −

(
1 − �+∗

I
i

)p(
1 − �+∗

I
j

)q) wiwj

1−wi
⇒ 1 −

⎛⎜⎜⎝
1 −

n∏
i,j=1
i≠j

�
1 −

�
1 − � +

Fi

�p�
1 − � +

Fj

�q� wiwj

1−wi

⎞⎟⎟⎠

1

p+ q

≥

1 −

⎛⎜⎜⎝
1 −

n∏
i,j=1
i≠j

�
1 −

�
1 − � +∗

Fi

�p�
1 − � +∗

Fj

�q� wiwj

1−wi

⎞⎟⎟⎠

1

p+ q

.

(4) For the negative bipolar
With similar proving, the proof for truth-function, inde-

terminacy-function and falsity-function parts of negative 
bipolar can be obtained as below:

⇒

(
1 − � +

Fi

)p (
1 − � +

Fj

)q

≤

(
1 − � +∗

Fi

)p (
1 − � +∗

Fj

)q

⇒ 1 −
(
1 − � +

Fi

)p(
1 − � +

Fj

)q

≥ 1 −
(
1 − � +∗

Fi

)p(
1 − � +∗

Fj

)q

⇒

n∏
i,j=1
i≠j

(
1 −

(
1 − � +

F
i

)p(
1 − � +

F
j

)q) wiwj

1−wi

≥

n∏
i,j=1
i≠j

(
1 −

(
1 − � +∗

F
i

)p(
1 − � +∗

F
j

)q) wiwj

1−wi

⇒1 −

n∏
i,j=1
i≠j

(
1 −

(
1 − � +

F
i

)p(
1 − � +

F
j

)q) wi wj

1−wi

≤ 1 −

n∏
i,j=1
i≠j

(
1 −

(
1 − � +∗

F
i

)p(
1 − � +∗

F
j

)q) wi wj

1−wi

−

⎛⎜⎜⎜⎜⎝
1 −

⎛⎜⎜⎜⎝
1 −

n�
i,j=1
i≠j

�
1 −

�
1 −

�
−� −

Ti

��p �
1 −

�
−� −

Tj

��q� wi wj

1−wi

⎞⎟⎟⎟⎠

1

p+ q ⎞⎟⎟⎟⎟⎠
≥

−

⎛⎜⎜⎜⎝
1 −

⎛⎜⎜⎝
1 −

n∏
i,j=1
i≠j

�
1 −

�
1 −

�
−� −∗

Ti

��p �
1 −

�
−� −∗

Tj

��q� wiwj

1−wi

⎞
⎟⎟⎠

1

p+ q ⎞⎟⎟⎟⎠
,

−

⎛⎜⎜⎝
1 −

n∏
i,j=1
i≠j

�
1 −

�
−�−

Ii

�p�
−� −

Ij

�q� wiwj

1−wi

⎞⎟⎟⎠

1

p+q

≥ −

⎛⎜⎜⎝
1 −

n∏
i,j=1
i≠j

�
1 −

�
−� −∗

Ii

�p�
−� −∗

Ij

�q� wiwj

1−wi

⎞⎟⎟⎠

1

p+q

 and −
⎛⎜⎜⎝
1 −

n∏
i,j=1
i≠j

�
1 −

�
−� −

Fi

�p�
−� −

Fj

�q� wi wj

1−wi

⎞⎟⎟⎠

1

p+ q

≤ −

⎛⎜⎜⎝
1 −

n∏
i,j=1
i≠j

�
1 −

�
−� −∗

Fi

�p�
−�−∗

Fj

�q� wi wj

1−wi

⎞⎟⎟⎠

1

p+ q

.
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( 5 )  C o m p a r i n g  HBN − SNWBMp,q
(
Ĥi

)
 w i t h 

HBN − SNWBMp,q
(
Ĥ∗

i

)
.

Let Ĥi =
⟨
h+
Ti
, h+

Ii
, h+

Fi
, h−

Ti
, h−

Ii
, h−

Fi

⟩
= HBN − SNWBMp,q

(
Ĥi

) 
and Ĥ∗

i
=
⟨
h+∗
Ti
, h+∗

Ii
, h+∗

Fi
, h−∗

Ti
, h−∗

Ii
, h−∗

Fi

⟩
= HBN − SNWBMp,q

(
Ĥ∗

i

) . 
Since h1 ⊆ h2 , if and only if ∀� +

T1
≤ ∀� +

T2
, ∀� +

I1
≤ ∀� +

I2
, 

∀� +
F1

≥ ∀� +
F2

 and ∀� −
T1

≤ ∀� −
T2
, ∀� −

I1
≤ ∀� −

I2
, ∀� −

F1

≥ ∀� −
F2

 for 
a l l  x ∈ X   ,  t h e n  Ĥ ≤ Ĥ∗   ,  i . e . , 
HBN − SNWBMp,q

(
Ĥi

)
≤ HBN − SNWBMp,q

(
Ĥ∗

i

)
.

Proof of Theorem 8

Proof  Since Ĥi ≥ Ĥ− , we have

HBN − SNWBM
p,q
(
Ĥ

i

)
≥ HBN −

SNWBM
p,q
(
Ĥ

−
, Ĥ

−
, ..., Ĥ

−
)
= Ĥ

−
.

Similarly, we can obtain

HBN − SNWBM
p,q
(
Ĥ

i

)
≤ HBN −

SNWBM
p,q
(
Ĥ

+
, Ĥ

+
, ..., Ĥ

+
)
= Ĥ

+ .

Then,
Ĥ− ≤ HBN − SNWBMp,q

(
Ĥi

)
≤ Ĥ+ holds.

Then, the proof of the Theorem 8 is completed.
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