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Abstract

Japanese encephalitis virus (JEV) is a major cause of neurological disability in Asia and

causes thousands of severe encephalitis cases and deaths each year. Although Japanese

encephalitis (JE) is a WHO reportable disease, cases and deaths are significantly underre-

ported and the true burden of the disease is not well understood in most endemic countries.

Here, we first conducted a spatial analysis of the risk factors associated with JE to identify

the areas suitable for sustained JEV transmission and the size of the population living in at-

risk areas. We then estimated the force of infection (FOI) for JE-endemic countries from

age-specific incidence data. Estimates of the susceptible population size and the current

FOI were then used to estimate the JE burden from 2010 to 2019, as well as the impact of

vaccination. Overall, 1,543.1 million (range: 1,292.6-2,019.9 million) people were estimated

to live in areas suitable for endemic JEV transmission, which represents only 37.7% (range:

31.6-53.5%) of the over four billion people living in countries with endemic JEV transmission.

Based on the baseline number of people at risk of infection, there were an estimated 56,847

(95% CI: 18,003-184,525) JE cases and 20,642 (95% CI: 2,252-77,204) deaths in 2019.

Estimated incidence declined from 81,258 (95% CI: 25,437-273,640) cases and 29,520

(95% CI: 3,334-112,498) deaths in 2010, largely due to increases in vaccination coverage

which have prevented an estimated 314,793 (95% CI: 94,566-1,049,645) cases and

114,946 (95% CI: 11,421-431,224) deaths over the past decade. India had the largest esti-

mated JE burden in 2019, followed by Bangladesh and China. From 2010-2019, we esti-

mate that vaccination had the largest absolute impact in China, with 204,734 (95% CI:

74,419-664,871) cases and 74,893 (95% CI: 8,989-286,239) deaths prevented, while Tai-

wan (91.2%) and Malaysia (80.1%) had the largest percent reductions in JE burden due to

vaccination. Our estimates of the size of at-risk populations and current JE incidence high-

light countries where increasing vaccination coverage could have the largest impact on

reducing their JE burden.
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Author summary

Japanese encephalitis is a vector-transmitted, zoonotic disease that is endemic throughout

a large portion of Asia. Vaccination has significantly reduced the JE burden in several for-

merly high-burden countries, but vaccination coverage remains limited in several other

countries with high JE burdens. A better understanding of both the spatial distribution

and the magnitude of the burden in endemic countries is critical for future disease preven-

tion efforts. To estimate the number of people living in areas within Asia suitable for JEV

transmission we conducted a spatial analysis of the risk factors associated with JE. We esti-

mate that over one billion people live in areas suitable for local JEV transmission. We then

combined these population-at-risk estimates with estimates of the force of infection (FOI)

to model the national-level burden of JE (annual cases and deaths) over the past decade.

Increases in vaccination coverage have reduced JE incidence from over 80,000 cases in

2010 to fewer than 57,000 cases in 2019. We estimate that vaccination has prevented

almost 315,000 cases and 115,000 deaths in the past decade. Our results also call attention

to the countries, and high-risk areas within countries, where increases in vaccination cov-

erage are most needed.

Introduction

Japanese encephalitis virus (JEV) is a mosquito-transmitted flavivirus that is endemic in a

large portion of South and Southeast Asia, as well as parts of the Western Pacific. Previous esti-

mates have suggested that over three billion people live in countries with JEV transmission,

resulting in an estimated 68,000 clinical cases and over 13,000 deaths annually [1]. Fewer than

1% of JEV infections in humans are symptomatic, but the case-fatality rate among clinical

encephalitis cases is 15–30% and up to 50% of surviving encephalitis cases experience long-

term neurological or psychiatric sequelae [2]. Japanese encephalitis is considered a zoonotic

disease because humans are dead-end hosts for the pathogen [3]. Therefore, a zoonotic cycle

of transmission between JEV-competent mosquitos and either a wildlife or domestic animal

reservoir is required for persistence (or frequent reintroduction) in JE-endemic areas [3].

Several JEV vaccines have been in use since the 1930s, with the prequalified live attenuated

SA14–14-2 vaccine used most frequently in endemic countries [4]. Several countries that for-

merly had a high burden of JE, such as Japan, Taiwan, and South Korea, have reduced that

burden to almost zero mainly through high vaccination coverage [2]. These successes suggest

that although vaccination does not remove the zoonotic source of JEV transmission, spillover

to humans can be significantly reduced via large-scale vaccination. Increased funding for JEV

vaccination in recent years, including support from Gavi, the Vaccine Alliance (Gavi) begin-

ning in 2013, provides an opportunity to extend the successes experienced in higher-income

countries to other countries that still experience a significant burden. However, with over

three billion people living in JEV-endemic countries, existing resources need to be targeted

towards the most at-risk populations. A systematic review estimated that 68,000 JE cases and

13,000–20,000 deaths occur annually in countries where JEV circulates [1]. However, due to a

lack of detailed surveillance and reporting, this burden estimate was obtained by extrapolating

incidence rates from twelve different epidemiological studies to the entire JE-endemic region.

Because local transmission to humans requires environmental conditions capable of sustaining

an enzootic cycle, or at least sporadic zoonotic outbreaks that can spillover to humans, the risk

of infection can vary substantially within each endemic country.
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Identifying where spillover transmission is likely to occur is an important component to

accurately estimating the burden of disease and the impact of vaccination for zoonotic diseases

such as JE. For a vector-transmitted, zoonotic pathogen such as JEV, spatial heterogeneity in

transmission intensity within a country can be quite high since the chances of spillover will be

zero where either competent animal hosts or vectors are absent (although sporadic spillovers

may occur in areas where migratory waterfowl serve as occasional hosts or certain zoophilic

vectors occasionally bite humans). Therefore, even in regions with a high mean force of infec-

tion (FOI), a portion of the population will likely be at a zero- or low-risk of infection. JEV

transmission is typically highest in rural areas, and is associated with irrigated rice paddies [5].

The presence of competent reservoir and amplifying hosts is also important for spillover inten-

sity [3]. The increased availability of high resolution spatial datasets cataloging not only envi-

ronmental and ecological conditions, but also land use and animal distributions, can be used

to identify areas suitable for sustained JEV transmission, as well as the size of the potentially

susceptible human population.

While several migratory bird species have been implicated as reservoir hosts [3], the major-

ity of transmission to humans is believed to be in areas where domestic livestock serve as reser-

voirs or amplifying hosts [5]. Cattle and horses are believed to be dead end hosts for the virus,

while domestic pigs are good zoonotic hosts because they can infect mosquitoes [3]. In addi-

tion, the high turnover in domestic pig populations introduces new susceptible individuals fre-

quently and can seasonally amplify transmission. Domestic fowl (chickens and particularly

ducks) have also been identified as possible sources of transmission in some areas [6]. Cases

are often concentrated in areas where humans and their livestock live in close proximity to

natural wetlands or irrigated farmland, including rice paddies [3].

In addition to determining the proportion of the population that is currently susceptible

and at risk of infection, estimating the disease burden requires an estimate of the transmission

intensity in endemic areas where the population is at risk of infection. Reported disease inci-

dence may not be an accurate measure of transmission intensity because higher transmission

rates can lower the average age of infection rather than increasing incidence rates [7]. Instead,

transmission intensity can be measured as the force of infection (FOI) experienced per suscep-

tible individual in the population, which can be estimated from age-specific incidence in

endemic settings [8]. Here we provide an example of how estimates of the FOI for JE-endemic

countries can be used to estimate the current transmission intensity at a national or sub-

national level. Combining these estimates from epidemiological data with a spatial analysis of

the population at risk of infection allows us to model current JE incidence and estimate the

impact of vaccination on disease incidence over the past decade as vaccination coverage has

increased in several countries.

Methods

Estimating size of at-risk population

To estimate the number of people living in areas with likely JEV transmission we used several

different spatial datasets representing factors associated with the maintenance of the zoonotic

JEV cycle and subsequent spillover to humans. To identify areas with suitable habitat for JEV

transmission we used a fine-scale map of the extent of lowland rice production in Asia mod-

eled from satellite data by the International Rice Research Institute (IRRI) [9] (S2 Fig). This

dataset was combined with three spatial datasets of various waterbodies: (1) a map of seasonal

and permanent wetlands in the tropics and subtropics at a 231x231 m spatial resolution gener-

ated using a hydrological model and satellite-derived estimates of soil moisture to represent

water flow and surface wetness [10], (2) HydroLakes, a dataset of all global lakes with a surface
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area of at least 10 ha [11], and (3) HydroRivers, a dataset containing all global rivers that have

a catchment area of at least 10 km2 [12]. A combined map of the areas classified as either wet-

land, lake, river, or under rice cultivation was aggregated at a 1 km2 resolution, so that people

living within a small buffer adjacent to wetlands or rice cultivation would potentially be con-

sidered at-risk (S1 Fig). This map was used as a baseline for suitable JEV transmission. The

number of people living in these areas was calculated using maps of human population density

at a 1 km2 resolution for 2020 from Worldpop [13]. All maps were created using country

boundaries from the geoBoundaries Comprehensive Global Administrative Zones (CGAZ)

dataset [14].

To further refine our estimates, we incorporated the modeled spatial distribution of the

main JEV mosquito vector, Culex tritaeniorhynchus, based on environmental suitability at a

5x5 km resolution [15]. Population-at-risk estimates were calculated for all rice and wetland

areas where the probability of occurrence for C. tritaeniorhynchus was� 0.25. This relatively

low threshold was chosen to ensure that areas with at least a moderate probability of occur-

rence were not excluded as potential at-risk areas if all of the other risk factors were present.

Although C. tritaeniorhynchus is considered the main vector for JEV, the virus has been iso-

lated from over thirty other mosquito species [5]. In addition, epidemiological data from sev-

eral locations, such as Bali, Indonesia, suggest that JEV transmission intensity and spillover to

humans can be high even where environmental suitability for C. tritaeniorhynchus is predicted

to be low. Areas of low environmental suitability for C. tritaeniorhynchus with known circula-

tion of JEV appear to be concentrated in the hotter, tropical regions of countries such as

Malaysia and Indonesia. An earlier attempt at modeling the spatial distribution of C. tritae-
niorhynchus did predict higher probabilities of occurrence in hotter, wetter tropical areas [16]

compared to the updated distribution model of Longbottom et al. [15]. In addition, a recent

analysis of several arboviruses transmitted by Culex species, including two flaviviruses, found

that the optimal temperatures for viral transmission were between 23 − 26˚C [17]. Therefore,

to capture areas where the environmental suitability for C. tritaeniorhynchus may be underesti-

mated, or where conditions are ideal for transmission by other mosquito species, we also

included areas where the annual mean minimum temperature was� 20˚C and annual rainfall

exceeded 150 cm, because these thresholds captured the known locations of JEV occurrence in

Indonesia, Malaysia, and the Philippines where the predicted environmental suitability for C.
tritaeniorhynchus is low (S2 Fig).

Due to the strong association between JEV transmission to humans and the presence of

domestic pigs, it is likely that areas with high domestic pig densities are capable of experiencing

high transmission intensities. However, relatively high JE incidence rates have been observed

in areas of Bangladesh [18] and Indonesia [19] that have few pigs because the local population

is majority Muslim. In addition to pigs, domestic fowl (particularly ducks) have been associ-

ated with JEV transmission [5] and they can be present in high densities in the regions of Ban-

gladesh, and on the Indonesian islands of Sumatra and Java, where JE cases have been

reported despite the lack of local domestic pig populations. To best represent a more conserva-

tive estimate of the size of the at-risk population, we calculated the number of people living in

areas with the appropriate habitat type (rice and wetland), and suitable environmental condi-

tions for the mosquito vector, where the combined density of pigs and ducks exceeded a cer-

tain threshold. Estimated cattle, pig, chicken, and duck population densities at a 1x1 km

resolution were taken from the Global Distribution of Livestock dataset [20]. The initial

threshold for JE suitability was a combined local density of 2 pigs or ducks per square km, with

sensitivity to this threshold value tested by ranging the threshold from 1–10 per sq km (S3

Fig). The size of the population at risk of infection was identified as those living in areas with a

combined pig and duck population above the minimum threshold, a land use type of wetland
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or rice production, and environmental conditions suitable for the mosquito vector. In addi-

tion, as part of our sensitivity analysis we used an upper estimate for the size of the population

at risk based on only the habitat type (wetland or rice production). Because we do not consider

human or mosquito movement in our model, and small water bodies or rice farms are likely

missing from our dataset, areas that were not classified as “at-risk” might still experience some

JEV transmission. In particular, individuals living immediately adjacent to “at-risk” areas

might still experience some risk due to travel to, or mosquito movement from, “at-risk” areas

and small pockets of transmission could occur near small rice farms or bodies of water not

captured in our dataset. Therefore, rather than there being a strict risk/no-risk dichotomy,

areas identified as “at-risk” should be considered areas of higher risk or transmission.

Validation of at-risk areas

To validate our estimates of JEV-risk areas we conducted a search of PubMed for all reports of

JE occurrence or incidence between 2000 and 2019. Studies were included in our analysis if

they reported the location (typically a village or town) of a suspected or confirmed JE case or

death since 2000 (excluding reports that only reported cases or deaths by administrative area

or hospital). This search yielded 117 unique locations from 17 published studies (see S4 Table

for locations and references). If location coordinates were not provided in the study, latitude

and longitude were estimated from the center of the village, town, or city using Google Maps.

Because the location coordinates are not precise estimates of where infection occurred we

established either a 1.5km or 5km buffer around each location and then estimated what frac-

tion of the area within these buffers were classified as at-risk areas. As a comparison, we ran-

domly sampled 1000 locations 100 times from the countries included in our analysis and

calculated the fraction of at-risk area surrounding these locations.

Epidemiological and vaccination data

To estimate the FOI in each JE-endemic country at the national level, we conducted a non-sys-

tematic review of publications that reported age-specific JE incidence data. The search was

restricted to studies reporting either confirmed or probable JE cases, excluding studies that

only reported acute encephalitis cases (AES) because the fraction of AES attributable to JE var-

ies considerably both spatially and temporally [1]. Details of the studies included in our analy-

sis are provided in S1 Table. For countries where at least one study was available prior to the

introduction of vaccination, any studies that were conducted after the introduction of vaccina-

tion were excluded to avoid having to estimate both FOI and vaccination coverage simulta-

neously. As a result, we excluded incidence data from 2007 in Nepal [21] and after 2001 from

Sarawak, Malaysia [22].

For several countries (China, India, Japan, Malaysia, Sri Lanka, South Korea, Taiwan, Thai-

land, and Vietnam), incidence data was only available for time periods after the introduction

of JEV vaccine into at least part of the study area, so for these countries we simultaneously esti-

mate both FOI and vaccination coverage. Initial estimates of vaccination coverage in these

countries were obtained from literature sources identified by Quan et al. [23] and routine vac-

cination coverage estimates provided by WHO-UNICEF joint reporting [24]. A list of refer-

ences used to generate preliminary vaccination estimates for each study are provided in S1

Table. Population age distributions for each study were assumed to match the national age dis-

tributions in the UN World Population Prospects demographics dataset [25].

PLOS NEGLECTED TROPICAL DISEASES Estimating Japanese encephalitis burden and vaccine impact

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009385 October 13, 2021 5 / 29

https://doi.org/10.1371/journal.pntd.0009385


Estimating the force of infection

In an unvaccinated population, the FOI can be estimated from either serological or case data

using a catalytic model [7]. For a constant FOI (λ), the proportion of the population that

remains susceptible at age a is calculated using the catalytic model equation:

sðaÞ ¼ e� la: ð1Þ

Due to the lack of longitudinal studies on JE transmission dynamics, we assumed that λ
does not vary with age. While there are likely to be age- and sex-specific risks of exposure to

JEV, age differences in FOI rates are likely to be smaller than those observed in many vaccine-

preventable childhood diseases where assortative mixing among school-age children leads to

significant differences in age-specific FOIs. A constant FOI can be directly estimated from

seroprevalence data by assuming that s(a) is equivalent to the fraction of seronegative individ-

uals at age a.

To estimate the FOI from age-structured incidence data we must estimate both the proba-

bility that an individual remains uninfected until age a and the probability that an uninfected

individual of age a will become infected at that age. For a population that is stratified into M
age groups, with age group j spanning in age from al

j to au
j , the proportion of the population

that will become infected in age group j, Γj, is the integral of the probability of being suscepti-

ble at age a multiplied by the FOI:

GðjÞ ¼
Z auþ1

j

alj

le� lada ¼ e� la
l
j � e� lða

uþ1
j Þ
: ð2Þ

If a portion of the population has been vaccinated, then the probability that an individual

remains susceptible to infection at age a from Eq (1) is modified to:

sðaÞ ¼ e� lað1 � auaÞ; ð3Þ

where α is the vaccine efficacy and υa is the probability of being vaccinated by age a. This equa-

tion assumes that vaccine-derived immunity does not wane over time. The proportion of indi-

viduals infected at age a based on λ and the proportion who have not been previously infected

or vaccinated is represented as:

Gða; uaÞ ¼ ð1 � e� l ÞsðaÞ ¼ ð1 � e� lÞe� lað1 � auaÞ: ð4Þ

We assume that the proportion of individuals who are infected in age group j spanning in age

from al
j to au

j can then be calculated as

Gðj; uÞ ¼ ðe� la
l
j � e� lða

u
j þ1Þ
Þð1 � aujÞ; ð5Þ

where υj is the vaccination coverage for age group j.
The FOI was estimated for each study using an MCMC approach. The observed vector of

JE cases per age class in year t, It, is a vector of length equal to the number of reported age clas-

ses, where each element, Ij,t is the number of cases observed in age class j. It was modeled as

It � multinomialð
Xjmax

j¼1

Ij;t;OtÞ; ð6Þ

where Ot is a vector of probabilities that depends on the proportion of age class j that is

infected in year t, Γj,t, and the proportion of the study population that is in age class j in year t,
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θj,t,

Oj;t ¼
Gj;t � yj;t

Pj¼M
j¼1
ðGj;t � yj;tÞ

: ð7Þ

For studies conducted in populations that have been partially vaccinated, the proportion of

age group j that is infected, Γj,t, depends on both λ and vaccination coverage rates for age class

j in year t, υj,t. In addition to estimating λ, we also estimate the vaccination coverage for each

age class. Initial values for υj,t were obtained from the data sources listed in S1 Table. We

assumed that individuals of age a in year t were vaccinated as infants with a probability equal

to the reported routine vaccination coverage level (ûrt� a) in year t − a. Vaccination campaigns

occurring between year t − a and year t were included if an individual was in the target popula-

tion so that

ûa;t ¼ 1 � ð1 � ûrt� aÞ
Y

x

ð1 � ûcxÞ; ð8Þ

where ûcx is the reported coverage level in the target population for campaign x.

Study-specific force of infection (λ) values were estimated by fitting Eqs (2), (6) and (7) in

the absence of vaccination and Eqs (4), (5), (6) and (7) in the presence of vaccination. We used

a non-negative, truncated Normal(0, 10) prior for λ. To incorporate sufficient uncertainty in

the priors for the vaccination coverage parameters, υa,t, we used an informative prior ua;t �

Betað�ð1 � ûa;tÞ; �ûa;tÞ following the approach detailed by Quan et al. [23]. The value ûa;t was

the initial estimate of the vaccination coverage in age class a derived from reported vaccination

coverage levels at the national level (see S1 Table for data sources). The uncertainty in the vac-

cination information is represented by setting ϕ = 5. Model fitting was done using a Bayesian

framework via a Markov chain Monte Carlo (MCMC) approach implemented in STAN using

the ‘rstan’ version 2.18.2 package in R [26]. The models were run with four chains of 10,000

iterations each and a 50% burn-in period. Smaller step sizes for the sampling algorithm were

set by increasing the adapt delta parameter from the default of 0.8 to 0.99. In addition, the

maximum tree depth was increased from 10 to 15. Convergence was assessed using the Gel-

man-Rubin convergence diagnostic, Rc [27]. Posterior predictive checks were performed by

comparing the empirical data to data simulated from the posterior parameter distributions for

each dataset. Posterior predictive data was simulated at each iteration, k, of the MCMC, with

IpreðkÞt � multinomialðIt;O
k
t Þ. At each iteration, the total observed number of cases, It, was com-

pared to the total predicted number of cases, IpreðkÞt . This test statistic was used to calculate a

Bayesian p-value pB ¼ PrððIpret ;OtÞ � ðIt;OtÞjItÞ, which indicates whether the distribution of

the model-generated data was more extreme than the observed data [27].

Factors associated with the force of infection

Following the estimation of country-specific FOIs from age-specific incidence data, we con-

ducted a regression analysis to determine whether any study-specific or country-specific vari-

ables were associated with FOI. The study-specific variables included in the analysis were the

start and end years of the study, and whether the study was conducted in an area with a history

of JE vaccination. Country-specific variables included the estimated 2020 population size [13],

the regional classification and incidence level (very low, low, medium, medium-high, high)

from Campbell et al. [1], national per capita gross domestic product (GDP) [28], total land

area, the proportion of land area classified as urban [29], the proportion of land area under

rice cultivation [9], the mean environmental suitability and the total amount of suitable habitat
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for C. tritaeniorhynchus [15], and the national population sizes and mean population densities

of domesticated cows, pigs, ducks, and chickens [20]. In addition, we also included our base-

line and high-end estimates of the percentage of the population living in at-risk areas as poten-

tial explanatory variables. We examined the Pearson correlation coefficient between the

median FOI estimate and each covariate to identify potential explanatory variables. We then

performed model selection via a best subsets regression approach using the ‘leaps’ package in

R [30]. The total land area was highly correlated with population size, the population sizes of

domestic cows, pigs, ducks, and chickens, the amount of area under rice cultivation, and the

total amount of habitat for C. tritaeniorhynchus. Therefore, of these variables only total popula-

tion size and the size of the pig population were retained as a potential explanatory variable

during model selection as these two variables were only moderately correlated (r = 0.60) to

each other, but were highly correlated with several of the other variables. We conducted an

exhaustive search of all possible models with up to ten explanatory variables and used BIC val-

ues to select the best model.

Estimating annual JE burden and vaccine impacts

The annual number of JEV infections for each country was calculated from the posterior FOI

estimates from that country and the size of the national at-risk population. For countries

where the FOI (λ) had been estimated from multiple studies we combined the posterior distri-

butions of λ from each study into a single pooled distribution. For countries where we were

unable to estimate a country-specific FOI we used a pooled distribution of the λ posterior dis-

tributions from all 29 studies. To capture variability in the FOI estimates the infection model

was run 1000 times with random sampling from the FOI distribution. In the absence of vacci-

nation, the number of infections at age, a, is calculated by multiplying the age-specific proba-

bility of infection Γa by the number of at-risk individuals in the age class. Estimates of age-

specific population sizes were made by assuming that the age distribution of the at-risk popula-

tion matched the overall national age distribution for the appropriate year from the UN World

Population Prospects 2019 demographic estimates [25]. The age-specific population estimates

are available yearly, capturing demographic changes over the study time period.

The effects of vaccination on the number of JEV infections can be estimated by adjusting

the age-specific probability of infection, Γa, to include the vaccination rate at age a, υa, as in Eq

(4). The efficacy of a single dose of the SA 14–14–2 JEV vaccine is estimated to be 99.3% (94.9–

100%) [31]. Although we estimated vaccination coverage for several study sites these estimates

were not used to calculate JE burden from 2010–2019. These estimates were for the period of

each study, which for some studies only partially overlaps our study period, and don’t neces-

sarily reflect changes in vaccination coverage over the past decade. In addition, the estimates

were aggregated into a handful of age classes and don’t capture within age-class variations in

coverage levels. For our burden estimation process we instead used annual, age-specific vacci-

nation coverage estimates from the literature (see S2 Table for references) and routine vaccina-

tion coverage estimates from WHO-UNICEF joint reporting [24].

Calculating the number of JE cases and deaths from the estimated number of JEV infections

requires estimating the proportion of infections that are asymptomatic or result in only mild

symptoms. The majority of human JEV infections are asymptomatic, with fewer than 1% of

people infected developing clinical disease [32]. The ratio of asymptomatic infections to JE

cases has been estimated as 270:1 in children aged 5–9 [33] and 300:1 for people under 40 [34],

with other estimates ranging from 50:1 to 1000:1 [5]. We assume that the distribution of

encephalitis cases, Ca, observed from Ia JEV infections in age class a can be modeled with a

binomial distribution Ca* Binomial(Ia, ρc), with a symptomatic probability of ρc. The
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symptomatic probability, ρc was estimated by using the ‘optim’ package in R to fit a gamma

distribution to the asymptomatic:symptomatic infection ratio (A:S), assuming a median A:S of

300:1 with a 95% CI of 100:1 to 750:1. The estimated gamma distribution had a shape parame-

ter = 3.577 and a rate parameter = 0.0108. This distribution produces an A:S ratio with a

median of 295:1 (95% CI: 83:1 to 717:1). The symptomatic probability was then calculated as

ρc = S/(S + A). The mortality rate for severe encephalitis cases is believed to be between 10–

40% [5]. The number of deaths from JE in age class a, Da, was assumed to follow Da* Bino-
mial(Ca, ρm), with ρm* Beta(α = 1.88, β = 3.50). This distribution produces a median mortal-

ity estimate of 0.329 (95% CI: 0.050–0.741).

Country-specific estimates of the annual number of infections, cases, and deaths were cal-

culated by running our model 1000 times with random draws from the FOI (λ), symptomatic

ratio (ρc), and mortality rate (ρm) distributions. Model simulations were started in 1950 and

run through 2019 to ensure that the model approximated baseline population immunity levels

from 2010 to 2019. In order to assess the impact of vaccination these estimates were generated

for two scenarios: (1) using the reported vaccination coverage levels for 1950–2019, and (2) a

counterfactual scenario with vaccination coverage levels set to 0 for all countries in order to

estimate the impact of vaccination. Vaccination impacts were calculated as the number of

cases and deaths averted for all ages during the calendars years from 2010 to 2019, as opposed

to estimating the impact of vaccination for particular birth cohorts or individuals vaccinated

during 2010–2019 over their entire lifetimes.

Results

At-risk population size estimates

Overall, 1,543.1 million (range: 1292.6–2190.9 million) people are estimated to live in an area

suitable for endemic JEV transmission (Fig 1). This represents 37.7% (range: 31.6–53.5%) of

the 4,095.5 million people living in countries with endemic JEV transmission. China had the

largest number of individuals living in a likely at-risk area with 630.3 (range: 625.7–713.5) mil-

lion, followed by India with 402.1 (range: 220.6–691.4) million and Bangladesh with 130.2

(range: 129.5–153.0) million (Table 1). Bangladesh had the highest percentage of its population

living in at-risk areas (78.5%; range: 78.1–92.3%), followed by Vietnam (61.5%; range: 60.8–

77.3%). The other countries with greater than 50% of the population living in at-risk areas

were Cambodia (52.2%; range: 48.4–74.0%) and Nepal (51.9%; range: 29.5–64.0%). Several

countries had fewer than 10% of the population living in likely at risk areas: Timor-Leste

(5.5%; range: 4.2–30.5%), Pakistan (7.1%; range: 2.8–38.6%), and Sri Lanka (9.6%; range: 3.4–

43.3%).

Of the 117 locations with published JE reports from 2000–2019, 98 (83.8%) were classified

as at-risk within a 1.5km buffer using our default scenario and 110 (94.0%) were classified as

at-risk within a 5km buffer (S42–S47 Figs). All 117 locations were classified as at-risk based on

our broader estimate of at-risk areas, which only considered the presence of wetlands or rice

cultivation. The seven locations that were not classified as at-risk by our baseline model were

all adjacent to a water body in Khammouane Province, Laos, but the area was not classified as

suitable habitat for the main JEV vector species. However, these JE cases were recorded in

2007–2008 and these villages were impacted by the establishment of a reservoir above the Nam

Theun 2 Dam in 2010, so current environmental conditions may differ from those at the time

of the study. Within the 1.5km buffered locations the mean fraction of grid cells classified as

at-risk was 0.58 (IQR: 0.21–0.94), and within the 5km buffer the mean fraction was 0.58 (IQR:

0.31–0.91). In comparison, only 37.5% (95% CI: 34.6–40.1%) and 49.9 (95% CI: 46.5–52.4%)

of random locations were classified as at-risk within a 1.5km or 5km buffer. For these
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randomly selected locations, the mean fraction of grid cells classified as at-risk was 0.17 (95%

CI: 0.17–0.19) within the 1.5km buffer, and 0.17 (95% CI: 0.16–0.19) within the 5km buffer.

Force of infection estimates

The median annual force of infection (FOI) across all studies was 0.098 (95% range: 0.012–

0.354). The FOI ranged widely between countries, with median estimates for FOI ranging

from a low of 0.011 (95% CrI: 0.004–0.017) in Japan to 0.286 (95% CrI: 0.125–0.437) in Indo-

nesia (Fig 2). For countries with multiple studies, the FOI estimates from different studies

often varied considerably resulting in a bimodial or more complex combined FOI distribution.

Countries with significant between-study estimates in FOI included China, India, Indonesia,

Malaysia, Nepal, and the Philippines (S1 Table). Our model did not generate predicted cases

that were more extreme than the numbers of observed cases—as indicated by Bayesian p-val-

ues between 0.1 and 0.9—for any of the datasets included in the analysis (S4–S30 Figs). Several

Fig 1. Map of the areas estimated to be suitable for endemic JEV transmission. Grey represents land areas classified as either wetland or rice

cultivation and was used as the upper bound for the extent of the at-risk population. Dark blue represents the lower bound on the extent of the at-risk

population and only includes suitable habitat areas that have a combined density of domestic pigs and ducks of at least 10 per square km. Light + dark

blue combined represents the default extent of the at-risk population and includes areas with wetland or rice cultivation that also have suitable

environmental conditions for the mosquito vector population and a combined density of at least 2 domestic pigs and ducks per square km. Uncolored

areas of the map are not considered as at-risk for endemic JEV transmission. The base map layer was generated using the geoBoundaries

Comprehensive Global Administrative Zones (CGAZ) dataset available at https://github.com/wmgeolab/geoBoundaries/raw/main/releaseData/CGAZ/

geoBoundariesCGAZ_ADM0.zip.

https://doi.org/10.1371/journal.pntd.0009385.g001
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potential explanatory variables were weakly associated with our FOI estimates. Higher FOI

estimates were associated with larger population sizes (r = 0.29), less urban area (r = -0.27) and

a lower per capita GDP (r = -0.27), but also lower historical incidence according to Campbell

et al. [1] (r = -0.36). The best-fit model contained only two explanatory variables and had low

explanatory power (BIC = 1.11; adjusted R2 = 0.21), while the second-best model contained

four explanatory variables and had a ΔBIC = 0.78 (BIC = 1.89; adjusted R2 = 0.30). Several

additional models with two to five explanatory variables had ΔBIC values of<2. The best-fit

model included a negative association with the incidence according to Campbell et al., and a

negative association with the proportion of area under rice cultivation. The next-best model

included the same two covariates, plus a negative association with GDP and a positive associa-

tion with the mean density of chickens.

Vaccination coverage estimates

The posterior estimates of vaccination coverage levels from our FOI model often differed con-

siderably from the prior estimates derived from published studies or WHO estimates (S31–

S41 Figs). In particular, the estimated vaccination coverage in the oldest age groups (typically

ages 60+) was higher than the prior estimate for several studies that included older adults.

These differences in vaccination coverage estimates among the oldest age groups could result

from prior estimates that were too low because vaccinations that occurred several decades ago

Table 1. Estimates of the population at risk of JE in millions (percent of total population). Baseline estimate is for areas with wetlands or rice cultivation, suitable envi-

ronmental conditions for the vector and at least 2 domestic pigs or ducks per square km. The low end estimate increases the required density of pigs or ducks to 10 per

square km and the moderate estimate assumes a threshold of 1 per square km. The high estimate is for all areas classified as wetlands or rice cultivation.

Country Baseline at-risk (%) Low (%) Moderate (%) High (%)

Bangladesh 130.2 (78.5) 129.5 (78.1) 131.0 (78.9) 153.0 (92.3)

Bhutan 0.15 (17.8) 0.03 (3.4) 0.17 (20.0) 0.35 (41.0)

Brunei 0.21 (54.6) 0.08 (17.6) 0.25 (54.6) 0.29 (64.9)

Cambodia 8.8 (52.2) 8.1 (48.4) 8.9 (52.9) 12.4 (74.0)

China 630.3 (45.2) 625.7 (44.8) 631.1 (45.2) 713.5 (51.1)

India 402.1 (29.0) 220.6 (15.9) 452.9 (32.6) 691.4 (49.8)

Indonesia 91.7 (34.1) 64.0 (23.8) 98.7 (36.7) 173.6 (64.6)

Japan 42.3 (34.8) 40.7 (33.6) 42.3 (34.9) 51.8 (42.7)

Laos 2.5 (33.9) 2.2 (29.8) 2.5 (34.0) 3.6 (48.8)

Malaysia 14.7 (46.5) 8.5 (26.8) 15.4 (48.5) 19.3 (61.0)

Myanmar 24.2 (43.6) 21.8 (39.4) 24.4 (43.9) 33.9 (61.0)

Nepal 15.6 (51.9) 8.9 (29.5) 16.0 (53.3) 19.2 (64.0)

North Korea 9.8 (38.4) 9.6 (37.8) 9.8 (38.4) 10.7 (41.9)

Pakistan 14.8 (7.1) 5.8 (2.8) 15.5 (7.4) 80.5 (38.6)

Papua New Guinea 1.3 (19.3) 0.01 (0.2) 1.4 (21.1) 2.9 (42.2)

Philippines 46.0 (43.4) 43.8 (41.4) 46.4 (43.7) 62.4 (58.9)

Singapore 1.7 (30.0) 1.6 (28.8) 1.7 (30.0) 2.6 (46.9)

South Korea 18.9 (37.7) 17.3 (34.5) 19.1 (38.2) 22.1 (44.1)

Sri Lanka 2.0 (9.6) 0.7 (3.4) 2.8 (13.1) 9.1 (43.3)

Taiwan 4.5 (19.7) 4.5 (19.6) 4.5 (19.7) 10.5 (45.8)

Thailand 21.3 (31.1) 19.8 (28.9) 21.3 (31.2) 42.1 (61.5)

Timor-Leste 0.07 (5.5) 0.05 (4.2) 0.07 (5.5) 0.40 (30.5)

Vietnam 60.0 (61.5) 59.3 (60.8) 60.1 (61.6) 75.4 (77.3)

Total 1543.1 (37.7) 1292.6 (31.6) 1606.1 (39.2) 2190.9 (53.5)

https://doi.org/10.1371/journal.pntd.0009385.t001
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were missing from the data sources we used. Our model would also overestimate vaccination

coverage in older individuals if transmission intensity was higher in the past. The posterior

estimates of vaccination coverage in younger children were lower than our prior estimates for

studies conducted in Japan and Malaysia (S35 and S38 Figs). In India, South Korea, and Tai-

wan vaccination coverage estimates in younger children were higher than posterior estimates

(S33–S40 Figs).

Estimates of Japanese encephalitis burden and vaccination impacts

Based on the baseline number of people at risk of infection, the mean number of JE cases

decreased from 81,258 (95% CI: 25,437–273,640) in 2010 to 56,847 (95% CI: 18,003–184,525)

in 2019 (Fig 3A). The mean number of JE deaths decreased from 29,520 (95% CI: 3,334–

112,498) in 2010 to 20,642 (95% CI: 2,252–77,204) in 2019. In the absence of any vaccination

we estimate there would have been 99,049 (95% CI: 30,834–326,817) cases and 36,026 (95%

CI: 3,295–137,198) deaths in 2019, a small decline from an estimated 101,471 (95% CI: 31,577–

334,267) cases and 36,913 (95% CI: 3,998–139,979) deaths in 2010. This small decline in the

absence of vaccination resulted from demographic trends in several countries, with declining

birth cohort sizes over the decade leading to fewer JEV infections in young children. Between

Fig 2. Posterior force of infection (FOI) estimates. Posterior force of infection (FOI) estimates for each country where age-specific incidence data was

available. For countries where the FOI was estimated independently from more than one data source, the posterior FOI estimates for each study have

been combined into a single distribution.

https://doi.org/10.1371/journal.pntd.0009385.g002
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2010 and 2019, vaccination prevented 314,793 (95% CI: 94,566–1,049,645) cases and 114,946

(95% CI: 11,421–431,224) deaths. India had the largest estimated JE burden in 2019 with

22,219 (95% CI: 7,048–70,933) cases and 8,081 (95% CI: 887–30,432) deaths (Fig 4). The next

highest estimated burdens were in Bangladesh and China with 9,983 (95% CI: 3,106–32,841)

and 7,692 (95% CI: 1,240–27,797) cases and 3,631 (95% CI: 389–13,916) and 2,754 (95% CI:

189–11,146) deaths respectively (Figs 4 and 5). In the absence of vaccination we estimate that

China, rather than India, would have had the highest JE burden in 2019 with 33,925 (95% CI:

10,604–110,749) cases and 12,336 (95% CI: 1,374–46,553) deaths. From 2010–2019, we esti-

mate that vaccination had the largest impact in China, with 204,734 (95% CI: 74,419–664,871)

cases and 74,893 (95% CI: 8,989–286,239) deaths prevented. Taiwan and Malaysia had the larg-

est percent reductions in JE burden due to vaccination, with 91.2% and 80.1% reductions in JE

cases respectively.

Using the lower estimate for the size of the population at risk of JEV infection leads to an

estimated 42,872 (95% CI: 13,344–136,418) cases and 15,552 (95% CI: 1,749–59,232) deaths in

2019 compared to the estimate of 56,847 (95% CI: 18,003–184,525) cases and 20,642 (95% CI:

2,252–77,204) deaths using our default estimate for the size of the at-risk population (Fig 3B).

With the highest estimate for the size of the at-risk population, we estimate a mean total of

91,403 (95% CI: 28,989–294,667) cases and 33,201 (95% CI: 3,626–125,682) deaths in 2019.

India, Bangladesh, and China were the countries with the first, second, and third highest esti-

mated JE burdens in 2019 using the default and low at-risk population size estimates; however,

with the high estimate of the at-risk population size, Indonesia had the second highest burden

ahead of Bangladesh and China (S3 Table).

Discussion

Despite recent increases in vaccination coverage, Japanese encephalitis (JE) remains a major

cause of morbidity and mortality throughout South and East Asia. Based on an examination of

Fig 3. Annual Japanese encephalitis (JE) cases from 2010–2019. (A) Annual JE cases from 2010 to 2019 with vaccination (blue) or under a

counterfactual scenario where vaccination coverage in all countries was zero (red). Estimates based on default at-risk population size. (B) Estimates of

annual JE cases from 2010 to 2019 using three different estimates of the total size of the at-risk population. Darker bands represents the interquartile

range (IQR) and lighter bands represents the 95% confidence intervals (CIs).

https://doi.org/10.1371/journal.pntd.0009385.g003
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the environmental factors and land use characteristics associated with JEV transmission, we

estimate that over one billion people live in areas suitable for endemic transmission of JEV.

The JE burden in endemic countries decreased from approximately 81,250 cases and 29,500

deaths in 2010 to fewer than 57,000 cases and 21,000 deaths in 2019, mainly due to increases in

vaccination coverage over the past decade. We estimate that vaccination prevented almost

315,000 cases and 115,000 deaths during the calendar years from 2010 to 2019. Our estimates

Fig 4. National-level Japanese encephalitis (JE) cases from 2010–2019. Annual national-level JE cases from 2010 to 2019 with vaccination (blue) or

under a counterfactual scenario where vaccination coverage in all countries was zero (red). Darker bands represents the interquartile range (IQR) and

lighter bands represents the 95% confidence intervals (CIs).

https://doi.org/10.1371/journal.pntd.0009385.g004

PLOS NEGLECTED TROPICAL DISEASES Estimating Japanese encephalitis burden and vaccine impact

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009385 October 13, 2021 14 / 29

https://doi.org/10.1371/journal.pntd.0009385.g004
https://doi.org/10.1371/journal.pntd.0009385


highlight countries that have significantly reduced their burden through vaccination in recent

years (e.g., China, Cambodia, and Vietnam), as well as countries where the burden remains

high and increasing vaccination coverage could have a large impact (e.g., Bangladesh, India,

and the Philippines).

The estimated at-risk population of 1.54 (range: 1.29–2.19) billion in potentially JEV-

endemic areas of Asia represents 37.7% (range: 31.6–53.5%) of the total 2020 population of

Fig 5. National-level Japanese encephalitis (JE) cases from 2010–2019. Annual national-level JE cases from 2010 to 2019 with vaccination (blue) or

under a counterfactual scenario where vaccination coverage in all countries was zero (red). Darker bands represents the interquartile range (IQR) and

lighter bands represents the 95% confidence intervals (CIs).

https://doi.org/10.1371/journal.pntd.0009385.g005
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just over four billion in these endemic countries. The lower end of the estimated range repre-

sents the population size in areas where the local habitat type and climate are suitable for JEV

transmission and suitable reservoir hosts are present at a high density, while the upper end of

the range requires only a suitable habitat type and does not consider the known distributions

of the vector or reservoir species. Therefore, we estimate that over 2.1 billion people within the

endemic region of Asia live in an area with land that is either used for rice cultivation [9] or

within a kilometer of wetlands (including lakes, rivers, or streams). When we further restricted

the at-risk population to areas within the predicted distribution of the main vector species C.
tritaeniorhynchus [15] or with a warm, wet climate suitable for other potential vector species,

and with an estimated density of at least two domestic pigs or ducks per square km, the esti-

mated size of the at-risk population was 1.54 billion. Lowering the pig and duck density thresh-

old to one per square km slightly raised the at-risk population to 1.61 billion, while raising the

threshold to ten per square km lowered the size of the at-risk population to just under 1.3 bil-

lion. Although non-human hosts are a requisite part of the transmission cycle, the extent to

which different domestic livestock species serve as reservoir or amplifying hosts is still uncer-

tain [3]. As a result, the different livestock density thresholds that we considered in our analysis

are only preliminary assumptions, and further study of the importance of different wildlife

and domestic species to spillover is required. However, our results were not overly sensitive to

these assumptions as ranging the threshold from one to ten animals per square km only varied

the size of the at-risk population from 1.29 to 1.61 billion.

Our estimate of the size of the at-risk population represents a significant reduction com-

pared to a previous estimate used to calculate the global incidence of JE in 2010 [1]. Campbell

et al. [1] reported that 3.15 billion people lived in JE endemic areas in 2010 out of a total popu-

lation of 3.69 billion in endemic and non-endemic areas in the region. However, they classified

all of China as either historically medium- or high-incidence endemic areas, while we estimate

that only 45.2% (range: 44.8–51.1%) of the Chinese population lives in JE-endemic areas. Over

the entire region, Campbell et al. [1] only excluded portions of a few countries—such as India,

Pakistan, and Nepal—as non-endemic areas. In contrast, even using our high-end estimates,

the portion of the at-risk population is only higher than 66% in Bangladesh (92.2%), Vietnam

(77.3%), and Cambodia (74.0%). The upper estimates of the at-risk populations of eight addi-

tional countries (including China and Indonesia) are between 50 and 66%, while the remain-

ing countries are all below 50%. We estimate that only a small percentage (<10%) of the

population in several endemic countries—Pakistan, East Timor, and Sri Lanka—lives in likely

JE-endemic areas. We also estimate that several countries—including Singapore, Japan, South

Korea, and Taiwan—that used to have high JE incidence rates now have relatively small at-risk

populations (even before vaccination) due to dramatic shifts away from rural agriculture via

urbanization and industrialization over the past 50+ years. One additional difference is that

Campbell et al. [1] also included portions of Australia and Russia as historically endemic

regions, while we excluded these two countries because Russia has not reported a JE case in

over a decade and Australia has only reported a handful of locally-acquired cases on several

islands in the Torres Strait and a small region of Cape York in northern Queensland [35].

Although our estimate of the size of the at-risk population is considerably smaller than the

3.15 billion people living in JE endemic areas according to Campbell et al. ([1]), our estimate

of 81,258 (95% CI: 25,437–273,640) cases in 2010 is slightly higher than their estimate of

approximately 67,900 cases. We estimated a higher per capita incidence rate in many countries

compared to Campbell et al. [1] based on our FOI estimates derived from age-specific case

data. In contrast, Campbell et al. [1] extrapolated global incidence from per capita incidence

rates in several different regions (classified by both historical incidence and the current level of

vaccination in the region), hence their per capita incidence rates were based on a larger
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fraction of the population in a region than our at-risk population estimates. A recent study by

Quan et al. [23] estimated that there were over 100,000 (95% CI: 61,720–157,522) JE cases in

2015, an estimate almost 50% higher than our estimate of 68,912 (95% CI: 21,659–221,361) in

2015 (although there is overlap in the 95% confidence intervals of the two estimates). Quan

et al. [23] used a similar method of first estimating the FOI in each country based on age-spe-

cific case data obtained from a systematic review. These country-specific FOI estimates were

then used to estimate incidence in each country using the regional classifications and endemic

population sizes from Campbell et al. [1]. This combination of high FOIs (in some countries)

and a larger at-risk population leads to the higher incidence estimates of Quan et al. [23] rela-

tive to our estimates and those of Campbell et al. [1]. For several countries, such as Bangladesh,

where we estimate a large fraction of the national population is at-risk our incidence estimates

are similar to the estimates of Quan et al. [23], but for several countries—including Laos,

Malaysia, Myanmar, Philippines, and Thailand—the incidence estimates of Quan et al. [23]

are two to four times higher than our estimates due to our lower estimates of the sizes of the

at-risk populations. These discrepancies in estimated incidence rates and the overall burden of

JE arising from different assumptions about how many people are at risk of infection empha-

sizes the importance of refining our understanding of JE epidemiology and endemicity. Partic-

ularly important questions are (a) the extent to which JEV transmission and spillover to

humans occurs in areas where rice cultivation is limited or non-existent, and (b) to what extent

domestic animals other than pigs serve as reservoir or amplifying hosts.

We estimated that vaccination prevented almost 315,000 cases and 115,000 deaths between

2010 and 2019. This is a somewhat higher annual impact compared to the 308,000 cases and

75,000 prevented by vaccination between 2000 and 2015 as estimated by Quan et al. ([23]).

However, as overall vaccination coverage has increased over time, our vaccination impact esti-

mates for the overlapping period of the two studies (2010–2015) is lower due to our lower inci-

dence estimates. Although the absolute impact of vaccination is lower in our estimation, the

impact is similar when expressed as a percentage of cases prevented. Quan et al. ([23]) esti-

mated that vaccination reduced JE incidence in 2015 from 145,542 (95% CI: 96,667–195,639)

to 100,308 (95% CI: 61,720–157,522), a 31.1% reduction, while we estimate that vaccination

reduced 2015 incidence from 100,293 (95% CI: 31,160–332,051) to 68,912 (95% CI: 21,659–

221,361), a 32.0% reduction. Our estimate of the impact of vaccination on JE burden over the

past decade is likely somewhat conservative because information on some sub-national vacci-

nation campaigns is missing from the datasets we obtained.

From 2010 to 2019, the largest absolute impact of vaccination occurred in China, where the

JE vaccine was added to the national routine vaccination program for infants in 2008 [36]. We

also estimate that increased vaccination coverage in 2015 or 2016 in Cambodia, Myanmar, and

Nepal has led to substantial reductions in incidence over the past few years in these countries.

Our estimates also indicate that incidence remains relatively low in the countries—Japan,

Malaysia, South Korea, Sri Lanka, Taiwan, and Thailand—where vaccination has been com-

mon for over a decade. In addition, Vietnam, which began wide-scale vaccination in 1997, pre-

vented an estimated 22,238 (95% CI: 7,095–74,518) cases and 8,083 (95% CI: 871–30,734)

deaths between 2010 and 2019, resulting in a 54.4% decline in incidence over that time period.

However, due to the large size of the at-risk population and the high FOI in Vietnam, we esti-

mate that there were still approximately one thousand (95% CI: 289–3,205) JE cases in 2019.

Our vaccination impact estimates also highlight the countries where vaccine introduction or

an increase in vaccination coverage could have the largest impact. Bangladesh, Indonesia,

Pakistan, and Philippines all have over one thousand estimated JE cases annually and do not

have national vaccination programs. While vaccination coverage has increased in India over

the past decade, we estimate that there were still over 22,000 (95% CI: 7,048–70,933) cases and
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8,000 (95% CI: 887–30,432) deaths in 2019. In addition to adding the JE vaccine to the routine

vaccination schedule, in order to rapidly reduce their JE burden countries should also consider

vaccination campaigns to cover older children (and potentially adults) in endemic areas. Esti-

mates of the FOI in each country could be helpful for determining the appropriate age group

to target, as the FOI determines the proportion of older children and adults that still remain

susceptible to infection [8].

We estimate that transmission intensity is relatively high in many JE-endemic countries.

The median FOI across all studies was 0.098, which corresponds to an 9.3% annual probability

of a susceptible individual living in an at-risk area being infected. Several countries with large

at-risk populations—including Bangladesh, China, India, Indonesia, Philippines, and Vietnam

—had higher than average FOI estimates. At the national level we found that there was a nega-

tive relationship between FOI and the proportional extent of urban areas, which aligns with

the current understanding of JE as a disease that mainly affects rural areas [37]. FOI estimates

were also higher for countries with lower per-capita GDPs, suggesting that economic develop-

ment (often coupled with urbanization) can reduce transmission intensity by lowering contact

rates between humans and JEV vectors and reservoir hosts. Overall, we did not find any strong

correlations between our FOI estimates and the potential explanatory variables and the best-fit

regression model explained little of the variance in the FOI estimates. Any correlations

between our FOI estimates and national-level averages for different covariates should be

viewed with caution as our analysis is based on fewer than 30 studies and national-level aver-

ages can obscure important within-country heterogeneities.

Our analysis of the at-risk population size has several limitations. We restricted the suitable

habitat for JEV transmission to areas with rice cultivation or adjacent wetlands, however, the

large-scale river, lake, and wetlands datasets do not capture smaller pockets of potentially suit-

able habitat such as small water courses, ponds, or artificial reservoirs that could serve as vector

habitat. In addition, the extent to which lands that are irrigated for crops other than rice can

support mosquito populations that transmit JEV is unknown. Both of these potential sources

of additional vector habitat could increase our estimate of the at-risk population size. Our esti-

mates are also limited by current gaps in the knowledge of the ecologies of the various JEV vec-

tor species [5]. We used a modeled distribution for the primary vector, C. tritaeniorhynchus,
which may not be accurate in certain areas [15]. Many other mosquito species have been

shown to be competent vectors in lab studies or have been documented as JEV-positive in field

studies [5]. However, our knowledge of the distribution of these vector species is limited, as is

the extent to which they are capable of maintaining JE endemicity or serving as bridge vectors

to humans in the absence of C. tritaeniorhynchus. A further source of uncertainty in our at-

risk estimates arises from the uncertainty surrounding the extent to which different species

can serve as reservoir and amplifying hosts in the JEV transmission cycle. While domestic pigs

have been associated with spillover to humans [3], endemic transmission has also been docu-

mented in areas where there are few or no pigs, suggesting that other species are involved in

the transmission cycle and spillover in these areas [38, 39]. Domesticated waterfowl and chick-

ens are capable of infection, but evidence for their roles as reservoir or amplifying hosts is still

weak [3, 38, 40, 41]. In some areas, wild waterfowl may be abundant enough to sustain

endemic transmission and occasional spillover to humans [5]. Field studies in endemic areas

where pigs are absent could help clarify the role of these other species in the transmission cycle

and identify key factors associated with spillover to humans.

An additional limitation is that we have assumed that there is no sub-national variation in

the FOI. The differences in FOI estimates for several countries where we were able to estimate

FOI independently from multiple studies indicates that there may be substantial sub-national

variation. Where available, we have used the pooled posterior FOI estimates from multiple
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studies to try and capture the possible range. Further studies are needed to determine the

extent of sub-national variation in transmission intensity and to identify the factors associated

with this variation. We have also assumed that the FOI remained constant over time; however,

it is likely that changes in land use, agriculture practices, and development have affected trans-

mission intensity in complex ways throughout Asia [2]. For example, we estimate that the FOI

is low in several countries (e.g., Japan, Taiwan, and South Korea) that had high incidence rates

over 50 years ago, but have since experienced large-scale economic development and popula-

tion shifts away from small, rural farms. In contrast, the increased proximity of pig rearing and

rice cultivation in other areas may have increased transmission intensity in some countries [2].

We also were not able to estimate an FOI for several countries due to a lack of age-specific inci-

dence data. For these countries we sampled from the full distribution of FOI values seen in our

estimates, which increases the uncertainty regarding the current JE burden for these countries.

Improved surveillance or epidemiological studies in these countries would help refine these

estimates.

Conclusion

By estimating the FOI experienced per susceptible individual in different JE-endemic coun-

tries, we were able to estimate the total number of JE cases and deaths under different vaccina-

tion scenarios over the past decade. By coupling these FOI estimates with estimates of the size

of the at-risk population from a spatial analysis of the risk factors associated with JEV trans-

mission, we were able to estimate the JE burden even for countries where JE is currently

under-reported. Comparing our estimates of at-risk population sizes based on knowledge of

the environmental factors associated with JE endemicity to a prior estimate of the population

living in JE-endemic regions [1] highlights the importance of refining our understanding of

where JE is endemic and spillover to humans occurs regularly. Understanding the sub-national

variation in infection risk will be key to targeting vaccination campaigns towards the most vul-

nerable populations. By modeling current JE incidence against a counterfactual scenario of

incidence in the absence of vaccination, we estimated the progress each country has made

towards reducing their JE burden through vaccination over the past decade. We have also

identified which countries could benefit the most from the introduction or expansion of vacci-

nation coverage.
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S1 Table. Summary information and results for studies of age-specific Japanese encephali-

tis (JE) incidence used to estimate the annual force of infection (FOI).

(PDF)

S2 Table. Summary of vaccination coverage data used to estimate the burden of Japanese

Encephalitis (JE) from 2010-2019 for each country.

(PDF)

S3 Table. Mean annual number of JE cases (C) and deaths (D) per country from 2010 to

2019 under the vaccination and no vaccination scenarios.
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S1 Fig. Spatial extent of rice cultivation (green) and wetlands (blue) in Asia. Rice cultivation

map is derived from [9]. Extent of wetlands (including seasonal wetlands) based on wetlands

types in tropical and sub-tropical Asia from [10]. The base map layer was generated using the

geoBoundaries Comprehensive Global Administrative Zones (CGAZ) dataset available at

https://github.com/wmgeolab/geoBoundaries/raw/main/releaseData/CGAZ/

geoBoundariesCGAZ_ADM0.zip.

(TIF)

S2 Fig. Map of likely suitable habitat for JEV vector species. Orange represents areas where

the modeled probability of Culex tritaeniorhynchus occurrence is� 0.25 according to [15].

Blue represents regions with an annual mean temp of� 20˚C and� 1500mm of annual pre-

cipitation. Darker orange areas represent regions where these two distributions overlap. The

base map layer was generated using the geoBoundaries Comprehensive Global Administrative

Zones (CGAZ) dataset available at https://github.com/wmgeolab/geoBoundaries/raw/main/

releaseData/CGAZ/geoBoundariesCGAZ_ADM0.zip.

(TIF)

S3 Fig. Combined population densities per kilometer of domestic pigs and ducks.

Map shows the three different thresholds used in estimating the size of the at-risk population

in JE-endemic areas. The default threshold used for sustained JEV transmission was� 2

per square km. Derived from [20]. The base map layer was generated using the

geoBoundaries Comprehensive Global Administrative Zones (CGAZ) dataset available at

https://github.com/wmgeolab/geoBoundaries/raw/main/releaseData/CGAZ/

geoBoundariesCGAZ_ADM0.zip.

(TIF)

S4 Fig. Observed versus predicted number of JE cases per age class in Bangladesh based on

dataset from [18]. Boxplots represent predicted number of cases per age class based on draws

from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)

S5 Fig. Observed versus predicted number of JE cases per age class in Cambodia based on

dataset from [42]. Boxplots represent predicted number of cases per age class based on draws

from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)

S6 Fig. Observed versus predicted number of JE cases per age class in Cambodia based on

dataset from [43]. Boxplots represent predicted number of cases per age class based on draws

from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)

S7 Fig. Observed versus predicted number of JE cases per age class in China based on data-

set from [44]. Boxplots represent predicted number of cases per age class based on draws

from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)

S8 Fig. Observed versus predicted number of JE cases per age class in China based on data-

set from [45]. Boxplots represent predicted number of cases per age class based on draws
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from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)

S9 Fig. Observed versus predicted number of JE cases per age class in India based on data-

set from [46]. Boxplots represent predicted number of cases per age class based on draws

from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)

S10 Fig. Observed versus predicted number of JE cases per age class in India based on data-

set from [47]. Boxplots represent predicted number of cases per age class based on draws

from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)

S11 Fig. Observed versus predicted number of JE cases per age class in India based on data-

set from [48]. Boxplots represent predicted number of cases per age class based on draws

from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)

S12 Fig. Observed versus predicted number of JE cases per age class in Indonesia based on

dataset from [49]. Boxplots represent predicted number of cases per age class based on draws

from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)

S13 Fig. Observed versus predicted number of JE cases per age class in Indonesia based on

dataset from [19]. Boxplots represent predicted number of cases per age class based on draws

from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)

S14 Fig. Observed versus predicted number of JE cases per age class in Japan based on

dataset from [50]. Boxplots represent predicted number of cases per age class based on draws

from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)

S15 Fig. Observed versus predicted number of JE cases per age class in Laos based on data-

set from [51]. Boxplots represent predicted number of cases per age class based on draws

from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)

S16 Fig. Observed versus predicted number of JE cases per age class in Malaysia based on

dataset from [52]. Boxplots represent predicted number of cases per age class based on draws

from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)
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S17 Fig. Observed versus predicted number of JE cases per age class in Malaysia based on

dataset from [22]. Boxplots represent predicted number of cases per age class based on draws

from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)

S18 Fig. Observed versus predicted number of JE cases per age class in Nepal based on

dataset from [53]. Boxplots represent predicted number of cases per age class based on draws

from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)

S19 Fig. Observed versus predicted number of JE cases per age class in Nepal based on

dataset from [54]. Boxplots represent predicted number of cases per age class based on draws

from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)

S20 Fig. Observed versus predicted number of JE cases per age class in Nepal based on

dataset from [55]. Boxplots represent predicted number of cases per age class based on draws

from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)

S21 Fig. Observed versus predicted number of JE cases per age class in Nepal based on

dataset from [56]. Boxplots represent predicted number of cases per age class based on draws

from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)

S22 Fig. Observed versus predicted number of JE cases per age class in Nepal based on

dataset from [21]. Boxplots represent predicted number of cases per age class based on draws

from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)

S23 Fig. Observed versus predicted number of JE cases per age class in the Philippines

based on dataset from [57]. Boxplots represent predicted number of cases per age class based

on draws from the joint posterior distribution of FOI and vaccination coverage (if included)

estimates. Red diamonds represent the observed number of cases.

(TIF)

S24 Fig. Observed versus predicted number of JE cases per age class in the Philippines

based on dataset from [58]. Boxplots represent predicted number of cases per age class based

on draws from the joint posterior distribution of FOI and vaccination coverage (if included)

estimates. Red diamonds represent the observed number of cases.

(TIF)

S25 Fig. Observed versus predicted number of JE cases per age class in the Philippines

based on dataset from [59]. Boxplots represent predicted number of cases per age class based

on draws from the joint posterior distribution of FOI and vaccination coverage (if included)

estimates. Red diamonds represent the observed number of cases.

(TIF)
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S26 Fig. Observed versus predicted number of JE cases per age class in South Korea based

on dataset from [60]. Boxplots represent predicted number of cases per age class based on

draws from the joint posterior distribution of FOI and vaccination coverage (if included) esti-

mates. Red diamonds represent the observed number of cases.

(TIF)

S27 Fig. Observed versus predicted number of JE cases per age class in Sri Lanka based on

dataset from [61]. Boxplots represent predicted number of cases per age class based on draws

from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)

S28 Fig. Observed versus predicted number of JE cases per age class in Taiwan based on

dataset from [62]. Boxplots represent predicted number of cases per age class based on draws

from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)

S29 Fig. Observed versus predicted number of JE cases per age class in Thailand based on

dataset from [63]. Boxplots represent predicted number of cases per age class based on draws

from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)

S30 Fig. Observed versus predicted number of JE cases per age class in Vietnam based on

dataset from [64]. Boxplots represent predicted number of cases per age class based on draws

from the joint posterior distribution of FOI and vaccination coverage (if included) estimates.

Red diamonds represent the observed number of cases.

(TIF)

S31 Fig. Estimated vaccination coverage by age group for China based on age-specific inci-

dence data from Li et al. [44]. Vaccination coverage data used to generate prior distributions

was taken from reference(s) listed in S1 Table.

(TIF)

S32 Fig. Estimated vaccination coverage by age group for China based on age-specific inci-

dence data from Wang et al. [45]. Vaccination coverage data used to generate prior distribu-

tions was taken from reference(s) listed in S1 Table.

(TIF)

S33 Fig. Estimated vaccination coverage by age group for India based on age-specific inci-

dence data from Ranjan et al. [46]. Vaccination coverage data used to generate prior distribu-

tions was taken from reference(s) listed in S1 Table.

(TIF)

S34 Fig. Estimated vaccination coverage by age group for India based on age-specific inci-

dence data from Jain et al. [48]. Vaccination coverage data used to generate prior distribu-

tions was taken from reference(s) listed in S1 Table.

(TIF)

S35 Fig. Estimated vaccination coverage by age group for Japan based on age-specific inci-

dence data from Arai et al. [50]. Vaccination coverage data used to generate prior distribu-

tions was taken from reference(s) listed in S1 Table.

(TIF)
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S36 Fig. Estimated vaccination coverage by age group for South Korea based on age-spe-

cific incidence data from Lee et al. [60]. Vaccination coverage data used to generate prior dis-

tributions was taken from reference(s) listed in S1 Table.

(TIF)

S37 Fig. Estimated vaccination coverage by age group for Sri Lanka based on age-specific

incidence data from the Epidemiology Unit of the Sri Lankan Ministry of Health [61]. Vac-

cination coverage data used to generate prior distributions was taken from reference(s) listed

in S1 Table.

(TIF)

S38 Fig. Estimated vaccination coverage by age group for Malaysia based on age-specific

incidence data from Mustapa et al. [52]. Vaccination coverage data used to generate prior

distributions was taken from reference(s) listed in S1 Table.

(TIF)

S39 Fig. Estimated vaccination coverage by age group for Thailand based on age-specific

incidence data from Olsen et al. [63]. Vaccination coverage data used to generate prior distri-

butions was taken from reference(s) listed in S1 Table.

(TIF)

S40 Fig. Estimated vaccination coverage by age group for Taiwan based on age-specific

incidence data from Chang et al. [62]. Vaccination coverage data used to generate prior dis-

tributions was taken from reference(s) listed in Table 1.

(TIF)

S41 Fig. Estimated vaccination coverage by age group for Vietnam based on age-specific

incidence data from Yen et al. [64]. Vaccination coverage data used to generate prior distri-

butions was taken from reference(s) listed in Table 1.

(TIF)

S42 Fig. Map of the areas estimated to be suitable for endemic JEV transmission and loca-

tions of documented JE occurrence from 2000-2019. Description of at-risk geographic areas

is same as in Fig 1 of main text. Yellow circles are the locations of reported JE occurrence.

Information and references for the JE occurrence locations are provided in S4 Table. The base

map layer was generated using the geoBoundaries Comprehensive Global Administrative

Zones (CGAZ) dataset available at https://github.com/wmgeolab/geoBoundaries/raw/main/

releaseData/CGAZ/geoBoundariesCGAZ_ADM0.zip.

(TIF)

S43 Fig. Map of the areas estimated to be suitable for endemic JEV transmission and loca-

tions of documented JE occurrence from 2000-2019 in South Korea and Japan. Description

of at-risk geographic areas is same as in Fig 1 of main text. Yellow circles are the locations of

reported JE occurrence. Information and references for the JE occurrence locations are pro-

vided in S4 Table. The base map layer was generated using the geoBoundaries Comprehensive

Global Administrative Zones (CGAZ) dataset available at https://github.com/wmgeolab/

geoBoundaries/raw/main/releaseData/CGAZ/geoBoundariesCGAZ_ADM0.zip.

(TIF)

S44 Fig. Map of the areas estimated to be suitable for endemic JEV transmission and loca-

tions of documented JE occurrence from 2000-2019 in Bangladesh and NE India. Descrip-

tion of at-risk geographic areas is same as in Fig 1 of main text. Yellow circles are the locations
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of reported JE occurrence. Information and references for the JE occurrence locations are pro-

vided in S4 Table. The base map layer was generated using the geoBoundaries Comprehensive

Global Administrative Zones (CGAZ) dataset available at https://github.com/wmgeolab/

geoBoundaries/raw/main/releaseData/CGAZ/geoBoundariesCGAZ_ADM0.zip.

(TIF)

S45 Fig. Map of the areas estimated to be suitable for endemic JEV transmission and loca-

tions of documented JE occurrence from 2000-2019 in southern India. Description of at-

risk geographic areas is same as in Fig 1 of main text. Yellow circles are the locations of

reported JE occurrence. Information and references for the JE occurrence locations are pro-

vided in S4 Table. The base map layer was generated using the geoBoundaries Comprehensive

Global Administrative Zones (CGAZ) dataset available at https://github.com/wmgeolab/

geoBoundaries/raw/main/releaseData/CGAZ/geoBoundariesCGAZ_ADM0.zip.

(TIF)

S46 Fig. Map of the areas estimated to be suitable for endemic JEV transmission and loca-

tions of documented JE occurrence from 2000-2019 in northern India. Description of at-

risk geographic areas is same as in Fig 1 of main text. Yellow circles are the locations of

reported JE occurrence. Information and references for the JE occurrence locations are pro-

vided in S4 Table. The base map layer was generated using the geoBoundaries Comprehensive

Global Administrative Zones (CGAZ) dataset available at https://github.com/wmgeolab/

geoBoundaries/raw/main/releaseData/CGAZ/geoBoundariesCGAZ_ADM0.zip.

(TIF)

S47 Fig. Map of the areas estimated to be suitable for endemic JEV transmission and loca-

tions of documented JE occurrence from 2000-2019 in Laos. Description of at-risk geo-

graphic areas is same as in Fig 1 of main text. Yellow circles are the locations of reported JE

occurrence. Information and references for the JE occurrence locations are provided in S4

Table. The base map layer was generated using the geoBoundaries Comprehensive Global

Administrative Zones (CGAZ) dataset available at https://github.com/wmgeolab/

geoBoundaries/raw/main/releaseData/CGAZ/geoBoundariesCGAZ_ADM0.zip.

(TIF)
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