Skip to main content
. 2021 Oct 13;17(10):e1009513. doi: 10.1371/journal.pcbi.1009513

Fig 7. Modelling of enzymes within the glycolysis pathway.

Fig 7

(A) A network-level representation of the system, where the blue modules are free to be swapped depending on the rate law. Species without circles are considered to be external to the system, and in cases where they occur more than once, they are connected by equal potential components (●, omitted for compactness) to ensure mass conservation. (B) For illustrative purposes, we show the rate laws for the pgk enzyme. (C) The enzyme can be modelled using the mass action (top), Michaelis-Menten (middle) or generalised kinetics (bottom) rate laws. The notation for the mass action and Michaelis-Menten components are defined in Fig 3B. Note that since generalised kinetics rate laws depend on the chemical potentials of all substrates (and not just their sums), they cannot be decomposed into smaller modules.