Skip to main content
. 2021 Feb 11;32(4):1408–1417. doi: 10.1109/TNNLS.2021.3054306

TABLE II. Performance Comparison of Four Architectures and Eight Classifiers (32 Combinations) for CT Images. All Values are Given in Percent.

Model Classifier Accuracy Sensitivity Specificity AUC
DenseNet121 AdaBoost 78.9 ± 7.6 76.5 ± 11.5 80.1 ± 8.4 81.9 ± 5.8
Gaussian Process 53.1 ± 10.9 0.0 1.0 0.5 ± 0.9
Linear SVM 85.9 ± 5.9 84.9 ± 8.4 86.8 ± 6.3 93.1 ± 3.4
Naive Bayes 74.9 ± 5.5 72.4 ± 24.4 77 ± 11.5 77 ± 9.1
Nearest Neighbors 79.8 ± 6 69.7 ± 13.5 88.8 ± 5.3 86.8 ± 5.4
Neural Net 83.4 ± 14.4 82 ± 28 84.6 ± 24 92.7 ± 13.4
RBF SVM 53.1 ± 2.3 0.0 1.0 57 ± 3.1
Random Forest 62.3 ± 9.2 46.2 ± 17.7 76.3 ± 11.7 67.4 ± 10.3
InceptionResNetV2 AdaBoost 75.2 ± 8.3 72.6 ± 12.8 77.5 ± 9.7 82.7 ± 7.4
Gaussian Process 53.1 ± 10.9 0.0 1.0 0.5 ± 0.4
Linear SVM 84.3 ± 7.3 83.2 ± 9 91.9 ± 7.4 91.9 ± 4.1
Naive Bayes 75.7 ± 2.5 76.6 ± 3.8 75 ± 12.8 77.3 ± 13.6
Nearest Neighbors 75.8 ± 8.2 57.3 ± 14.9 92 ± 4.4 84.4 ± 6.8
Neural Net 80.7 ± 16.5 79.4 ± 28.1 82.6 ± 29 87.8 ± 15.6
RBF SVM 53.1 ± 11 0.0 1.0 55 ± 2.4
Random Forest 59.1 ± 9.9 42.3 ± 18 73.4 ± 13 68.7 ± 11.6
ResNet50 AdaBoost 76.1 ± 9.4 73.9 ± 13.5 78 ± 9.8 83.9 ± 7.6
Gaussian Process 53.1 ± 11 0.0 1.0 0.5 ± 0.4
Linear SVM 87.9 ± 5.8 86.5 ± 7.1 89.1 ± 5.4 94.2 ± 2.9
Naive Bayes 59.5 ± 9.8 70.1 ± 30.6 50 ± 25.4 60.1 ± 5.5
Nearest Neighbors 78.9 ± 8.2 65.2 ± 14.4 91.1 ± 4.8 87.2 ± 6.4
Neural Net 84.6 ± 16.4 83.1 ± 30.4 88.3 ± 27.9 91.7 ± 16.7
RBF SVM 53.1 ± 11 0.0 1.0 51 ± 0.8
Random Forest 59.3 ± 9.1 35.1 ± 16.4 80.6 ± 10.1 63.3 ± 11.4
VGG16 AdaBoost 76.8 ± 7.8 73.9 ± 13.1 79.2 ± 8.9 84.2 ± 7.1
Gaussian Process 53.1 ± 11 0.0 1.0 0.5 ± 0.4
Linear SVM 86.5 ± 5.8 84.8 ± 8.2 88.1 ± 5.9 93.3 ± 3.3
Naive Bayes 64.2 ± 12.2 74.5 ± 18.9 55 ± 22.5 64.8 ± 8.9
Nearest Neighbors 71.4 ± 6.9 42.3 ± 14 97.1 ± 2.5 83.8 ± 6.2
Neural Net 84.6 ± 16.3 85.8 ± 32.1 87.6 ± 27 92.8 ± 18.6
RBF SVM 53.1 ± 11 0.0 1.0 0.5 ± 0.4
Random Forest 59.7 ± 9 34.4 ± 16.4 82 ± 9.5 64.2 ± 11.8