Skip to main content
. 2021 Feb 11;32(4):1408–1417. doi: 10.1109/TNNLS.2021.3054306

TABLE III. Performance Comparison of Four Architectures and Eight Classifiers (32 Combinations) for X-Ray Images. All Values are Given in Percent.

Model Classifier Accuracy Sensitivity Specificity AUC
DenseNet121 AdaBoost 91 ± 5.9 77.7 ± 15.8 95.4 ± 5.2 96.6 ± 3.9
Gaussian Process 74.8 ± 1.7 0.0 1.0 51 ± 0.8
Linear SVM 96.4 ± 3.1 93.9 ± 9.3 97.2 ± 3.7 99.5 ± 0.8
Naive Bayes 82.3 ± 5 31.6 ± 18.5 99.4 ± 0.5 65.5 ± 9.2
Nearest Neighbors 89.4 ± 4.6 64.1 ± 18.1 97.8 ± 2.9 95.4 ± 4.2
Neural Net 93.2 ± 5.7 80.7 ± 24.1 97.4 ± 2.9 98.9 ± 1.2
RBF SVM 75 ± 1.7 0.0 1.0 51 ± 1.1
Random Forest 78.9 ± 4.3 20 ± 15.5 98.5 ± 2.6 82.3 ± 9.3
InceptionResNetV2 AdaBoost 89.5 ± 5.6 73.8 ± 17.8 94.8 ± 5.2 94.9 ± 5.4
Gaussian Process 74.8 ± 1.7 0.0 1.0 51 ± 1.1
Linear SVM 98 ± 3.2 96.3 ± 7.8 98.5 ± 3.5 99.8 ± 0.6
Naive Bayes 75.3 ± 2 1.1 1.0 50.5 ± 1.8
Nearest Neighbors 89.9 ± 5.4 62.2 ± 20.3 99.3 ± 2.3 96 ± 4.7
Neural Net 89.9 ± 12.6 72.7 ± 24.6 95.6 ± 17.1 97.5 ± 8.5
RBF SVM 75.1 ± 1.7 0.0 1.0 51 ± 1.1
Random Forest 77.6 ± 4.3 13.9 ± 13.8 98.9 ± 2.1 80.6 ± 9.7
ResNet50 AdaBoost 92.6 ± 6.1 84.4 ± 17.1 95.3 ± 5.5 97.6 ± 4.1
Gaussian Process 75.1 ± 1.6 0.0 1.0 51 ± 1.1
Linear SVM 98.6 ± 2.1 99.9 ± 1.2 98.2 ± 2.8 99.7 ± 0.6
Naive Bayes 77.8 ± 3.9 12.5 ± 12.5 1.0 56.3 ± 6.7
Nearest Neighbors 94 ± 4.4 78.4 ± 17.7 99.2 ± 2.6 97.7 ± 4.9
Neural Net 92.5 ± 6.4 85.5 ± 24.1 94.8 ± 7.3 98 ± 3.2
RBF SVM 75 ± 1.7 0.0 1.0 51 ± 1.1
Random Forest 76.3 ± 3.3 80 ± 10.8 99.1 ± 2 80.8 ± 9.6
VGG16 AdaBoost 89.9 ± 5.5 85.9 ± 17.9 94.9 ± 4.8 94.1 ± 6.8
Gaussian Process 74.1 ± 1.7 0.0 1.0 51 ± 1
Linear SVM 96.6 ± 3.4 98.8 ± 9.9 98.3 ± 3.1 99.6 ± 0.7
Naive Bayes 90.2 ± 5.1 70.8 ± 20.3 99.3 ± 1.6 75 ± 10
Nearest Neighbors 89.3 ± 4.5 57.3 ± 7 98.9 ± 3 83.9 ± 8.3
Neural Net 94.3 ± 6.1 98.8 ± 25.3 97.5 ± 5.7 98.3 ± 2.1
RBF SVM 76.1 ± 1.7 0.0 1.0 51 ± 1
Random Forest 76.5 ± 3.1 13.2 ± 10.2 99.5 ± 1.6 82.8 ± 9.3