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Abstract— Given the outbreak of COVID-19 pandemic and
the shortage of medical resource, extensive deep learn-
ing models have been proposed for automatic COVID-19
diagnosis, based on 3D computed tomography (CT) scans.
However, the existing models independently process the 3D
lesion segmentationand disease classification, ignoring the
inherent correlation between these two tasks. In this paper,
we propose a joint deep learning model of 3D lesion segmen-
tation and classification for diagnosing COVID-19, called
DeepSC-COVID, as the first attempt in this direction. Specif-
ically, we establish a large-scale CT database containing
1,805 3D CT scans with fine-grained lesion annotations, and
reveal 4 findings about lesion difference between COVID-19
and community acquired pneumonia (CAP). Inspired by
our findings, DeepSC-COVID is designed with 3 subnets:
a cross-task feature subnet for feature extraction, a 3D
lesion subnet for lesion segmentation, and a classification
subnet for disease diagnosis. Besides, the task-aware loss
is proposed for learning the task interaction across the 3D
lesion and classification subnets. Different from all existing
models for COVID-19 diagnosis, our model is interpretable
with fine-grained 3D lesion distribution. Finally, extensive
experimental results show that the joint learning frame-
work in our model significantly improves the performance
of 3D lesion segmentation and disease classification in both
efficiency and efficacy.
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I. INTRODUCTION

AFTER being first identified in December 2019,
COVID-19 has emerged as a pandemic of global health

concern, causing unprecedented social and economic disrup-
tion [42], [44]. According to the WHO report [54], as of
March 29, 2021, there were a total of 126,890,643 infected
patients, 2,778,619 of whom died. The worldwide outbreak of
COVID-19 has placed enormous pressure on healthcare sys-
tems and led to an extreme shortage of medical resources [41].
A feasible way to control the COVID-19 pandemic is to
identify and isolate the infected cases [19], which requires
an effective screening method with high sensitivity to detect
infected people and their close contacts. Real-time reverse
transcription polymerase chain reaction (RT-PCR) [43] is a
common method for COVID-19 detection; however, it suffers
from a high false negative rate [1], [14] in the early stages of
the disease. Recently, the antigen test has been developed for
the rapid diagnosis of COVID-19; however, it still suffers from
relatively low specificity and sensitivity. As reported in [46],
the sensitivity of the antigen test is only 30.2%. Chest com-
puted tomography (CT) has been demonstrated to have better
sensitivity for detecting COVID-19, especially in regions with
severe epidemic situations [56], [58]. Unfortunately, it is a
time-consuming process for doctors to interpret and make a
diagnosis during COVID-19 outbreak from each CT scan with
hundreds of slices. Even an experienced radiologist can only
interpret 4-10 chest CT scans per hour [3], [10]. Therefore,
an automatic CT interpretation model is highly desired for
accurate, efficient and trustworthy COVID-19 diagnosis.

There are three great challenges in developing an
automatic CT interpretation model for COVID-19 diagnosis.
(1) Although the tasks of 3D lesion segmentation and dis-
ease classification are highly correlated with each other for
COVID-19 diagnosis, they cannot be simultaneously learned
in the existing deep learning (DL) models [26], [34], [48],
[51], [53], [61]. Hence, it is challenging to develop a joint
deep learning model of 3D lesion segmentation and disease
classification. (2) Despite being a new disease, COVID-19 has
similar imaging manifestations as other types of pneumonia,
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e.g., community acquired pneumonia (CAP) [5]. Thus, it is
a challenging task for the model to produce a differential
diagnosis between COVID-19 and other similar types of
pneumonia. (3) Most automatic diagnosis models [27], [30],
[31], [40] are based on “black box” deep neural networks
(DNNs) [12], [20], [25], [52], which lack sufficient explain-
ability to assist radiologists in making credible diagnoses. The
explainability of DNNs is another challenge in the design of
automatic CT interpretation models for COVID-19 diagnosis.

To tackle the above challenges, we establish a large-scale
CT database, called 3DLSC-COVID, which is the first CT
database with fine-grained 3D lesion segmentation and classi-
fication labels of COVID-19, CAP and non-pneumonia. Based
on the lesion characteristics found from this database, we pro-
pose a joint DL model, namely DeepSC-COVID, for accurate
3D lesion segmentation and the diagnosis of COVID-19.
Specifically, the DeepSC-COVID model consists of three
subnets, i.e., cross-task feature, 3D lesion segmentation and
disease classification subnets, and is able to simultaneously
generate the 3D segmented lesion and the classification results
of COVID-19, CAP or non-pneumonia. In the classification
subnet, a new multi-layer visualization mechanism is devel-
oped to generate the evidence masks that contain small and
indistinct lesions for disease diagnosis. In this way, the process
of COVID-19 diagnosis in our model is explainable. Besides,
in the training phase, a novel task-aware loss is proposed on
the basis of our visualization mechanism for efficient inter-
action between the tasks of segmentation and classification.
With the guidance of the segmented lesions, the classification
subnet is able to focus on the lesions, such that the diagnosis of
COVID-19 can be significantly accelerated with higher clas-
sification accuracy. Note that, different from the single-scale
attention constrained mechanism [37], our task-aware loss has
multi-scale attention constraint to generate more fine-grained
visualization maps. Additionally, the task-aware loss is used in
our method to optimize both tasks of segmentation and clas-
sification, thus being able to interact the information between
these two tasks and to boost the performance of both tasks. In
conclusion, the developed DeepSC-COVID model can provide
the rapid, accurate and explainable diagnosis of COVID-19,
meanwhile visualizing the fine-grained lesions for doctors.

To the best of our knowledge, our method is one of the
pioneering works in joint learning of 3D lesion segmentation
and disease classification based on 3D CT scans, especially for
the disease of COVID-19. The main contributions of this paper
are as follows. (1) We establish a large-scale database of CT
scans, with fine-grained lesion annotations, for the diagnosis
of COVID-19 and CAP. (2) We thoroughly analyze the new
database, and yield 4 important findings about the lesion dif-
ferences between the diseases. (3) We propose an explainable
deep multi-task learning model for both tasks of 3D lesion
segmentation and disease classification of COVID-19.

II. RELATED WORK

A. Imaging-Based COVID-19 Databases
Although many people infected by COVID-19, it is still

not easy to build a large-scale imaging-based COVID-19 data-
bases, due to the privacy of the patients and hospitals. Table I

TABLE I
SUMMARY OF THE EXISTING COVID-19 DATABASES

summarizes the representative CT/X-rays based COVID-19
databases that are public online. As can be seen from
this table, most existing public databases lack fine-grained
lesion annotation, and only a few of them have small scale
of lesion segmentation labels. This is probably because of
the lack of the experts with rich experience in diagnosing
COVID-19. In contrast, this paper establishes a large-scale
database of 1,805 CT scans with 458,730 slices, in which
157,696 slices are annotated with lesions. It is worth mention-
ing that the lesion-annotated slices of our database are around
17 times more than those of the largest 3D lesion segmentation
database [48].

B. Automatic COVID-19 Diagnosis on CT Scans

In the past few months, many DL-based methods were
developed for COVID-19 diagnosis on CT scans [17], [26],
[37], [48], [61], [63]. They mainly focus on two tasks: disease
classification and lesion segmentation. In order to automati-
cally diagnose COVID-19, Li et al. [26] proposed a COVID-19
detection neural network (COVNet) using ResNet-50 [18] as
the backbone. With a series of CT slices as inputs, COVNet
generates a classification result for each CT scan. Similarly,
Ouyang et al. [37] designed a dual-sampling attention net-
work for classifying COVID-19 and CAP. Specifically, they
proposed an online attention module with a 3D convolutional
network to focus on the infection regions in lungs for the
diagnosis. Different from the disease classification methods,
other works [48], [63] focused on COVID-19 lesion segmen-
tation. Specifically, Zhou et al. [63] proposed a fully auto-
matic machine-agnostic method that can segment and quantify
the infection regions on CT scans from different sources.
Wang et al. [48] designed a noise-robust framework for auto-
matic segmentation of COVID-19 pneumonia lesions from CT
scans. Unfortunately, all above methods neglect the correlation
between disease classification and lesion segmentation. In fact,
the lesion segmentation results act as explainable diagnostic
evidence for disease classification; meanwhile, the classifica-
tion results are able to further improve the accuracy of lesion
segmentation.

Only a few DL-based methods [23], [33], [61] have
been developed to perform both tasks of lesion segmenta-
tion and disease classification for COVID-19. Specifically,
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Mahmud et al. [33] proposed a hybrid attention based net-
work for lesion segmentation, diagnosis, and severity predic-
tion of COVID-19. In their training stage, the lesion segmen-
tation network is optimized firstly and is then integrated into
the training of diagnosis and severity prediction. Similarly,
Jin et al. [23] proposed a sequential optimization pipeline,
in which they first train the lesion segmentation network alone,
and then use the segmentation results to train the classifica-
tion network. However, all these methods cannot be seen as
multi-task learning according to the definition of [45], since
they separately learn the two tasks, ignoring the information
sharing between two tasks. In contrast, our DeepSC-COVID
method is a multi-task deep learning work, as it can jointly
learn the two tasks of 3D lesion segmentation and classifica-
tion for COVID-19, achieving task-aware information sharing
through the proposed cross-task feature subnet and the novel
task-aware loss. This way, the tasks of lesion segmentation and
disease classification can boost each other to achieve better
performance.

III. DATABASE AND ANALYSIS

A. Database Establishment

This retrospective study was performed in accordance with
the Declaration of Helsinki of the World Medical Association
and was approved by the medical ethics committee of Liyuan
Hospital, Tongji Medical College, Huazhong University of
Science and Technology. Besides, all data were anonymized.

For establishing our 3DLSC-COVID database,1. a total of
1,805 3D chest CT scans with more than 570,000 CT slices
were collected from 2 standard CT scanners of Liyuan Hos-
pital, i.e., UIH uCT 510 and GE Optima CT600. Among all
CT scans, there were 794 positive cases of COVID-19, which
were further confirmed by clinical symptoms and RT-PCR
from January 16 to April 16, 2020. Additionally, 540 posi-
tive cases of CAP and 471 non-pneumonia cases were ran-
domly selected from the same hospital between November 5,
2016 and April 28, 2020. In contrast to existing CT-based
COVID-19 databases [57], [59], [63], our 3DLSC-COVID
database is the first CT database with both fine-grained 3D
lesion segmentation and disease classification labels for the
COVID-19 and CAP diagnosis. More details about patients
and CT scans of the 3DLSC-COVID database are summarized
in the supplementary material.

For lesion segmentation, we recruited 2 resident radiologists
with over 2 years of experience to annotate the areas and
boundaries of the lesions in each 2D CT slice. Then, for
each CT scan, the 2D annotated lesions of all CT slices were
merged to obtain the 3D lesions. Subsequently, the 2 resident
radiologists were asked to further refine the segmented lesions
in 3D viewing mode. At last, both 2D and 3D lesions were
reviewed and corrected by a senior radiologist with over
10 years of experience in thoracic radiology. Some exam-
ples of the annotated CT scans for COVID-19, CAP and
non-pneumonia individuals are shown in Fig. 1.

1The 3DLSC-COVID database is available at IEEE Dataport
https://dx.doi.org/10.21227/mxb3-7j48

B. Analysis of Characteristics of 3D Lesion

We characterize the 3D lesions of COVID-19 and CAP via
thoroughly analyzing the lesion annotations in our 3DLSC-
COVID database. Four important findings are obtained in
terms of the count, size, CT value and spatial distribution
of 3D lesions, which are briefly introduced as follows.

1) Finding 1: The Number of Lesions for COVID-19 is Con-
siderably More Than That for CAP : Analysis: As shown in
Fig. 1 (d), the number of lesions for COVID-19 is around
2.6 times than that for CAP, i.e., averagely 4.4 lesions per CT
scan for COVID-19 versus 1.7 for CAP. To be more specific,
54.8% CT scans of CAP in our database contain only one
lesion, while around 55.2% CT scans for COVID-19 have
4 or more lesions. Fig. 1 (a) visualizes the segmented lesions
of COVID-19 and CAP, which also indicate the obvious
difference of lesion counts between COVID-19 and CAP.

2) Finding 2: The Overall Lesion Volume in COVID-19 CT
Scans is Significantly Larger Than That for CAP. Additionally,
Compared With CAP, the Lesions of COVID-19 Vary Significantly
in Size: Analysis: Fig. 1 (g) shows the histogram of the lesion
volume ratio (LVR) for all COVID-19 and CAP individuals
in the 3DLSC-COVID database. Here, LVR indicates the
proportion of lesions to the whole lung. As shown in this
figure, the average LVR for COVID-19 is around 3.3 times
higher than that for CAP per CT scan, i.e., the average LVR
is 14.3% for COVID-19 versus 4.4% for CAP. The CAP
cases with LVR larger than 12% accounts for only 5%, while
the COVID-19 cases with LVR larger than 12% accounts for
above 50%.

In addition to the lesion volume, we compare the 3D size
of lesions for COVID-19 and CAP. The 3D size is measured
by drawing a bounding box for each lesion, which is defined
as the minimum cuboid to wrap the lesion. Fig. 1 (e) shows
the 3-D scatter diagram with axes of width, length and height,
drawn on 372 randomly selected lesions from our database.
As can be seen in this figure, the 3D size of lesions for CAP
is concentrated. Specifically, the width, length and height of
over 90 % CAP lesions are densely distributed in the range
of [35 mm, 105 mm] (span = 70 mm), [42 mm, 105 mm]
(span = 63 mm) and [85 mm, 160 mm] (span = 75 mm),
respectively. In contrast, the 3D lesion size of COVID-19 is
with a larger span, i.e., [15 mm, 140 mm] (span = 125 mm)
in width, [15 mm, 170 mm] (span = 155 mm) in length and
[30 mm, 240 mm] (span = 210 mm) in height, respectively.
This verifies that the lesions of COVID-19 vary significantly
in size compared to those of CAP.

3) Finding 3: Compared to the CAP Lesions Which can Either
Display Low or High Density in CT Images, the COVID-19
Lesions Tend to Mainly Display Low Density (Darker): Analysis:
The densities of CAP and COVID-19 lesions are investigated
in terms of CT values. Fig. 1 (f) shows the distribution curves
of CT values in the lesions of CAP and COVID-19, respec-
tively. Note that smaller CT values indicate lower density.
As can be seen, for COVID-19 lesions, the distribution curve
only has one peak, with more than 70% of the CT values con-
centrated between −960 Hounsfield unit (HU) and −600 HU.
In contrast, for CAP lesions, the CT value distribution has two
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Fig. 1. Illustration and statistical analysis of our database. (a) Front, side and top views of 3D chest CT scans with 3D lesion segmentation for one
COVID-19 (upper row), one CAP (middle row) and one non-pneumonia (lower row) individuals. Note that the lesions in lungs are marked in red.
(b), Two selected 2D CT slices, corresponding to 3D CT scan in the same row. The lesions in each slice are encircled by green lines. (c) Case reports of
the three individuals. (d) Histogram of lesion counts in the CT scans for all COVID-19 and CAP individuals in our 3DLSC-COVID database. (e) Width,
length and height of each lesion in 3D CT scans for COVID-19 and CAP, respectively. For better visualization, only 372 lesions are randomly selected
from our database. (f) Distribution curves of CT values in the lesions of CAP and COVID-19 CT scans, respectively. (g) Histograms of lesion count
in the CT scans for CAP and COVID-19, respectively. (h) Standard deviations of lesion distribution for CAP and COVID-19 with varied lesion volume
ratios. (i) Changes of peripheral lesion ratio with peripheral thickness varying from 0 to 35 mm for CAP and COVID-19, respectively. Note that the
results of these charts (d,f-i) are obtained upon all CAP and COVID-19 CT scans in our 3DLSC-COVID database.

primary peaks, i.e., over 75% of the CT values are distributed
in [−970 HU, −580 HU] and [−70 HU, 140 HU]. As such,
the COVID-19 lesions tend to mainly display low density,
while the CAP lesions can either display low or high density.
A possible medical explanation for this finding lies in the
lesion types. Specifically, the COVID-19 lesions are mainly
ground-glass opacity (GGO) [6], [22], which is a pattern of
hazy increased lung opacity that shows low contrast with
surrounding regions. In addition to GGO, CAP has another
type of lesion called consolidation. The consolidation is a

typical pneumonia lesion that has the homogeneous increase
in lung parenchymal attenuation of CT scans, which is in
highly contrast with surrounding regions. Some examples of
the segmented lesions in 2D CT slices for COVID-19 and CAP
can be seen in Fig. 1 (b).

4) Finding 4: The COVID-19 Lesions are Mostly Scattered
in the Peripheral Area of Lungs. In Contrast, the CAP Lesions
are More Concentrated, Which are Mainly Distributed in the
Central Area of Lungs: Analysis: The spatial distribution of the
lesions is evaluated for CAP and COVID-19, by measuring
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Fig. 2. Framework of the proposed DeepSC-COVID model.

the standard deviation of the lesion centers in all CT scans.
Here, the lesion center is the central point of the lesion
bounding box, and a larger standard deviation indicates more
scattered lesion distribution. For specific analysis, we divide
all CT scans into different groups upon their lesion volume
ratios. Fig. 1 (h) shows the standard deviations of lesion
distribution in different groups of CAP and COVID-19. As
can be seen in this figure, the standard deviation of lesions
in COVID-19 is significantly larger than that in CAP for
all CT groups. In particular, for the CT group with lesion
volume ratio from 4% to 6%, the standard deviation is 86.0 on
average for COVID-19, compared with only 15.6 for CAP.
This demonstrates that the spatial distribution of COVID-19
lesions is more scattered than that of CAP.

Next, the lesion distribution areas in CT scans are analyzed
for CAP and COVID-19, by calculating the proportion of
lesions within the peripheral lung areas to the overall lesions,
denoted as peripheral lesion ratio (PLR). To calculate PLR,
given a CT scan, we first generate the 3D binary masks of the
lung areas by a state-of-the-art lung segmentation algorithm
[21]. For the CT scan with slice S, width W and height H ,
the lung and lesion masks are denoted as U ∈ R

S×W×H and
L ∈ R

S×W×H , respectively. Then, PLR is defined as follows:

PLR =
∑S

s=1
∑W

i=1
∑H

j=1[Us − E(Us, σ )]i,jLs,i,j∑S
s=1

∑W
i=1

∑H
j=1 Ls,i,j

, (1)

where Us is the s-th slice of the lung mask U, and E(Us , σ )
is the erosion operation with the erosion kernel of σ in
radius. Note that the difference between the lung mask and its
erosion result [Us − E(Us, σ )] can be regard as the peripheral
lung areas, which is controlled by the hyper-parameter of σ
denoted as peripheral thickness in the following. Fig. 1 (i)
shows the PLR with different peripheral thickness for the CT
scans of COVID-19 and CAP in the 3DLSC-COVID database.
As shown, the COVID-19 lesions are more possibly distributed
in the peripheral area of the lung, e.g., PLR = 62.4% for

COVID-19 lesions versus 24.5% for CAP lesions. This indi-
cates the significant difference of lesion distribution between
CAP and COVID-19 in CT scans.

The above findings reveal the typical characteristics of
lesions for COVID-19, and are used as guidance to design
our DeepSC-COVID model for automatic CT interpretation in
COVID-19 diagnosis.

IV. METHODOLOGY

A. Framework of DeepSC-COVID

As illustrated in Fig. 2, the proposed DeepSC-COVID
model2 consists of 3 subnets: cross-task feature, 3D lesion and
classification subnets. For 3D lesion segmentation, due to the
limited GPU memory, it is difficult to input the full-sized CT
scans. As such, the original CT scan is cropped into smaller
non-overlapping 3D patches. For classification, the 3D CT
scan is preprocessed by slice sampling at an average interval
to remove the redundancy between adjacent slices, in order to
improve the classification efficiency.

After preprocessing, both the cropped 3D CT patch and
sampled 2D CT slices are fed into the cross-task feature subnet
with 3D inception blocks and cross-stitch unit. Specifically,
based on the classic 2D inception block [47], the 3D incep-
tion block is designed to extract the multi-scale 3D features
from the cropped 3D CT patch and sampled 2D CT slices,
respectively. Then, the cross-stitch unit is developed to mix
the features to generate 3D lesion features (L-features) and
classification features (C-features). These two features are fed
into the 3D lesion and classification subnets, respectively.
In the 3D lesion subnet, a 3D U-Net and a segmentation
generator are designed to segment the multi-scale 3D lesions
of COVID-19 or CAP. In the classification subnet, a 3D
encoder and a classifier are developed to predict the probability
scores for COVID-19, CAP and non-pneumonia. Besides,

2The source codes of our DeepSC-COVID model are available at Github
(https://github.com/XiaofeiWang2018/DeepSC-COVID)
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Fig. 3. Structure of the cross-task feature subnet in the proposed
DeepSC-COVID model.

the task-aware loss is proposed for learning the task interaction
across the 3D lesion and classification subnets. To obtain the
evidence masks of the classification subnet, we propose a
multi-layer visualization method for extracting the patholog-
ical regions for disease diagnosis. Finally, according to the
predicted probabilities, the input 3D CT scan can be classified
as COVID-19, CAP or non-pneumonia.

B. Cross-Task Feature Subnet

Let Xseg and Xcls denote the cropped 3D patch and the
sampled CT slices after preprocessing, the details of which is
introduced in Section V-A. Given Xseg and Xcls, the cross-task
feature subnet is designed to jointly extract the 3D features
for the subsequent 3D lesion segmentation and classification
subnets. The structure of the cross-task feature subnet is shown
in Fig. 3, which consists of 2 cascaded components, i.e., the 3D
inception block and the cross-stitch unit. The structure details
about these 2 components are described in the following
paragraphs.

1) 3D Inception Block: Based on the classic 2D inception
block [47], the 3D inception block is developed to extract
the multi-scale 3D features. The 3D inception block has
4 branches with cascaded 3D convolutional layers. Benefit-
ing from the multiple receptive fields of different branches,
the multi-scale 3D features are extracted, followed by the
group normalization [55] and rectified linear unit (ReLU)
activation. The specific kernel size, stride and output channel
for each 3D convolutional layer are shown in supplementary
material. The Xseg and Xcls are input to two different 3D
inception blocks, to extract 3D features for the segmentation
and classification tasks, respectively. These two 3D inception
blocks do not share parameters, allowing for inception blocks
to extract more efficient features for each single task.

2) Cross-Stitch Unit: Next, the cross-stitch unit is proposed
to enhance the information interaction between the segmenta-
tion and classification tasks. Specifically, given the extracted
3D features from the 3D inception blocks, dimension matching
is first conducted to unify the receptive field of the extracted
features via zero-padding and 3D cropping. Let Iseg and Icls
denote the dimension-matched features for segmentation and

Fig. 4. Structure of the 3D lesion subnet in the proposed DeepSC-COVID
model.

classification, respectively. Then, for enhancing the informa-
tion interaction, Iseg and Icls are linearly combined to gen-
erate the final cross-task 3D lesion features (L-features) Fseg
and classification features (C-features) Fcls via the following
formulation:

[
Fseg
Fcls

]
=

[
wseg,1 wcls,2
wseg,2 wcls,1

] [
Iseg
Icls

]
, (2)

where wcls,1, wcls,2, wseg,1 and wseg,2 are learnable weights.
Then, Fseg and Fcls are fed into the subsequent 3D lesion and
classification subnets for further processing.

C. 3D Lesion Subnet

Given L-features Fseg extracted from the cross-task feature
subnet, the 3D lesion subnet is developed to segment the 3D
lesions of CT scans. The structure of the 3D lesion subnet
is shown in Fig. 4. In the 3D lesion subnet, a U-shaped
3D structure, which is composed of three down-transition
units and three up-transition units, is designed to extract
the features for precisely localizing 3D lesions. Specifically,
the input L-features Fseg are progressively contracted and
down-sampled through three down-transition units followed
by 3D max pooling layers with stride of 2. In this way,
the contextual information of 3D CT scans can be captured in
the outputs of the last down-transition units, namely contextual
features. Subsequently, the contextual features are progres-
sively expanded and up-sampled through three up-transition
units followed by deconvolutional layers [60] with stride
of 2. Note that the skip connections are adopted between
the up-transition unit and its corresponding down-transition
unit, in order to provide boundary information during the
up-sampling process. Detailed structures of down-transition
and up-transition units can be found in supplementary material.

Then, the outputs of the last down-transition unit and each
up-transition unit are further processed by the 3D convolution
layers to generate the multi-scale intermediate segmentation.
Assuming that Ŝi is the segmentation result at the i -th scale,
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Fig. 5. Structure of the classification subnet in the proposed
DeepSC-COVID model.

the final segmentation lesion Ŝ is calculated as follows:

Ŝ = sigmoid
( 4∑

i=1

ηi · UP(Ŝi , 24−i )
)
. (3)

In the above equation, {ηi }4
i=1 are the hyper-parameters to

balance the intermediate segmentation at different scales, and
UP(·, t) is the t-time upscale operation. During the training
stage, segmented lesion Ŝ is supervised by its corresponding
ground-truth lesion. Furthermore, the intermediate segmenta-
tion result is also supervised by the multi-scale lesion evidence
masks from the classification subnet, with minimization on the
task-aware loss. The details of the evidence masks and the
task-aware loss are introduced in the following sections.

D. Classification Subnet

The classification subnet is developed to classify the input
CT scan into 3 classes: COVID-19, CAP and non-pneumonia.
The structure of the classification subnet is illustrated in
Fig. 5. For focusing on lesions during classification, segmented
lesions Ŝ, together with C-features Fcls, are input to the
classification subnet. Specifically, the segmented lesions and
C-features are concatenated after convolutional layers. Then,
the concatenated features are hierarchically encoded into small
scales by the 3D encoder units, which are designed in a
residual mechanism (see supplementary material for more
details).

Let {Fe1,k}64
k=1

3 denote the 64-channel feature maps gener-
ated from the first 3D encoder unit. Subsequently, the channel-
wise global average pooling is conducted on {Fe1,k}64

k=1,
outputting the spatial average of each feature map as a
64-element feature vector [ fe1,k]64

k=1. Similarly, the encoded
feature maps and their corresponding feature vectors are
denoted as ({Fe2,k}128

k=1, [ fe2,k]128
k=1) and ({Fe3,k}256

k=1, [ fe3,k]256
k=1)

for the second and third encoder units, respectively. Finally,

3In this section, subscripts e1, e2, e3 indicate the first, second and third 3D
encoder unit. Subscript k is the channel index of the corresponding feature.

feature vectors [ fe1,k]64
k=1, [ fe2,k]128

k=1 and [ fe3,k]256
k=1 are con-

catenated for predicting the probability scores of COVID-19,
CAP and non-pneumonia, through a fully connected layer.
This classification process can be formulated as

p̂ j = softmax
( 64∑

k=1

fe1,k · wk, j
e1 +

128∑
k=1

fe2,k · w
k, j
e2

+
256∑
k=1

fe3,k · wk, j
e3

)
, (4)

where p̂ j is the predicted probability of the j -th class,
corresponding to COVID-19 ( j = 1), CAP ( j = 2) or
non-pneumonia ( j = 3). Additionally, [wk, j

e1 ]64
k=1, [wk, j

e2 ]128
k=1

and [wk, j
e3 ]256

k=1 are the learnable weights in the fully con-
nected layer, corresponding to the j -th class. Consequently,
the class with maximal probability score is regarded as the
final classification result.

Next, inspired by the visualization algorithm [62],
we mainly focus on multi-layer network visualization in the
classification subnet for generating lesion evidence masks,
which are utilized to supervise the intermediate segmentation
results in the 3D lesion subnet, through the task-aware loss.
Similar to equation (4), the lesion evidence masks of each class
can be calculated as the weighted sum of the encoded fea-
ture maps, i.e., {Fe1,k}64

k=1, {Fe2,k}128
k=1 or {Fe3,k}256

k=1. Assume
that {Vi }3

i=1 are the multi-layer lesion evidence masks of a
predicted class (taking the j -th class as an example). Then,
mathematically, they can be formulated as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

V1 = CROP(
∑64

k=1
Fe1,k · wk, j

e1 ),

V2 = CROP(
∑128

k=1
Fe2,k · w

k, j
e2 ),

V3 = CROP(
∑256

k=1
Fe3,k · wk, j

e3 ).

(5)

Recall that [wk, j
e1 ]64

k=1, [wk, j
e2 ]128

k=1 and [wk, j
e3 ]256

k=1 are learned
weights in equation (4), and CROP(·) denotes the crop func-
tion. It is worth mentioning that the network visualization
is only conducted in the training stage when calculating the
task-aware loss, which is defined in the next section.

E. Loss Functions

The loss functions are introduced for training the
DeepSC-COVID model, including segmentation, classification
and task-aware loss. Specifically, segmentation and classifi-
cation loss are developed for separately training 3D lesion
and classification subnets. The task-aware loss is proposed to
guide the 3D lesion subnet for precise segmentation upon the
visualization masks learned from the classification subnet. The
details about the proposed loss functions are introduced as
follows.

1) Segmentation Loss: For the segmentation task, the Dice
loss [15] is adopted to measure the overlapping area between
the predicted segmentation map Ŝ and its ground-truth lesion
mask S as follows:

Ldice
seg = 1 − 2‖Ŝ ◦ S‖1

‖Ŝ‖1 + ‖S‖1
, (6)
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where ◦ denotes the Hadamard product. In addition to the Dice
loss, we utilize the focal loss [29] to reduce the effect of the
class imbalance between the lesion and background regions:
Lfocal

seg = −α · (1 − Ŝ)γ · S · log(Ŝ) − (1 − α) · Ŝγ · (1 − S) ·
× log(1 − Ŝ), (7)

where α is a hyper-parameter to balance the training samples
of lesions and background, and γ is a hyper-parameter control-
ling the degree of loss focus on hard samples. Consequently,
the segmentation loss Lseg in our DeepSC-COVID can be
calculated as

Lseg = λdiceLdice
seg + λfocalLfocal

seg , (8)

where λdice and λfocal are the hyper-parameters to balance the
Dice and focal loss.

2) Classification Loss: For the disease classification task,
we develop the weighted cross-entropy loss to measure the
distance between the predicted class and the ground-truth
label. Mathematically, the classification loss Lcls for training
the classification subnet can be formulated as

Lcls = ξy · (−
C−1∑
j=0

1{ j = y} log p̂ j ). (9)

In the above equation, C is the number of the classes (3 in
this paper), y is the ground-truth label, p̂ j is the predicted
probability of the j -th class, and 1{·} denotes the indicator
function. It is worth noting that ξy in equation (9) is the inverse
frequency [29] of class y, which is counted over all training
samples. This way, the class imbalance of the training samples
can be relieved.

3) Task-Aware Loss: In addition to the segmentation and
classification loss, we further propose the task-aware loss,
which guides the classification and segmentation task to
focus on the task relevant regions of each other. Specifically,
the multi-scale intermediate segmentation results {Ŝi }3

i=1 in
the 3D lesion subnet are constrained to be similar with the
multi-layer lesion evidence masks {Vi }3

i=1 in the classification
subnet through the task-aware loss Lta defined as follows:

Lta =
3∑

i=1

ηi · ‖Ŝi − Vi‖2
2. (10)

Recall that ηi is defined in equation (3) for the 3D lesion
subnet. Benefiting from the proposed task-aware loss, the 3D
lesion subnet offers potential in segmenting some tiny lesions
of the CT scans, which may be neglected by radiologists. For
more details, see the ablation study of the task-aware loss in
Section V-E.

4) Total Loss: By combining the segmentation, classifi-
cation and task-aware loss, the total loss function for our
DeepSC-COVID model can be formulated as follows:

L = λsegLseg + λclsLcls + λtaLta, (11)

where λseg, λcls and λta are the hyper-parameters to balance
the corresponding loss.

V. EXPERIMENTS

A. Implementation Details

1) Database Split: All experiments are conducted with data
from the proposed 3DLSC-COVID database. Specifically,
the CT scans in the 3DLSC-COVID database are divided into
training and test sets. The training set contains 1,353 CT scans
(595 for COVID-19, 405 for CAP and 353 for non-pneumonia)
and the test set has 452 CT scans (199 for COVID-19,
135 for CAP and 118 for non-pneumonia). We employ 10-fold
cross-validation strategy on the training data for adjusting
hyper-parameters. The comparisons among our model, other
models and human expertise with respect to lesion segmenta-
tion and disease classification are all conducted on the test set.

2) Preprocessing: For efficient training, the 3D CT scans
are preprocessed before inputting to the DeepSC-COVID
model. The preprocessing phase includes two steps. First, for
highlighting the anatomical structures, the original CT values
of the CT scans are truncated into [−1, 400 HU, 200 HU] [11].
Then, the CT scans are further normalized to [0, 1]. To focus
on the lung areas, the CT scans are masked with the lung
binary masks generated by a state-of-the-art lung segmentation
algorithm [21].

Second, for conservation of the limited computational
resources, the size of 3D CT scans is reduced to generate
two inputs to the model, corresponding to the respective tasks
of segmentation and classification. Let X ∈ R

S×W×H denote
the 3D CT scan with slice number S, width W and height H .
In the 3DLSC-COVID database, the slice number S is within
the range of [121, 374], and the width W and the height H
are both 512. For the segmentation task, the CT scan X is
cropped into smaller non-overlapping 3D patches Xseg with
size 24×256×256 as the input. The 3D segmented patches are
aligned as the final segmentation result. For the classification
task, X is processed by slice sampling to select N (= 48 in
this paper) slices spaced equidistantly, which can reduce the
redundancy between consecutive slices for further accelerating
the inference process. Mathematically, the sampled CT scan
Xcls can be formulated as

Xcls = {
Xs

∣∣s ∈ {1 + (k − 1)� S

N
�}N−1

k=1

}
, (12)

where Xs is the s-th slice of the CT scan X, and �·� is a floor
function. Consequently, the size of Xcls is 48 × 512 × 512 for
the classification task.

3) Model Training: We follow the two-stage training
scheme [28] to train our joint learning model. In the first stage,
we separately pre-train the corresponding subnets for segmen-
tation and classification tasks. For segmentation, we pre-train
part of the cross-task feature and the 3D lesion segmentation
subnets, and for classification, we pre-train the other part of
the cross-task feature and the disease classification subnets.
In the second stage, all the 3 subnets are simultaneously
fine-tuned based on the pre-trained models, over both tasks of
segmentation and classification. At both stages, the parameters
are updated using the Adam optimizer [24], with a first-order
momentum of 0.9 and a second-order momentum of 0.999.
The initial learning rates are set to 0.001 for the pre-training
stage and 0.0001 for the fine-tuning stage, which are adjusted
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TABLE II
THE SEGMENTATION AND CLASSIFICATION PERFORMANCE OF OUR MODEL, HUMAN EXPERT AND OTHER MODELS. THE METRICS ARE

PRESENTED IN THE FORMAT OF MEAN (STANDARD DEVIATION). NOTE THAT THE 3D LESION SEGMENTATION AND CLASSIFICATION

SUBNETS IN OUR MODEL ARE DENOTED AS SEG. AND CLS., RESPECTIVELY

by linear decay for stable training. The values of the key
hyper-parameters for training can be found in the supplemen-
tary material. Our DeepSC-COVID model is implemented on
PyTorch [38] with the Python environment. All experiments
are conducted on a computer with an Intel(R) Core(TM)
i7-6900 CPU@3.20 GHz, 128 GB RAM and 4 Nvidia GeForce
GTX 1080 TI GPUs. For fair comparison, all compared meth-
ods are reimplemented and timed using the same computer as
ours.

B. 3D Lesion Segmentation Results

We qualitatively and quantitatively evaluate the lesion
segmentation performance of our DeepSC-COVID model.
Table II reports the 3D lesion segmentation results of our
DeepSC-COVID and other state-of-the-art segmentation mod-
els. As shown in this table, our model achieves high accu-
racy in 3D lesion segmentation, i.e., 73.3%, 80.2%, 95.6%,
71.8%, and 2.8 mm in terms of Dice similarity coefficient
(DSC), sensitivity, specificity, normalized surface Dice (NSD)
and root mean square symmetric surface distance (RMSD),
respectively. In contrast to our model, the accuracy of other
segmentation models is relatively low, e.g., the DSC scores are
only 61.2%, 65.3%, 63.7% and 67.2% for UNet++ L1 [64],
UNet++ L4 [64], DenseVNet [16] and COPLE-Net [48],
respectively. Note that UNet++ L1 and UNet++ L4 are
the lightest and heaviest versions in [64]. Similar results can
be found for other metrics, including sensitivity, specificity,
RMSD and NSD. Additionally, Fig. 6 visualizes the segmen-
tation results of our and the comparison models. As shown,
our DeepSC-COVID model can locate both the COVID-19
and CAP lesions with higher accuracy than other models.
In addition to the segmentation accuracy, we outperform most
compared models in terms of segmentation efficiency, i.e., it
takes 2.2 seconds for our model to segment a 3D CT scan,
while other models require 1.0 to 10.8 seconds to process one
3D CT scan.

To further show the superiority of our DeepSC-COVID
model, we compare the segmentation performance between
our model and a human expert. Here, the human expert is a

radiologist with 5 years of working experience. As shown in
Table II, our model significantly outperforms the human expert
in 3D lesion segmentation, with an improvement of 14%,
19%, 6.9%, 11.6%, and 10 mm in terms of DSC, sensitivity,
specificity, NSD and RMSD, respectively. It is not surprising
to see the low dice score of the human expert, since lesion
segmentation in medical images is known to suffer from high
inter-reader variability [35]. To conclude, our DeepSC-COVID
model performs considerably better than the other segmenta-
tion models and the human expert for 3D lesion segmentation.

C. Disease Classification Results

Table II shows the classification results of our
DeepSC-COVID model and 4 other state-of-the-art models for
classifying COVID-19, CAP and non-pneumonia individuals.
As can be seen, the classification accuracy (94.5%) of our
model is considerably higher than those of the alternative
methods, i.e., ResNet-50 [48] (77.7%), 3D ResNet-50 [39]
(82.5%), COVNet [26] (87.2%) and DeCoVNet [51] (89.2%).
Moreover, the sensitivity, specificity and area under the
receiver operating characteristic (ROC) curve (AUC) of
our model are the highest among all models. Table II also
compares F1-score between our and other models. Our model
has an F1-score of 94.2%, while ResNet-50, 3D ResNet-50,
COVNet and DeCoVNet only yield values of 77.9%, 82.0%,
87.5% and 88.9%, respectively. In addition, Fig. 7 shows the
ROC curves for each category, which visualize the tradeoff
between sensitivity and specificity. Compared with other
four models [26], [39], [48], [51], our ROC curve is closer
to the upper-left corner, indicating that our model achieves
better classification results than do the 4 other models. To
summarize, our DeepSC-COVID model is considerably better
than 4 other models with respect to classifying COVID-19,
CAP and non-pneumonia.

Compared to the human expert, the proposed DeepSC-
COVID model offers a great advantage in diagnosis speed,
i.e., the classification speed of our model is 2.2 seconds, which
is significantly faster than the human expert (378.7 seconds).
In addition, our model is comparable to the human expert in
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Fig. 6. Visual comparison of 3D and 2D lesion segmentation results. (a-b) Segmentation results of two COVID-19 samples. (c) Segmentation
results of CAP sample. For 3D visualizations, the lesions and lungs are shown in red and grey for better view. For 2D visualizations, orange and
green curves indicate the ground-truth segmentation results and the results generated by different methods.

diagnosis accuracy, i.e., the average sensitivity, specificity and
F1-score of our model are only around 1.0% lower than those
of the human expert. Fig. 7 plots the classification performance
of the human expert on sensitivity-specificity plane. As can be
seen, for both COVID-19 and CAP classification, the point of
the human expert is located in the lower-right areas of our
ROC curves, which indicates that given the same specificity
of the human expert, our model can achieve higher sensitivity
by adjusting the classification threshold. All of these results

indicate that the DeepSC-COVID model offers high classifica-
tion accuracy and speed, which offers capability for auxiliary
medical diagnosis and large-scale COVID-19 screening.

D. Multi-Task Gain
To evaluate the gain of multi-task learning, additional exper-

iments are conducted with single tasks of segmentation and
classification. Specifically, we first remove the classification
subnet from our model for the single segmentation task, and
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Fig. 7. The ROC curves of our DeepSC-COVID model, other models and human expert in the identification of COVID-19 (a), CAP (b) and NP (c).

Fig. 8. The impacts of 3D inception block and cross-stitch unit on the performance of segmentation and classification. (a) Results of 3D lesion
segmentation, in terms of sensitivity, specificity, NSD, DSC and RMSD. (b) Results of disease classification, in terms of sensitivity, specificity, accuracy,
F1-score and AUC.

then remove the segmentation subnet for single classification
task. Table II reports the results of single-task learning.
As reported, the accuracy of single-task learning is lower than
that of multi-task learning for both tasks. Specifically, for
segmentation, the multi-task gain values are 7.1%, 7.5%, 2.9%,
7.5% and 3.4 mm in terms of DSC, sensitivity, specificity,
NSD and RMSD, respectively. For classification, the multi-
task gain achieves values of 9.3%, 9.4%, 5.4%, 9.3% and
4.4% in terms of accuracy, sensitivity, specificity, F1-score
and AUC, respectively. Additionally, the results of the single
segmentation task are visualized in Fig. 6. The ROC curve of
single classification task are shown in Fig. 7.

E. Ablation Study

Here, we analyze the effectiveness of different components
in the proposed DeepSC-COVID model on the tasks of 3D
lesion segmentation and disease classification through ablation
study.

1) Effectiveness of 3D Inception Block: We first analyze
the impact of 3D inception block on 3D lesion segmenta-
tion and disease classification. Specifically, we replace the
3D inception block by conventional 3D convolutional layer,
in which the kernel size, stride and output channel are the

same as the 3D inception block. Fig. 8 shows the segmentation
and classification results with and without the 3D inception
block. As shown, the performance of both segmentation and
classification tasks significantly degrades after replacing the
3D inception block. This indicates the effectiveness of our 3D
inception block in extracting effective multi-scale 3D features
for both tasks.

2) Effectiveness of Cross-Stitch Unit: We further conduct
the ablation experiment to evaluate the impact of the
cross-stitch unit on segmentation and classification perfor-
mance, by removing it from the cross-task feature subnet
in the proposed DeepSC-COVID model. Fig. 8 shows the
segmentation and classification results with and without the
cross-stitch unit. We can see from this figure that the perfor-
mance of both the segmentation and classification degrades,
when the cross-stitch unit is removed. This validates the
positive contribution of cross-stitch unit to our model.

3) Effectiveness of Task-Aware Loss: Finally, we evaluate the
impact of the proposed task-aware loss. To be specific, we train
the DeepSC-COVID model with different weights λta on the
task-aware loss, i.e., λta = 0, 100, 101, 102 in equation (11) of
the main text. Note that λta = 0 indicates that the task-aware
loss is fully removed. Fig. 9 shows the segmentation and
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Fig. 9. Segmentation and classification results with different weights on the task-aware loss. (a) Results of 3D lesion segmentation, in terms of
sensitivity, specificity, NSD, DSC and RMSD. (b) Results of disease classification, in terms of sensitivity, specificity, accuracy, F1-score and AUC.

Fig. 10. Visualization maps and segmentation results of both
correct-prediction and false-prediction cases.

classification results with different λta. As shown, the DeepSC-
COVID model performs the worst, when the task-aware loss
is fully removed (i.e., λta = 0). Besides, the performance of
both segmentation and classification reduces, when λta is either
smaller or larger than 101. This implies that the under- or
over-weighted task-aware loss degrades the performance of the
DeepDC-COVID model. In summary, the task-aware loss has
a positive impact on the proposed DeepDC-COVID model for
both segmentation and classification tasks. In addition, Fig. 10
shows some examples of visualization maps and their corre-
sponding segmentation results for both correct-prediction and
false-prediction cases. As can be seen, in the correct-prediction
case, the visualization map is consistent with the lesion seg-
mentation result. By contrast, in the false-prediction case, there
exists an obvious difference between the visualization map
and segmented lesions. This verifies the effectiveness of the
proposed task-aware loss. Moreover, these visualization results
are consistent with the clinical experience, which further
demonstrates the explainability of our method.

To evaluate the effectiveness of the multi-scale setting in
the task-aware loss, we conduct an ablation study to replace
the multi-scale setting with single-scale setting. As shown

TABLE III
MEAN VALUES IN TERMS OF PERCENTAGE FOR LESION

SEGMENTATION AND DISEASE CLASSIFICATION METRICS

ON MULTI-SCALE AND SINGLE-SCALE SETTINGS OF

OUR TASK-AWARE LOSS

in Table III, compared with the multi-scale setting, the per-
formance of the single-scale setting degrades by 3.6% in
accuracy for classification and 3.0% in DSC for segmentation.
This verifies the effectiveness of the multi-scale setting of our
task-aware loss.

VI. CONCLUSIONS

In this study, we have proposed a CT interpretation model,
namely DeepSC-COVID, for rapid, accurate and explainable
screening of COVID-19. First, we built and released an
large-scale database, called 3DLSC-COVID, which is the
first database containing both 3D lesion segmentation and
disease labels for the diagnosis of COVID-19, CAP and
non-pneumonia. Besides, we obtained four important find-
ings through qualitative and quantitative analysis over our
3DLSC-COVID database. Second, a novel multi-task learning
architecture is proposed in DeepSC-COVID, for simultaneous
learning of 3D lesion segmentation and disease classifica-
tion. Benefiting from the multi-task learning architecture,
our DeepSC-COVID model can segment the lesions more
accurately with the knowledge acquired from the classification
task. Finally, extensive experiments verified that our method
advanced the state-of-the-art in 3D lesion segmentation and
disease classification.

There is still room for improvement in our model as the
future work. First, since our database only contains Chinese
patients, it may exhibit limited diagnostic performance for
other races. Future study should involve enlarging the data-
base with multi-ethnic cases to enable robust interpretation
performance. Second, our model only uses chest CT scan as
the basis of diagnosis for COVID-19. Although the CT scan is
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validated as effective diagnostic evidence, other clinical tests,
e.g., symptom records and disease history, can also contribute
to the diagnosis of COVID-19. Hence, another future research
direction is to take advantage of multiple inputs for more
comprehensive interpretation. Third, this study only focuses
on the immediate screening of COVID-19, i.e., the diagnosis
result is either positive or negative. The graded diagnosis of
COVID-19 is desirable for the CT interpretation model, for
example, grading the suspected patients into negative, mild,
moderate, severe and critical cases. As a result, both clinical
diagnosis and prognosis can be significantly improved.
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