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Augmented Multicenter Graph Convolutional
Network for COVID-19 Diagnosis

Xuegang Song , Haimei Li , Wenwen Gao , Yue Chen, Tianfu Wang , Guolin Ma ,
and Baiying Lei , Senior Member, IEEE

Abstract—Chest computed tomography (CT) scans of
coronavirus 2019 (COVID-19) disease usually come from
multiple datasets gathered from different medical centers,
and these images are sampled using different acquisition
protocols. While integrating multicenter datasets increases
sample size, it suffers from inter-center heterogeneity. To
address this issue, we propose an augmented multicenter
graph convolutional network (AM-GCN) to diagnose COVID-
19 with steps as follows. First, we use a 3-D convolutional
neural network to extract features from the initial CT scans,
where a ghost module and a multitask framework are in-
tegrated to improve the network’s performance. Second,
we exploit the extracted features to construct a multicenter
graph, which considers the intercenter heterogeneity and
the disease status of training samples. Third, we propose
an augmentation mechanism to augment training samples
which forms an augmented multicenter graph. Finally, the
diagnosis results are obtained by inputting the augmented
multi-center graph into GCN. Based on 2223 COVID-19 sub-
jects and 2221 normal controls from seven medical centers,
our method has achieved a mean accuracy of 97.76%. The
code for our model is made publicly.1

Index Terms—Coronavirus 2019 (COVID-19) diagnosis,
data augmentation, graph convolutional network (GCN),
multicenter datasets.
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I. INTRODUCTION

S INCE the first report of coronavirus disease 2019 (COVID-
19) in China, the disease has spread rapidly to the whole

world, which has caused over 26 million cases with a total of 0.86
million deaths by September 6, 2020. As the sensitivity of the
widely used real-time reverse transcription-polymerase chain
reaction is only about 60–70%, the chest computed tomography
(CT) is vital for the early diagnosis of this disease [1], exhibiting
good sensitivity and speed [2]. The CT images of COVID-19
patients and healthy people are shown in Fig. 1. It is highly
desirable to automate COVID-19 diagnosis to relieve the burden
on radiologists and physicians.

In existing work for automatic COVID-19 diagnosis, many
focus in applying or improving current neutral networks based
on X-ray or CT images for the classification task. For example,
DarkNet model [3], convolutional neural networks (CNN) [4],
[5], ResNet [6]–[8], U-Net [9], Shuffled residual CNN [10],
SqueezeNet [11], and some others [12], [13]. Due to the widely
spread of COVID-19, data in studies are usually taken from
different medical centers (e.g., two centers [7], [11], [14], three
centers [4], [12], [15], five centers [2], [9], [13], six centers
[8], seven centers [10], and 18 centers [5]). Different centers
usually utilize different equipment and acquisition protocols
resulting in different imaging conditions (e.g., scanner vendors,
imaging protocols, etc.), and ignoring this heterogeneity affects
the model’s ability to extract robust and general representations
[16]. Most of the above studies ignore the heterogeneity by
treating multicenter datasets as one dataset, and this limits the
classification performance to some extent.

Existing multicenter learning methods in classification tasks
roughly fall into two categories [17]. The first category is that
every center dataset is used to train an independent classifier
and then a voting strategy is used to get the final classification
results [18], [19]. However, these methods require a large sample
size, which is unsuitable for few-shot learning tasks. The second
category is to transform all datasets into a common space for data
heterogeneity reduction. Then, one classifier is used to accom-
plish classification tasks [17], [20]. However, these methods are
often difficult or expensive to obtain accurate and reliable target
domains, which limits their applications.

Differing from the above multicenter learning methods,
we design a convolution filter in graph convolutional network
(GCN) [21]–[23] to capture the heterogeneity between datasets.
The key reason for this operation is that GCN can combine
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Fig. 1. CT images of severe case (left), mild case (middle), and healthy
case (right).

all samples on its graph as nodes and use edge weights as
convolution coefficients to realize filtering. The proposed
method is named as augmented multi-center GCN (AM-GCN)
in this article. First, we propose a multitask learning based on
three-dimensional (3-D)-CNN to extract image features from
initial 3-D CT scans and therefore represent every subject as
a feature vector. Second, we propose a multicenter graph in
GCN, which divides all samples into several clusters (every
cluster includes a medical center’s data). Third, we propose an
augmentation mechanism for training samples. The augmented
multi-center graph includes original image features of training
samples, a multicenter graph, and an adaptive multicenter graph.
Finally, the augmented multicenter graph is integrated into a
GCN classifier to combine multi-center data for COVID-19
diagnosis.

The main contributions of this article are threefold as follows.
1) The proposed multitask 3-D-GCNN integrates a ghost

module to generate more feature maps, and adds age and
sex prediction tasks to improve network training.

2) The proposed multicenter graph in GCN combines multi-
center datasets on a graph and considers the disease status
of training samples, which improves its filtering effect.

3) A data augmentation mechanism is further proposed to
fit in this few-shot learning task.

Our experiments are based on six in-house datasets and one
public dataset from different medical centers. Experimental
results show that our method achieves significant performance
for COVID-19 diagnosis.

II. METHODOLOGY

Fig. 2 shows an overview of the proposed diagnosis system.
First, we design a multitask 3-D-GCNN framework for extract-
ing features, where the ghost module and the tasks of predicting
phenotypic information (i.e., age and sex) are integrated into
3-D-CNN to improve its training. Second, based on the image
heterogeneity between different medical centers, we design a
multicenter graph, where information such as medical center,
disease status, equipment type, and sex is considered. In ad-
dition, we propose a novel data augmentation via a multicen-
ter graph, which combines original features, our multicenter
graph, and an adaptive multicenter graph. Third, we input the
augmented multicenter graph into GCN for final prediction.
The summary of important notations in this article is given in
Table I.

TABLE I
SUMMARY OF IMPORTANT NOTATIONS

TABLE II
INFORMATION OF SEVEN DATASETS USED IN EXPERIMENTS

A. Problem Formation

For the task of COVID-19 diagnosis based on multi-center
datasets, the main aim of our research is to capture the het-
erogeneity between datasets and get a robust classifier. Let
Y ∈ RN×2 denote the ground truth label matrix,W(0) andW(1)

are weight coefficient matrices. Then the popular two-layer GCN
model [21] is as follows:

Y = softmax
(
AReLU

(
AXW(0)

)
W(1)

)
. (1)

The initial input data is a 3-D CT image. The first goal is
to extract features from the 3-D CT images to reduce their
dimension. By using our multi-task 3-D-GCNN framework
for extracting features, every subject is then represented by
a feature vector, and all subjects are represented by X =
[x1; . . .xi; . . . ;xj ; . . . ;xN ] ∈ RN×K (total N subjects and ev-
eryone has K features), where xi is the feature vector of
subject i.

The second goal is to design the adjacency matrix A, which
acts as a filter and directly decides the performance of GCN.
In this article, we use c = [c1, c2, . . . , cC ] to present medical
centers’ information, and we integrate the information into the
construction of our multicenter adjacency matrix A to capture
the heterogeneity between datasets.

The third goal is to deal with the insufficiency of samples,
and we further propose an augmentation mechanism for training
samples by designing an augmented multicenter feature matrix
X̂ and an augmented multi-center adjacency matrix Â.



SONG et al.: AUGMENTED MULTICENTER GRAPH CONVOLUTIONAL NETWORK FOR COVID-19 DIAGNOSIS 6501

Fig. 2. Overview of the proposed framework for COVID-19 diagnosis. (a) Several medical centers’ data is used as training sets to train our multitask
3-D-GCNN, and then the trained model is used to extract features for all subjects. (b) We use the extracted features and phenotypic information to
construct multicenter graph, then combine it with the original features and adaptive multicenter graph to form the augmented multi-center graph,
where only training samples are augmented. (c) We input the augmented multi-center graph into GCN structure. Finally, every subject in test set is
assigned a score for final diagnosis. Note that NC means normal case, and a node on the graph means a subject (represented by its features).

B. Multitask 3-D-GCNN for Feature Extraction

In view of the success of the ghost module [24] and the
limitation of memory and computation resources, we propose
integrating the ghost module into 3-D-CNN [25] to generate
more feature maps from simple operations to improve perfor-
mance. We first use z-score standardization to process the initial
CT scans. Since the acquired datasets are nonuniform and the
3-D CT images are of different sizes, we convert all 3-D CT
images into the same size of 64 × 64 × 32. Then, these 3-D
CT images serve as the input to our multitask 3-D-GCNN. The
parameters of convolutional kernels in the 3-D-CNN module are
C15@3 × 3 × 3, C25@3 × 3 × 3, C50@3 × 3 × 3, C50@3 ×
3 × 3, C100@3 × 3 × 3, C200@3 × 3 × 3, successively. The
size of six pooling layers is P2 × 2 × 2. The structure of the 3-D
ghost module has a kernel size of 3, and the compression ratio
is 2.

For our COVID-19 diagnosis task based on 3-D CT images,
insufficiency of samples is a limitation for the final performance.
Multitask learning will help to improve network training. In view
that sex and age information is usually acquired, we propose a

multitask mechanism by adding tasks of predicting age and sex.
As shown in Fig. 2, we have two fully connected layers to process
the extracted features for every prediction task.

After training the multitask 3-D-GCNN by using the samples
from several medical centers, we input all medical centers’
samples into the trained framework. After six convolutional
layers and six max-pooling layers, we stack the features and then
get a 200 × 1 feature vector. To further reduce the dimension
of the feature vector, we use the recursive feature elimination
[26] to select the most discriminative features from the 200 × 1
feature vector which leads to a low-dimensional feature vector
for every subject.

C. Augmented Multicenter Graph

After extracting features via multitask 3-D-GCNN, we use
the features to construct an augmented multicenter graph based
on graph theory where every subject is represented by a node.
Specifically, we first design a multicenter graph to combine
multi-center datasets on a graph. Then we propose to augment
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the multi-center graph to fit in the few-shot learning task. To
improve computational efficiency, we further sparse edges.

1) Multicenter Graph: As the graph in CGN establishes
edges between nodes on it and utilizes these edges to realize
filtering, designing reasonable edges is the key to capture the
heterogeneity between datasets. Hence, we propose to divide all
subjects (represented by nodes on graph) into several clusters in
the multicenter graph, where every cluster represents all subjects
from the same medical center. We establish edge connections
between those nodes in the same cluster and ignore the edges
between those nodes in different clusters. The details of the filter-
ing principle of graph theory can be seen in the article [22], [23].
Existing studies [22], [23] ignore the disease status of training
samples on the graph, which affects convolution performance.
Hence, we propose to establish edge connections between those
training samples from the same medical center and with the
same disease status. For test samples, we establish connections
between each pair of them as their status is unknown. Sex and
acquired equipment type information is also considered in our
multicenter graph.

Let N represent the total number of subjects, feature matrix
X represent their features, and all edge weights compose multi-
center adjacency matrix A. A(i, j) represents the edge weight
between subject i and subject j, sim (·) denotes the similarity of
feature information, rs represents the distance of sex, re repre-
sents the distance of equipment type, rc represents the distance
of medical center, and rd represents the distance of disease
status. For subject i and subject j , xi and xj represent their
feature vectors, si and sjrepresent their sex, ei and ej represent
their equipment types, ci and cj represent their medical centers,
and di and dj represent their disease status. The corresponding
edge weights for the established edges on the multicenter graph
are calculated as

A (i, j) = sim (xi,xj)× (rs (si, sj) + re (ei, ej))

× rc (ci, cj)× rd (di, dj). (2)

The initial similarities are calculated as [22]

sim (xi,xj) = exp

(
− [ρ (xi,xj)]

2

2σ2

)
(3)

where ρ(·) is the correlation distance function and σ is the width
of the kernel. rs, re, rc, and rd are defined as

rs (si, sj) =

{
1, si = sj
0, si �= sj

re (ei, ej) =

{
1, ei = ej
0, ei �= ej

rc (ci, cj) =

{
1, ci = cj
0, ci �= cj

rd (di, dj) =

⎧⎨
⎩

1, di = dj
0, di �= dj
1, dior dj is unkown

. (4)

After constructing the multi-center graph and initializing the
edge weights, we get the initial multicenter graph AX .

Fig. 3. Overview of the construction of adaptive multi-center graph.

2) Augmentation Mechanism: There are a total of 401633
parameters in our multitask 3-D-GCNN framework, which
makes the COVID-19 diagnosis as a few-shot learning task and
results in many noises on the extracted features. To address it,
data augmentation is a popular method. Therefore, we propose
an augmented multicenter graph to improve the robustness of a
GCN classifier, which augments the training data on the graph.
Our augmented multicenter graph includes original features with
no edge between nodes, an initial multi-center graph, and an
adaptive multicenter graph. The adaptive multicenter graph is
shown in Fig. 3. First, we base on (2), (3) and (4) to construct
the initial graph. Second, we pre-train the GCN with the initial
graph and then get a score for every subject. Third, by using the
difference between these scores construct updated similarities,
we finally get an adaptive multi-center adjacency matrix, and
form an adaptive multicenter graph. The adaptive similarities
are computed using

sim (xi,xj) = exp

(
− [scorei − scorej ]

2

2σ2

)
(5)

where scorei and scorej denote the scores of subject i and
subject j. σ is the width of the kernel.

Finally, all edge weights on the augmented multi-center graph
compose an augmented multi-center adjacency matrix Â and an
augmented feature matrix X̂. Then, we get an augmented mul-
ticenter graph ÂX̂. Â ε RM×Mand X̂ ε RM×K . Let divide X
into [Xtrain;Xtest], where Xtrain represents the feature matrix
of total N1 subjects in training datasets, and Xtest represents
the feature matrix of total N2 subjects in the test dataset. Then,
N = N1 +N2, M = 3 ×N1 +N2. After augmentation,
augmented feature matrix X̂ = [Xtrain;Xtrain;Xtrain;Xtest] ,
and augmented multi-center graph Â X̂ =

[ItrainXtrain;A
(0)
trainXtrain;A

(1)
trainXtrain;A

(1)
testXtest], where

Itrain ε RN1×N1 is an identity matrix representing the retaining
of the original features from training samples. A(0)

train ε RN1×N1

is the initial traditional adjacency matrix calculated based on
(2), (3) and (4) for training samples. A(1)

train ε RN1×N1 is our
adaptive adjacency matrix calculated based on (2), (4) and (5)
for training samples. A(1)

test ε RN2×N2 is our adaptive adjacency
matrix for test samples. In our code, Â and X̂ are constructed
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TABLE III
INFORMATION OF OUR SEVEN TASKS BY USING SEVERAL DATASETS FOR

TRAINING AND ONE DATASET FOR TEST

as

Â =

⎡
⎢⎢⎣
Itrain

A
(0)
train

A
(1)
train

A
(1)
test

⎤
⎥⎥⎦ , X̂ =

⎡
⎢⎢⎣
Xtrain

Xtrain

Xtrain

Xtest

⎤
⎥⎥⎦ . (6)

3) Sparse Processing: Sparse representation provides a use-
ful tool for dimensionality reduction and improving compu-
tational efficiency [27]. Since dense adjacency matrix Â in
our augmented multi-center graph is of high dimension and
this matrix consumes much running time [28], we sparse it by
retaining the top q edge connections for every node.

The two-layer GCN model [21], [22] is trained using the
whole graph as input, and the disease status of test samples
(unlabeled on graph) is predicted during training.

III. EXPERIMENTS AND RESULTS

Table II lists seven datasets from different medical centers,
including six domestic datasets, and one public dataset. Sex and
age information in our six domestic datasets is known whereas
the two pieces of information are unknown in the public dataset.
As multitask 3-D-GCNN for feature extraction needs sex and
age information to improve its training process, we design seven
tasks as given in Table III. In tasks 1–6, five of our six domestic
datasets are used for training and the other domestic dataset is
used for test. In task 7, six domestic datasets are used for training
and the other public dataset is used for test. AM-GCN parameters
used in experiments are based on the work [22].

A. Performance of Our Multitask 3-D-GCNN

The proposed multitask 3-D-GCNN for COVID-19 diagnosis
is evaluated by comparing it with traditional 3-D-CNN. Table IV
gives the performance on every single medical center’s dataset
by five-fold cross-validation, and Table V lists the performance
for our seven tasks. As the main task is to diagnose COVID-19,
the results of predicting age and sex are not described. As shown
in Table IV, compared to traditional 3-D-CNN, 3-D-ResNet, and
3-D-VGG have similar performance, and the proposed multitask
3-D-GCNN in tasks 1–6 has slight performance improvement,
with the mean accuracy (ACC) of the six tasks increased by
0.78%, the mean sensitivity (SEN) increased by 1.37%, and
the mean specificity (SPE) increased by 0.23%. Table V gives
our multitask 3-D-GCNN has significant performance improve-
ment, with the mean ACC of the seven tasks increased by 3.79%,

TABLE IV
DIAGNOSIS PERFORMANCE ON SINGLE DATASET (%)

TABLE V
DIAGNOSIS PERFORMANCE ON OUR SEVEN TASKS (%)

the mean SEN increased by 2.85%, and the mean SPE increased
by 4.74%. The significant performance improvement in Table V
validates the effectiveness of our method on the tasks of using
different datasets for training and test. By using our multitask
3-D-GCNN, the mean ACC in Table IV is 96.73%, whereas
the mean ACC in Table V is 90.74%. The obvious difference
shows that it is difficult to diagnose COVID-19 by using different
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TABLE VI
DIAGNOSIS PERFORMANCE COMPARISON BASED ON EXTRACTED FEATURES

FROM MULTITASK 3-D-GCNN (%)

medical center datasets for training and test. In contrast, it has
good diagnosis performance by using a single medical center
dataset for training and test.

B. Performance of Augmented Multicenter GCN

The performance of the augmented multicenter GCN is eval-
uated in this subsection. The comparison methods include:
multilayer perceptron (MLP), random forests (RFs), gradient
boosting decision tree (GBDT), and traditional GCN [22].
M-GCN represents traditional GCN with our multi-center graph,
and AM-GCN represents GCN with our augmented multi-center
graph. Besides, we use the baseline to represent the proposed
multitask 3-D-GCNN. The results of performance comparison
are shown in Table VI, and Fig. 4 shows their ROC curves.

As given in Table VI, the mean ACC of the seven tasks based
on Baseline, MLP, RF, and GBDT is 90.74%, 90.33%, 89.62%,

TABLE VII
MEAN FEATURE VALUES OF SUBJECTS IN DIFFERENT DATASETS

(COMPUTED BY USING ORIGINAL FEATURE VALUES)

and 89.23%, respectively. This shows that using traditional clas-
sifiers (e.g., MLP, RF, and GBDT) based on extracted features
has no effect on performance improvement compared with using
multitask 3-D-GCNN directly for diagnosis. Compared to RF
and GBDT, MLP shows better performance.

Compared to MLP, the traditional GCN has slight perfor-
mance improvement, with the mean ACC of the seven tasks
increased by 1.23%, the mean SEN decreased by 1.95%, and the
mean SPE increased by 4.69%. By considering the heterogeneity
between different datasets, we design our multicenter graph.
Compared the performance of M-GCN with that of GCN, the
mean ACC of the seven tasks increases by 4.54%, the mean
SEN increases by 6.50%, and the mean SPE increases by
2.58%. These results show that our multicenter graph improves
performance significantly. For the few-shot learning task, we
further propose our augmentation mechanism. Compared the
performance of AM-GCN with that of M-GCN, the mean ACC
of the seven tasks increases by 1.65%, the mean SEN increases
by 0.98%, and the mean SPE increases by 2.32%. These results
show that our augmentation mechanism further improves perfor-
mance slightly. In general, by using our augmented multicenter
graph, the performance of GCN receives significant improve-
ment, with the mean ACC of the seven tasks increased by 6.20%,
the mean SEN increased by 7.48%, and the mean SPE increased
by 4.90%. Finally, it achieves good performance with the mean
ACC, SEN, SPE, and AUC of our seven tasks reaching 97.76%,
98.58%, 96.94%, and 99.64%.

C. Filtering Effect of Our Multicenter Graph on the
Extracted Features

As there are no related works to evaluate the filter effect of
GCN series methods, we propose to describe it by comparing
X with AX. X represents a multicenter feature matrix that is
composed of all subjects’ feature vectors, A is our multicenter
adjacency matrix, and AX can also represent the feature matrix
after filtering. Fig. 5 presents the filter effect on the extracted
top six most discriminative features. In Fig. 5, the blue lines
represent the original feature values, which show big fluctuations
that make the prediction task difficult. The red lines represent the
filtered feature values, which show relatively small fluctuations
and provide the foundation for performance improvement.

As shown in Fig. 5 and Table VII, there is much difference in
the mean values of the same features between different medical
centers’ samples. For example, the mean values of feature 3
for those COVID-19 patients in our seven medical centers are



SONG et al.: AUGMENTED MULTICENTER GRAPH CONVOLUTIONAL NETWORK FOR COVID-19 DIAGNOSIS 6505

Fig. 4. ROC curves of different methods in our seven tasks.

Fig. 5. Filtering effect of our multicenter graph on the extracted top 6 most discriminative features by comparing X with AX. Blue lines represent
original feature values, and red lines represent filtered feature values.

TABLE VIII
EFFECT OF PHENOTYPIC INFORMATION ON DIAGNOSIS ACCURACY (%)

1.28, 1.04, 1.02, 0.70, 0.28, 0.98, and 0.18, respectively. The
mean values of feature 6 for those COVID-19 patients in our
seven medical centers are 2.95, 3.24, 2.98, 2.16, 1.69, 2.67
and 0.61, respectively. This difference clearly shows that there
is a significant difference in those CT images from different
medical centers, which supports the existence of inter-center
heterogeneity.

IV. DISCUSSION

A. Multitask Mechanism

The multitask learning [29] is a popular method in transfer
learning, and it is typically done with either hard or soft param-
eter sharing of hidden layers [30], where hard parameter sharing
helps to improve generalization and greatly reduces the risk of
overfitting [31]. In view that there are almost 400 thousands

of parameters in our 3-D-GCNN framework and only several
thousands of samples in our datasets, we propose the multitask
mechanism (belonging to hard parameter sharing) by adding
tasks of predicting age and sex as assistant tasks. This multitask
mechanism is also validated by the work [32], where predicting
age and sex are also used as assistant tasks to help train the mild
cognitive impairment diagnosis system.

To better show the performance of our multitask learning,
we compare it with the widely used fine-tune method which
uses tasks of predicting age and sex to pretrain 3-D-GCNN
framework, and test the effect of adding related information as
additional inputs. As shown in Fig. 6, the mean ACC of the
seven tasks is 89.52% for the fine-tune method whereas the
mean ACC is 90.74% for our multitask mechanism, and this
shows a 1.2% improvement in ACC by using the multi-task
mechanism. Compared to a little improvement in ACC, it shows
a big improvement in program running time. For details, by using
a computer (CPU is Intel(R) Core(TM) i7-8700@3.20GHz, and
Keras deep learning library), the mean program running time of
the seven tasks is 138 minutes for the fine-tune method, whereas
the mean program running time is 38 min for our multitask mech-
anism. This shows the fine-tune method consumes much more
time. To show the effect of treating age and sex as additional
inputs in the COVID-19 diagnosis system, we use 3-D-GCNN to
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TABLE IX
ALGORITHM COMPARISON WITH THE RELATED WORKS (%)

SVM: Support vector machine.

Fig. 6. Diagnosis performance and program running time comparison
between fine-tune method and multitask mechanism based on 3-D-
GCNN. (a) Diagnosis performance comparison. (b) Program running
time comparison.

extract features from 3-D CT images where the fine-tune method
is applied to pretrain the system, and then compare the diagnosis
results of GCN classifier with and without adding age and sex
as input features. As shown in Fig. 7, there is no improvement
in ACC by adding age and sex as input features where the mean
ACC is 96.9% and 96.8% with and without adding them as
input features. This result is consistent with the work [32] that
simply adding sex and age as additional inputs will probably not
improve performance.

B. Validation Strategy

There are three popular validation strategies for multicenter
learning as shown in Fig. 8 [16], [17]. Compared to strategy A
and strategy B, strategy C has a higher request on classifiers and

Fig. 7. Diagnosis performance comparison with and without age and
sex as additional inputs in a GCN classifier.

Fig. 8. Popular validation strategies for multicenter learning.

we pick it as our validation strategy in the above experiments. To
better show the effectiveness of our method, we also show the
diagnosis results for strategies A and B. Specifically, in strategy
A, we separate every dataset into 80% and 20% for training and
test. In strategy B, 80% of the samples in one dataset are used
for test and the others are used for training. In strategy C, one
dataset is selected for test, while the others are used for training.

The diagnosis results based on the above three validation
strategies are shown in Fig. 9. By using the MLP classifier,
the mean ACC for strategies A, B, and C is 98.2%, 92.2%,
and 90.3%, respectively. This result shows that strategy C has
a higher request on classifiers which makes the lowest ACC,
whereas strategy A makes the best ACC. Compared to MLP, by
using traditional GCN, the mean ACC in strategy A decreases
by 0.01%, whereas the mean ACC in strategy B and C increases
by 1.31% and 1.24%. By using our AM-GCN, the mean ACC
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Fig. 9. Diagnosis results based on three validation strategies.

Fig. 10. Effect of number of retained edge connections on accuracy
and program running time. (a) Effect on accuracy. (b) Effect on program
running time.

in strategies A, B, and C increases by 0.23%, 5.61%, and 7.4%.
This result shows that our AM-GCN can improve performance
significantly for strategy B and C, whereas it has little effect on
performance improvement for strategy A.

C. Effect of Sparse Processing

As there are thousands of subjects on the augmented mul-
ticenter graph in diagnosis tasks, we use a sparse adjacency
matrix to improve the computational efficiency of AM-GCN.
Fig. 10 shows the effect of the sparse processing on accuracy
and program running time. The used CPU is Intel(R) Core(TM)
i7-8700@3.20 GHz. As the adjacency matrix in traditional GCN
is a high dimensional dense adjacency matrix, where all edge
connections are retained. By using our multicenter graph, some
connections have been discarded and this makes our adjacency
matrix sparse. By using sparse processing, we further reduce
the number of edge connections. As shown in Fig. 10, the num-
ber of retained edge connections significantly affects program
running time. Running programs will consume more time if we

retain more edge connections. To balance good performance on
diagnosis accuracy and time cost, we finally retain 200 edge
connections for every node on the graph in experiments.

D. Effect of Phenotypic Information

In the traditional GCN method for predicting Alzheimer’s dis-
ease [22], phenotypic information (e.g., sex and equipment type)
shows an effect on accuracy with a 3% improvement in accuracy
by including them. In this subsection, we test their effect on our
AM-GCN. sim (·) denotes the similarity of image information,
and the details of integrating phenotypic information into AM-
GCN are shown in (2). Table VIII gives there are few variations
on ACC between different combination strategies for all seven
tasks. Specifically, for tasks 3, 4, 5, and 7, phenotypic informa-
tion shows no effect on final diagnosis accuracy. For task 1 and
task 6, by including equipment information, the ACC increases
by 0.63% and 0.31%, whereas it shows no effect on performance
improvement by including sex information. For task 3, including
sex and equipment information deteriorates performance. The
above results show that phenotypic information (e.g., equipment
type and sex) has little effect on final diagnosis performance in
our tasks.

E. Comparison With the Related Works

Table IX gives the diagnosis performance of our method and
related methods. These related works use CNN series methods
for COVID-19 diagnosis, treat multicenter data as one dataset,
and use five- or ten-fold cross-validation to validate their meth-
ods. By adjusting network structure, using transfer learning
to improve the training process, and using GAN to augment
data, good diagnosis performance has been achieved. But these
processes ignore the heterogeneity between different datasets,
which limits the final performance to some extent. And our work
aims to study the heterogeneity between different datasets to im-
prove final performance. Different from the used five- or ten-fold
cross-validation in related methods, we use different datasets
for training and test. In our experiment, there are six in-house
datasets and one public dataset from different medical centers.
A total of 2223 COVID-19 patients and 2221 NCs are collected,
which is more than the acquired samples in related works (e.g.,
110 [4], 413 [7], 1296 [8], and 2148 [13] COVID-19 patients)
and makes our experimental results convincing. Although our
validation strategy is much more difficult than related works, it
is observed that our method achieves the mean ACC of 97.76%
which is better than the methods in those related works that bases
on CT images (e.g., 93.1% [7], 91.9% [2], and 89.79% [13]).
Compared to related works that mainly analyze the influence of
adaptive feature selection method [2], few labeled data [13], and
their method [5], [8], our work analyses the effect of phenotypic
information, the difference of extracted features between differ-
ent datasets, and the filtering effect of our multi-center graph.
The major difference of extracted features between different
datasets validates that there is much heterogeneity in those
images from different medical centers. By addressing it, our
AM-GCN achieves good performance.
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Additionally, the work [33] focuses on studying the regions
that contains the most informative COVID-19 features and intro-
duces a hybrid approach based on the thresholding technique to
solve the image segmentation problem. Inspired by the work, we
will study to improve our diagnosis performance by integrating
the image segmentation task in our future work.

V. CONCLUSION

By analyzing the extracted features of 3-D CT images from
seven different medical centers, it was found that there was
much difference in mean values and fluctuations of the same
features between different medical centers’ samples. This result
validated that there was obvious heterogeneity between those
images acquired from different medical centers, which consists
of the fact that different medical centers probably utilize different
acquisition devices, imaging parameters, and standards. Our
multicenter graph could combine all samples from seven medical
centers on a graph and establish their interactions. By comparing
the filtered features using the multicenter graph, it showed that
fluctuations of the same features in different medical centers’
samples could be well suppressed, and this validated the effec-
tiveness of the graph theory. The final performance improvement
validated that combining all samples from different medical
centers on a graph can enhance the robustness and diagnosis
performance of the classifier. By using our augmentation mech-
anism, the performance is further improved. This showed that
the insufficiency of samples was an important limiting factor
and data augmentation improves performance. The performance
improvement by adding the tasks of predicting age and sex in
3-D-GCNN structure, showed that multitask mechanism was
beneficial to network training whereas simply adding sex and age
as additional inputs will probably not improve performance. In
the three popular validation strategies for multicenter learning,
our method improves performance significantly for strategies
B and C. By analyzing the effect of sparse processing and
phenotypic information, we found that our AM-GCN has good
robustness, and graph theory consumes much program running
time which can be addressed by sparse processing. The good
performance of our AM-GCN mainly lies in its good filtering
effect, and it relatively adapts to few-shot learning tasks. The
proposed AM-GCN method can be applied to other related
classification tasks.
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