Skip to main content
. 2021 Feb 5;17(9):6480–6488. doi: 10.1109/TII.2021.3057524

TABLE III. Evaluation of Preprocessing on ADECO-CNN and CNN-Based Transfer Learning Models.

Method Measure Original Normalized
VGG19 ACC 73.14 Inline graphic 0.88 81.07 Inline graphic 0.21
SEN 66.13 Inline graphic 0.98 82.15 Inline graphic 0.04
PRE 86.07 Inline graphic 0.98 94.85 Inline graphic 0.04
SPE 69.35 Inline graphic 0.05 84.29 Inline graphic 0.38
GoogleNet ACC 79.24 Inline graphic 0.73 84.24 Inline graphic 0.21
SEN 66.15 Inline graphic 0.31 87.40 Inline graphic 0.75
PRE 67.13 Inline graphic 0.31 79.10 Inline graphic 0.75
SPE 71.24 Inline graphic 0.98 89.11 Inline graphic 0.14
ResNet ACC 81.88 Inline graphic 0.24 91.02 Inline graphic 0.03
SEN 82.22 Inline graphic 0.05 89.10 Inline graphic 0.15
PRE 88.44 Inline graphic 0.11 95.90 Inline graphic 0.01
SPE 86.77 Inline graphic 0.92 96.50 Inline graphic 0.12
ADECO-CNN ACC 67.17 Inline graphic 0.87 99.99 Inline graphic 0.01
SEN 81.13 Inline graphic 0.52 99.96 Inline graphic 0.04
PRE 82.13 Inline graphic 0.52 99.92 Inline graphic 0.08
SPE 79.24 Inline graphic 0.11 99.97 Inline graphic 0.03

ACC = Accuracy, SEN = Sensitivity, PRE = Precision, and SPE = Specificity.