TABLE III. Evaluation of Preprocessing on ADECO-CNN and CNN-Based Transfer Learning Models.
Method | Measure | Original | Normalized |
---|---|---|---|
VGG19 | ACC | 73.14 0.88 | 81.07 0.21 |
SEN | 66.13 0.98 | 82.15 0.04 | |
PRE | 86.07 0.98 | 94.85 0.04 | |
SPE | 69.35 0.05 | 84.29 0.38 | |
GoogleNet | ACC | 79.24 0.73 | 84.24 0.21 |
SEN | 66.15 0.31 | 87.40 0.75 | |
PRE | 67.13 0.31 | 79.10 0.75 | |
SPE | 71.24 0.98 | 89.11 0.14 | |
ResNet | ACC | 81.88 0.24 | 91.02 0.03 |
SEN | 82.22 0.05 | 89.10 0.15 | |
PRE | 88.44 0.11 | 95.90 0.01 | |
SPE | 86.77 0.92 | 96.50 0.12 | |
ADECO-CNN | ACC | 67.17 0.87 | 99.99 0.01 |
SEN | 81.13 0.52 | 99.96 0.04 | |
PRE | 82.13 0.52 | 99.92 0.08 | |
SPE | 79.24 0.11 | 99.97 0.03 |
ACC = Accuracy, SEN = Sensitivity, PRE = Precision, and SPE = Specificity.