
Received 17 November 2020; revised 13 April 2021; accepted 17 April 2021. Date of publication 27 April 2021;
date of current version 11 June 2021. The review of this article was arranged by

Associate Editor Eric L. Miller.

Digital Object Identifier 10.1109/OJSP.2021.3075913

A Compressed Sensing Approach to Pooled
RT-PCR Testing for COVID-19 Detection

SABYASACHI GHOSH 1, RISHI AGARWAL1, MOHAMMAD ALI REHAN1, SHREYA PATHAK1,
PRATYUSH AGARWAL1, YASH GUPTA1, SARTHAK CONSUL2, NIMAY GUPTA1, RITIKA1, RITESH GOENKA1,

AJIT RAJWADE 1, AND MANOJ GOPALKRISHNAN2

1Department of Computer Science and Engineering, IIT Bombay, Mumbai 400076, India
2Department of Electrical Engineering, IIT Bombay, Mumbai 400076, India

CORRESPONDING AUTHOR: AJIT RAJWADE (e-mail: ajitvr@cse.iitb.ac.in).

The work of Ajit Rajwade was supported in part by SERB Matrics under Grant MTR/2019/000691, The work of Ajit Rajwade and Manoj Gopalkrishnan was
supported in part by IITB WRCB under Grant #10013976 and in part by the DST-Rakshak under Grant #10013980.

This article has supplementary downloadable material available at https://doi.org/10.1109/OJSP.2021.3075913, provided by the authors.

ABSTRACT We propose ‘Tapestry’, a single-round pooled testing method with application to COVID-19
testing using quantitative Reverse Transcription Polymerase Chain Reaction (RT-PCR) that can result in
shorter testing time and conservation of reagents and testing kits, at clinically acceptable false positive or
false negative rates. Tapestry combines ideas from compressed sensing and combinatorial group testing to
create a new kind of algorithm that is very effective in deconvoluting pooled tests. Unlike Boolean group
testing algorithms, the input is a quantitative readout from each test and the output is a list of viral loads for
each sample relative to the pool with the highest viral load. For guaranteed recovery of k infected samples
out of n � k being tested, Tapestry needs only O(k log n) tests with high probability, using random binary
pooling matrices. However, we propose deterministic binary pooling matrices based on combinatorial design
ideas of Kirkman Triple Systems, which balance between good reconstruction properties and matrix sparsity
for ease of pooling while requiring fewer tests in practice. This enables large savings using Tapestry at low
prevalence rates while maintaining viability at prevalence rates as high as 9.5%. Empirically we find that
single-round Tapestry pooling improves over two-round Dorfman pooling by almost a factor of 2 in the
number of tests required. We evaluate Tapestry in simulations with synthetic data obtained using a novel
noise model for RT-PCR, and validate it in wet lab experiments with oligomers in quantitative RT-PCR
assays. Lastly, we describe use-case scenarios for deployment.

INDEX TERMS Compressed sensing, coronavirus, COVID-19, group testing, Kirkman/Steiner triples, mu-
tual coherence, pooled testing, sensing matrix design.

I. INTRODUCTION
The coronavirus disease of 2019 (COVID-19) crisis has led
to widespread lockdowns in several countries, and has had a
major negative impact on the economy. Early identification of
infected individuals can enable quarantining of the individuals
and thus control the spread of the disease. Such individu-
als may often be asymptomatic for many days. Widespread
testing with the RT-PCR (reverse transcription polymerase
chain reaction) method can help identify the infected individ-
uals. However, widespread testing is not an available option
in many countries due to constraints on resources such as

testing time (∼ 3–4 hours per round), basic equipment, skilled
manpower and reagents.

The current low rate of COVID-19 infection in the world
population [1] means that most samples tested are not in-
fected, so that most tests are wasted on uninfected samples.
Group testing is a process of pooling together samples of
n different people into multiple pools, and testing the pools
instead of each individual sample. A negative result on a pool
implies that all samples participating in it were negative. This
saves a huge amount of testing resources, especially with low
infection rates. Group testing for medical applications has a
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long history dating back to the 1940 s when it was proposed
for testing of blood samples for syphilis [2]. Simple two-round
group testing schemes have already been applied in the field
by several research labs [3], [4] for COVID-19 testing. Such
two-round group testing schemes require pooling of samples
and a second round of sample handling for all samples in
positive pools. This second round of sample handling can
increase the time to result and be laborious to perform since it
requires the technician to wear PPE one more time, do another
round of RNA extraction, and PCR. In situations where the
result needs to be delivered fast, a second round of sample
handling and testing must be avoided. In such situations, these
schemes are less attractive.

We present Tapestry, a novel combination of ideas from
combinatorial group testing and compressed sensing (CS) [5]
which uses the quantitative output of PCR tests to reconstruct
the viral load of each sample in a single round. Tapestry has
been validated with wet lab experiments with oligomers [6].
In this work, we elaborate on the results from the algorithmic
perspective for the computer science and signal processing
communities. Tapestry has a number of salient features which
we enumerate below.

1) Tapestry delivers results in a single round of testing,
without the need for a second confirmatory round, at
clinically acceptable false negative and false positive
rates. The number m of required tests is only O(k log n)
for random binary pooling matrix constructions, as per
compressed sensing theory for random binary matri-
ces [7]. In the targeted use cases where the number of
infected samples k � n, we see that m � n. However,
our deterministic pooling matrix constructions based on
Kirkman Triple Systems [8], [9] require fewer tests in
practice (see Section III-F8 for a discussion on why this
may be the case). Consequently we obtain significant
savings in testing time and resources such as number of
tests, quantity of reagents, and manpower.

2) Tapestry reconstructs relative viral loads i.e., ratio of
viral amounts in each sample to the highest viral amount
across pools. It is believed that super-spreaders and peo-
ple with severe symptoms have higher viral load [10],
[11], so this quantitative information might have epi-
demiological relevance.

3) Tapestry takes advantage of quantitative information in
PCR tests. Hence it returns far fewer false positives
than traditional binary group testing algorithms such
as COMP (Combinatorial Orthogonal Matching Pur-
suit) [12], while maintaining clincally acceptable false
negative rates. Furthermore, it takes advantage of the
fact that a negative pool has viral load exactly zero.
Traditional CS algorithms do not take advantage of this
information. Hence, Tapestry demonstrates better sensi-
tivity and specificity than CS algorithms.

4) Because each sample is tested in three pools,
Tapestry can detect some degree of noise in terms
of cross-contamination of samples and pipetting
errors.

5) Tapestry allows PCR test measurements to be noisy. We
develop a novel noise model to describe noise in PCR
experiments. Our algorithms are tested on this noise
model in simulation.

6) All tuning parameters for execution of the algorithms
are inferred on the fly in a data driven fashion.

7) Each sample contributes to exactly three pools, and each
pool has the same number of samples. This simpli-
fies the experimental design, conserves samples, keeps
pipetting overhead to a minimum, and makes sure that
dilution due to pool size is in a manageable regime.

The organization of the paper is as follows. We first present
a brief overview of the RT-PCR method in Section II. The
precise mathematical definition of the computational problem
being solved in this paper is then put forth in Section III-A. We
describe traditional and CS-based group-testing algorithms
for this problem in Section III-B, III-C and III-D. The Tapestry
method is described in Section III-D. The sensing matrix
design problem, as well as theoretical guarantees using Kirk-
man Triple Systems or random binary matrices, are described
in Section III-F. Results on synthetic data are presented in
Section IV. This is followed by results on data from lab
experiments performed with oligomers to mimic the clinical
situation as closely as possible. In Section V, we compare
our work to recent related approaches. We conclude in Sec-
tion VI with a glance through different scenarios where our
work could be deployed. The supplemental material contains
several additional experimental details as well as proofs of
some theoretical results.

II. RT-PCR METHOD
We present here a brief summary of the RT-PCR process,
referring to [13] for more details. In the RT-PCR method for
COVID-19 testing, a sample in the form of naso- or oro-
pharyngeal swabs is collected from a patient. The sample is
then dispersed into a liquid medium. The RNA molecules of
the virus present in this liquid medium are converted into
complementary DNA (cDNA) via a process called reverse
transcription. DNA fragments called primers complementary
to cDNA from the viral genome are then added. They attach
themselves to specific sections of the cDNA from the viral
genome if the virus is present in the sample. The cDNA of
these specific viral genes then undergoes a process of expo-
nential amplification in an RT-PCR machine. Here, cDNA is
put through several cycles of alternate heating and cooling
in the presence of Taq polymerase and appropriate reagents.
This triggers the creation of many new identical copies of spe-
cific portions of the target DNA, roughly doubling in number
with every cycle of heating and cooling. The reaction volume
contains sequence-specific fluorescent markers which report
on the total amount of amplified DNA of the appropriate
sequence. The resulting fluorescence is measured, and the in-
crease can be observed on a computer screen in real time. The
time when the amount of fluorescence exceeds the threshold
level is known as the threshold cycle Ct , and is a quanti-
tative readout from the experiment. A smaller Ct indicates
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greater number of copies of the virus. Usually Ct takes values
anywhere between 16 to 32 cycles in real experiments. PCR
can detect even single molecules. A single molecule typically
would have Ct value of around 40 cycles. A typical RT-PCR
setup can test 96 samples in parallel. The test takes about 3-4
hours to execute.

III. TESTING METHODS
A. STATEMENT OF THE COMPUTATIONAL PROBLEM
Let x denote a vector of n elements where xi is the viral load
(i.e. viral amount) of the ith person. Throughout this paper we
assume that only one sample per person is extracted. Hence
x contains the viral loads corresponding to n different people.
Note that xi = 0 implies that the ith person is not infected. Due
to the low infection rate for COVID-19 as yet even in severely
affected countries [1], x is considered to be a sparse vector
with at the most k � n positive-valued elements. In group
testing, small and equal volumes of the samples of a subset
of these n people are pooled together according to a sensing
or pooling matrix A = (A ji )m×n whose entries are either 0 or
1. The viral loads of the pools will be given by:

z j =
n∑

i=1

A jixi = A jx, 1 ≤ j ≤ m, 1 ≤ i ≤ n, (1)

where A ji = 1 if a portion of the sample of the ith person is
included in the jth pool, and A j is the jth row of A. In all,
some m < n pools are created and individually tested using
RT-PCR. We now have the relationship z = Ax, where z is the
m-element vector of viral loads in the mixtures, and A denotes
a m × n binary ‘pooling matrix’ (also referred to as a ‘sensing
matrix’ in CS literature). Note that each positive RT-PCR test
will yield a noisy version of z j , which we refer to as y j . The
relation between the ‘clean’ and noisy versions is given as
follows (also see Eqn. (7)):

y j = z j (1 + q)e j = (1 + q)e j A jx, (2)

where e j ∼ N (0, σ 2) and q ∈ (0, 1) is the fraction of viral
cDNA that replicates in each cycle. The factor (1 + q)e j re-
flects the stochasticity in the growth of the numbers of DNA
molecules during PCR. Here σ is known and constant. Equiv-
alently for positive tests, we have:

log y j = log(A jx) + log(1 + q)e j . (3)

In case of negative tests, y j as well as z j are 0-valued, and no
logarithms need be computed. In non-adaptive group testing,
the core computational problem is to estimate x given y and A
without requiring any further pooled measurements. It should
be noted that though we have treated each element of x to
be a fixed quantity, it is in reality a random variable of the
form xi ∼ Poisson(λi ) where λi ≥ 0. If matrix A contains only
ones and zeros, this implies that z j ∼ Poisson(A jx) because
the sum of Poisson random variables is also a Poisson random
variable.

1) DERIVATION OF NOISE MODEL
For a positive pool j, the quantitative readout from RT-PCR
is not its viral load but the observed cycle time t j when its
fluorescence reaches a given threshold F (see Section II). In
order to be able to apply CS techniques (see Section III-C),
we derive a relationship between the cycle time of a sample
and its viral load. Because of exponential growth (see [14]),
the number of molecules of viral cDNA in pool j at cycle time
t , denoted by v j (t ) is given by:

v j (t ) = z j (1 + q)t . (4)

Also, t is a real number, with �t	 indicating the number of
PCR cycles that have passed, and t − �t	 indicating the frac-
tion of wall-clock time within the current cycle. The fluores-
cence of the pool, f j (t ), is directly proportional to the number
of virus molecules v j (t ). That is,

f j (t ) = Kv j (t ) = Kz j (1 + q)t , (5)

where K is a constant of proportionality. Suppose the flu-
orescence of pool j should reach the threshold value F at
cycle time τ j , according to Eqn. (5). Due to the stochastic
nature of the reaction, as well as measurement error in the
PCR machine, the threshold cycle output by the machine will
not reflect this true cycle time. We model this discrepancy as
Gaussian noise. Hence, the true cycle time τ j and the observed
cycle time t j are related as τ j = t j + e j , where e j ∼ N (0, σ 2)
as before. Now, since f j (τ j ) = F , using Eqn. (5), we have

F = Kz j (1 + q)τ j = Ky j (1 + q)t j . (6)

The latter equality is since we use the noisy cycle threshold t j

to compute viral load, where y j is defined to be the noisy viral
load of pool j. Hence we find

y j = z j (1 + q)τ j−t j = z j (1 + q)e j = (1 + q)e j A jx, (7)

obtaining the relationship from Eqn. (2).
Constants F and K are unknown. Hence it is not possible to

directly obtain y j from t j without additional machine-specific
calibration. However, we can find the ratio between the noisy
viral loads of two pools using Eqn. (6). Let ymin be the noisy
viral load of the pool with the minimum observed threshold
cycle (tmin) among all pools. Then we define relative viral
loads as:

ỹ j = y j

ymin
= (1 + q)tmin−t j , z̃ j = z j

ymin
, x̃ = x

ymin
(8)

where z̃ j is the relative viral load of a pool, ỹ j is its noisy
version, and x̃ is the vector of relative viral loads of each
sample. We note that due to Eqn. (7), the following relation
holds:

ỹ j = z̃ j (1 + q)e j = (1 + q)e j A jx̃, (9)

Hence we can apply CS techniques from Section III-C to de-
termine the relative magnitudes of viral loads without know-
ing F and K . We provide more comments about the settings
of various noise model parameters for our experiments, in
Section IV, particularly in Section IV-A6.
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B. COMBINATORIAL GROUP-TESTING
Combinatorial Orthogonal Matching Pursuit (COMP) is a
Boolean nonadaptive group testing method [15, Sec. 2.3].
Here one uses the simple idea that if a mixture ỹ j tests negative
then any sample x̃i for which A ji = 1 must be negative. Note
that pools which test negative are regarded as noiseless obser-
vations, as argued in Section III-A1. The other samples are all
considered to be positive. This algorithm guarantees that there
are no ‘false negatives’. However it can produce a very large
number of ‘false positives’. For example, a sample x̃k will be
falsely reported to be positive if every mixture ỹ j it is part
of, also contains at least one other genuinely positive sample.
The COMP algorithm is largely insensitive to noise. Moreover
a small variant of it can also produce a list of ‘high confi-
dence positives,’ after identifying the (sure) negatives. This
happens when a positive mixture ỹ j contains only one sample
x̃i, not counting the other samples which were declared sure
negatives in the earlier step. Such a step of identifying ‘high
confidence positives’ is included in the so-called Definite De-
fectives (DD) Algorithm [15, Sec. 2.4]. However DD labels
all remaining items to be negative, potentially leading to a
large number of false-negatives. The performance guarantees
for COMP have been analyzed in [12] and show that COMP

requires ek(1 + δ) log n tests for an error probability less than
n−δ (see Section III-F8). This analysis has been extended to
include the case of noisy test results as well [12]. However
COMP can result in a large number of false positives if not
enough tests are used, and it also does not predict viral loads.

C. COMPRESSED SENSING FOR POOLED TESTING
Group testing is intimately related to the field of compressed
sensing (CS) [16], which has emerged as a significant sub-area
of signal and image processing [5], with many applications in
biomedical engineering [17]–[19]. In CS, an image or a signal
x with n elements, is directly acquired in compressed format
via m linear measurements of the form y = Ax + η. Here, the
measurement vector y has m elements, and A is a matrix of
size m × n, and η is a vector of noise values. If x is a sparse
vector with k � n non-zero entries, and A obeys the so-called
restricted isometry property (RIP), then exact recovery of x
from y, A is possible [20] if η = 0. In the case of measurement
noise, the recovery of x produces a solution that is provably
close to the original x. A typical recovery problem P0 consists
of optimizing the following cost function:

min‖x‖0 s.t. ‖y − Ax‖2 ≤ ε, (10)

where ε is an upper bound (possibly a high probability upper
bound) on ‖η‖2, and ‖x‖0 is the number of non-zero elements
in x. In the absence of noise, a unique and exact solution to this
problem is possible with as few as 2˜k measurements in y if x
has k non-zero elements [20]. Unfortunately, this optimization
problem P0 is NP-Hard and the algorithm requires brute-force
subset enumeration. Instead, the following problem P1 (often

termed ‘Basis Pursuit Denoising’ or BPDN) is solved in prac-
tice:

min‖x‖1 s.t. ‖y − Ax‖2 ≤ ε. (11)

P1 is a convex optimization problem which yields the same
solution as the earlier problem (with similar conditions on
x, A) at significantly lower computational cost, albeit with
O(k log n) measurements (i.e. typically greater than 2˜k) [5],
[20].

The order k restricted isometry constant (RIC) of a matrix
A is defined as the smallest constant δk , for which the fol-
lowing relationship holds for all k-sparse vectors x (i.e. all
vectors with at the most k non-zero entries): (1 − δk )‖x‖2

2 ≤
‖Ax‖2

2 ≤ (1 + δk )‖x‖2
2. The matrix A is said to obey the order

k restricted isometry property (RIP) if δk is close to 0. This
property essentially implies that no k-sparse vector (other than
the zero vector) can lie in the null-space of A. Unique recovery
of k-sparse signals requires that no 2˜k-sparse vector lies in
the nullspace of A [20]. A matrix A which obeys RIP of order
2˜k satisfies this property. It has been proved that matrices
with entries randomly and independently drawn from distri-
butions such as Rademacher or Gaussian, obey the RIP of
order k with high probability [21], provided they have at least
O(k log n) rows. There also exist deterministic binary sens-
ing matrix designs (e.g. [22]) which require O(max(k2,

√
n))

measurements. However it has been shown recently [23] that
the constant factors in the deterministic case are significantly
smaller than those in the former random case when n < 105,
making the deterministic designs more practical for typically
encountered problem sizes. The solution to the optimization
problems P0 and P1 in Eqns. (10) and (11) respectively, are
provably robust to noise [5], and the recovery error decreases
with decrease in noise magnitude. The error bounds for P0 in
Eqn. (10) are of the form, for solution x̂ [24]:

ε√
1 + δ2˜k

≤ ‖x − x̂‖2 ≤ ε√
1 − δ2˜k

, (12)

whereas those for P1 in Eqn. (11) have the form [24]:

‖x − x̂‖2 ≤ εζ (δ2˜k ). (13)

Here ζ (δ2˜k ) is a monotonically increasing function of δ2˜k ∈
(0, 1) and has a small value in practice.

The Restricted Isometry Property as defined above is also
known as RIP-2, because it uses the �2-norm. Many other
sufficient conditions for recovery of k-sparse vectors exist. We
define the following which we use later in Section III-F and
supplemental Section S.V to prove theoretical guarantees of
our method.

Definition 1: RIP-1: [25, Defn. 8] A m × n matrix A is said
to obey RIP-1 of order k if ∃ δk ∈ (0, 1) such that for all k-
sparse vectors x ∈ Rn,

‖x‖1 ≤ ‖Ax‖1 ≤ (1 + δk )‖x‖1

.
Definition 2: RNSP: [23, Eqn. 12] A m × n matrix A is

said to obey the Robust Nullspace Property (RNSP) of order
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Algorithm 1: Tapestry Method.
1: Input: n samples, m × n pooling matrix A
2: Perform pooling according to pooling matrix A and

create m pooled samples
3: Run RT-PCR test on these m pooled samples and

receive m × 1 vector of cycle threshold values t
4: Compute m × 1 vector of relative viral loads ỹ from

t
5: Use COMP to filter out negative tests and sure

negative samples. Compute submatrix AX̄ ,Ȳ , ỹȲ
and list HCP of ‘high-confidence positives’ along
with their viral loads (see Section III-B).

6: Use a CS decoder to recover relative viral loads x̃X̄
from ỹȲ , AX̄ ,Ȳ

7: Compute n × 1 relative viral load vector x̃ by setting
its entries from x̃X̄ , and setting remaining entries to
0.

8: return x̃, HCP .

k if ∃ ρ < 1 and τ > 0 such that for all x ∈ Rn it holds that

||xS||2 ≤ ρ||xS̄||1 + τ ||Ax||2
for all S ⊂ {1 . . . n} with |S| ≤ k.

Definition 3: �2-RNSP: [7, Defn. 1] A m × n matrix A is
said to obey the �2-robust Nullspace Property (�2-RNSP) of
order k if ∃ ρ ∈ (0, 1) and τ > 0 such that for all x ∈ Rn it
holds that

||xS||2 ≤ ρ√
k
||xS̄||1 + τ ||Ax||2

for all S ⊂ {1 . . . n} with |S| ≤ k.
Over the years, a variety of different techniques for com-

pressive recovery have been proposed. We use some of these
for our experiments in Section III-D. These algorithms use
different forms of sparsity and incorporate different types of
constraints on the solution.

D. CS AND TRADITIONAL GT COMBINED
The complete pipeline of the Tapestry method is presented in
Algorithm 1. First, a wet lab technician performs pooling of n
samples into m pools according to a m × n pooling matrix A.
Then they run the RT-PCR test on these m pools (in parallel).
The output of the RT-PCR tests – the threshold cycle (Ct )
values of each pool – is processed to find the relative viral load
vector ỹ of the m pools (as shown in Eqn. (8)). This is given
as input to the Tapestry decoding algorithm, which outputs a
sparse relative viral load vector x̃.

The Tapestry decoding algorithm, our approach to-
ward group-testing for COVID-19, involves a two-stage
procedure.1 In the first stage, we apply the COMP algorithm
described in Section III-B, to identify the sure negatives (if
any) in x̃ to form a set X . Let Y be the set of zero-valued

1The two-stage procedure is purely algorithmic. It does not require two
consecutive rounds of testing in a lab.

measurements in ỹ (i.e. negative tests). Please refer to Sec-
tion III-A1 for the definition of x̃, ỹ. Moreover, we define X̄ , Ȳ
as the complement-sets of X ,Y respectively. Also, let yȲ be
the vector of m − |Y| measurements which yielded a positive
result. Let xX̄ be the vector of n − |X | samples, which does
not include the |X | surely negative samples. Let AX̄ ,Ȳ be
the submatrix of A, having size (m − |Y|) × (n − |X |), which
excludes rows corresponding to zero-valued measurements in
y and columns corresponding to negative elements in x. In the
second stage, we apply a CS algorithm to recover x̃X̄ from
ỹȲ , AX̄ ,Ȳ . To avoid symbol clutter, we henceforth just stick to
the notation y, x, A, m, n, even though they respectively refer
to ỹȲ , x̃X̄ , AX̄ ,Ȳ , m − |Y|, n − |X |.

Note that the CS stage following COMP is very important
for the following reasons:

1) COMP typically produces a large number of false pos-
itives. The CS algorithms help reduce the number of
false positives as we shall see in later sections.

2) COMP does not estimate viral loads, unlike CS algo-
rithms.

3) In fact, unlike CS algorithms, COMP treats the measure-
ments in y as also being binary, thus discarding a lot of
useful information.

4) COMP preserves the RIP-1, RIP-2, RNSP, and �2-RNSP
of the pooling matrix, i.e. if A obeys any of RIP-1, RIP-
2, RNSP or �2-RNSP of order k, then AX̄ ,Ȳ also obeys
the same property of the same order k with the same
parameters. We formalize and prove these claims in the
supplemental Section S.V.

However, the COMP algorithm prior to applying the CS
algorithm is also very important for the following reasons:

1) Viral load in negative pools is exactly 0. COMP identifies
the sure negatives in x from the negative measurements
in y. Traditional CS algorithms do not take advantage of
this information, since they assume all tests to be noisy
(Eqns. (10) and (11)). It is instead easier to discard the
obvious negatives before applying the CS step.

2) Since COMP identifies the sure negatives, therefore, it
effectively reduces the size of the problem to be solved
by the CS step from (m, n) to (m − |Y|, n − |X |).

3) In a few cases, a (positive) pool in Ȳ may contain
only one contributing sample in X̄ , after negatives have
been eliminated by COMP. Such a sample is called a
‘high-confidence positive,’ and we denote the list of
high-confidence positives as HCP . In rare cases, the
CS decoding algorithms we employed (see further in
this section) did not recognize such a positive. However,
such samples will still be returned by our algorithm as
positives, in the set HCP (see last step of Alg. 1, and
‘definite defectives’ in Section III-B).

For CS recovery, we employ one of the following al-
gorithms after COMP: the non-negative LASSO (NNLASSO),
non-negative orthogonal matching pursuit (NNOMP), Sparse
Bayesian Learning (SBL), and non-negative absolute deviation
regression (NNLAD). For problems of small size, we also apply
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a brute force (BF) search algorithm to solve a problem similar
to P0 from Eqn. (10) combinatorially.

1) THE NON-NEGATIVE LASSO (NNLASSO)
The LASSO (least absolute shrinkage and selection operator)
is a penalized version of the constrained problem P1 in Eqn.
(11), and seeks to minimize the following cost function:

Jlasso(x; y, A) := ‖y − Ax‖2
2 + λ‖x‖1. (14)

Here λ is a regularization parameter which imposes sparsity
in x. The LASSO has rigorous theoretical guarantees [26]
(chapter 11) for recovery of x as well as recovery of the
support of x (i.e. recovery of the set of non-zero indices of x).
Given the non-negative nature of x, we implement a variant
of LASSO with a non-negativity constraint, leading to the
following optimization problem:

Jnnlasso(x; y, A) := ‖y − Ax‖2
2 + λ‖x‖1 s.t. x ≥ 0. (15)

Selection of λ: There are criteria defined in [26] for selec-
tion of λ under iid Gaussian noise, so as to guarantee statistical
consistency. However, in practice, cross-validation (CV) can
be used for optimal choice of λ in a purely data-driven fash-
ion from the available measurements. The details of this are
provided in the supplemental Section S.III.

2) NON-NEGATIVE ORTHOGONAL MATCHING PURSUIT
(NNOMP)
Orthogonal Matching Pursuit (OMP) [27] is a greedy ap-
proximation algorithm to solve the optimization problem in
Eqn. (10). Rigorous theoretical guarantees for OMP have been
established in [28]. OMP proceeds by maintaining a set H
of ‘selected coefficients’ in x corresponding to columns of
A. In each round a column of A is picked greedily, based on
the criterion of maximum absolute correlation with a residual
vector r := y − ∑

k∈H Akx̂k . Each time a column is picked,
all the coefficients extracted so far (i.e. in set H) are updated.
This is done by computing the orthogonal projection of y
onto the subspace spanned by the columns in H. The OMP
algorithm can be quite expensive computationally. Moreover,
in order to maintain non-negativity of x, the orthogonal pro-
jection step would require the solution of a non-negative least
squares problem, further adding to computational costs. How-
ever, a fast implementation of a non-negative version of OMP
(NNOMP) has been developed in [29], which is the implemen-
tation we adopt here. For the choice of ε in Eqn. (10), we can
use CV as described in Section III-D1.

3) SPARSE BAYESIAN LEARNING (SBL)
Sparse Bayesian Learning (SBL) [30], [31] is a non-convex
optimization algorithm based on Expectation-Maximization
(EM) that has empirically shown superior reconstruction per-
formance to most other CS algorithms with manageable com-
putation cost [32]. In SBL, we consider the case of Gaussian

noise in y and a Gaussian prior on elements of x, leading to:

p(y|x) = exp(−‖y − Ax‖2
2/(2σ 2))

(2πσ 2)n/2
(16)

p(xi;ϕi ) = exp(−x2
i /(2ϕi ))√

2πϕi
;ϕi ≥ 0. (17)

Since both x and ϕ (the vector of the {ϕi}n
i=1 values) are

unknown, the optimization for these quantities can be per-
formed using an EM algorithm. In the following, we shall
denote � := diag(ϕ). Moreover, we shall use the notation
�(l ) for the estimate of � in the l th iteration. The E-step
of the EM algorithm here involves computing Q(�|�(l ) ) :=
Ex|y;�(l ) log p(y, x;�). It is to be noted that the posterior

distribution p(x|y;�(l ) ) has the form N (μ,�) where μ :=
�AT y/σ 2 and � := (AT A/σ 2 + (�(l ) )−1)−1. The M-step in-
volves maximization of Q(�|�(l ) ), leading to the update
�(l+1) = diag(μ2

i + �ii ). The E-step and M-step are executed
alternately until convergence. Convergence to a fixed-point
is guaranteed, though the fixed point may or may not be a
local minimum. However, all local minima are guaranteed
to produce sparse solutions for x (even in the presence of
noise) because most of the ϕi values shrink towards 0. The
SBL procedure can also be modified to dynamically update the
noise variance σ 2 (as followed in this paper), if it is unknown.
All these results can be found in [31]. Unlike NNLASSO or
NNOMP, the SBL algorithm from [31] expressly requires Gaus-
sian noise. However we use it as is in this paper for the
simplicity it affords. Unlike NNOMP or NNLASSO, there is no
explicit non-negativity constraint imposed in the basic SBL

algorithm. In our implementation, the non-negativity is simply
imposed at the end of the optimization by setting to 0 any
negative-valued elements in μ, though more principled, albeit
more computationally heavy, approaches such as [33] can be
adopted.

4) NON-NEGATIVE ABSOLUTE DEVIATION REGRESSION
(NNLAD)
The Non-Negative Absolute Deviation Regression
(NNLAD) [34] and Non-negative Least squares (NNLS) [7]
seek to respectively minimize

Jnnlad (x; y, A) := ‖y − Ax‖1 s.t. x ≥ 0, (18)

Jnnls(x; y, A) := ‖y − Ax‖2 s.t. x ≥ 0. (19)

It has been shown in [34] that NNLAD is sparsity promoting
for certain conditions on the sensing matrix A, and that its
minimizer x∗ obeys bounds of the form ||x − x∗||1 ≤ C||η||1,
where C is a constant independent of x, x∗, η, y. A salient
feature of NNLAD/NNLS is that they do not require any pa-
rameter tuning. This property makes them useful for matrices
of smaller size where cross-validation may be unreliable.

E. GENERALIZED BINARY SEARCH TECHNIQUES
There exist adaptive group testing techniques which can de-
termine k infected samples in O(k log n) tests via repeated
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binary search. These techniques are impractical in our setting
due to their sequential nature and large pool sizes. We provide
details of these techniques in the supplemental Section S.II.
We also compare with a two-stage approach called Dorfman’s
method [2] in Section IV-A7.

F. SENSING MATRIX DESIGN
1) PHYSICAL REQUIREMENTS OF THE SENSING MATRIX
The sensing matrix A must obey some properties specific
to this application such as being non-negative. For ease and
speed of pipetting, it is desirable that the entries of A be (1) bi-
nary (where A ji = 0 indicates that sample i did not contribute
to pool j, and A ji = 1 indicates that a fixed volume of sample i
was pipetted into pool j), and (2) sparse. Sparsity ensures that
not too many samples contribute to a pool, and that a single
sample does not contribute to too many pools. The former
is important because typically the volume of sample that is
added in a PCR reaction is fixed. Increasing pool size means
each sample contributes a smaller fraction of that volume.
This leads to dilution which manifests as a shift of the Ct value
towards larger numbers. If care is not taken in this regard,
this can affect the power of PCR to discriminate between
positive and negative samples. The latter is important because
contribution of one sample to a large number of pools could
lead to depletion of sample.

2) RIP-1 OF EXPANDER GRAPH ADJACENCY MATRICES
The Restricted Isometry Property (RIP-2) of sensing matri-
ces is a sufficient condition for good CS recovery as de-
scribed in Section III-C. However the matrices which obey
the aforementioned physical constraints are not guaranteed
to obey RIP-2. Instead, we consider sensing matrices which
are adjacency matrices of expander graphs. A left-regular
bipartite graph G((VI ,VO ), E ⊆ VI × VO ) with degree of
each vertex in VI being d , is said to be a (k, ε)-unbalanced
expander graph for some integer k > 0 and some real-valued
ε ∈ (0, 1), if for every subset S ⊆ VI with |S| ≤ k, we have
|N (S )| ≥ (1 − ε)d|S|. Here N (S ) denotes the union set of
neighbors of all nodes in S . Intuitively a bipartite graph is an
expander if every ‘not too large’ subset has a ‘large’ boundary.
It can be proved that a randomly generated left-regular bipar-
tite graph with |VO| ≥ O(k log n), n = |VI | is an expander,
with high probability [35], [36]. Moreover, it has been shown
in [25, Thm. 1] that the scaled adjacency matrix A/d of a
(k, ε)-unbalanced expander graph obeys RIP-1 (Defn. 1) of
order k. Here columns of A correspond to vertices in VI , and
rows correspond to vertices in VO. That is, for any k-sparse
vector x, the following relationship holds: ‖x‖1 ≤ ‖Ax‖1/d ≤
(1 + Cε)‖x‖1 for some absolute constant C > 1. This prop-
erty again implies that the null-space of A cannot contain
vectors that are ‘too sparse’ (apart from the zero-vector). This
summarizes the motivation behind the use of expanders in
compressive recovery of sparse vectors, and also in group
testing [25].

FIGURE 1. A full Kirkman matrix with m = 15 rows and n = (m
2

)
/3 = 35

columns. Each cell denotes an entry of the matrix, with white cells
denoting the location of a 0 entry and the greyed out cells indicating the
location of a 1 entry. Each column has exactly 3 entries with value 1. Each
row has 7 entries with value 1. There are (m − 1)/2 = 7 groups of columns,
each consisting of m/3 = 5 columns. Each row in a column group has
exactly one 1 entry. Matrices of size 15 × 20, 15 × 25, 15 × 30 or 15 × 35
may be served by choosing the first 4, 5, 6, or 7 column groups, while
keeping the number of 1 entries in each row equal.

3) MATRICES DERIVED FROM KIRKMAN TRIPLE SYSTEMS
Although randomly generated left-regular bipartite graphs are
expanders, we would need to verify whether a particular such
graph is a good expander, which may take prohibitively long
in practice [35]. In the application at hand, this can prove to be
a critical limitation since matrices of various sizes may have
to be served, depending on the number of samples arriving
in that batch at the testing centre, and the number of tests
available to be performed. Hence, we have chosen to employ
deterministic procedures to design such matrices, based on
objects from combinatorial design theory known as Kirkman
triples (see [8], [9]).

We first recall Kirkman Triple Systems (an example of
which is illustrated in Fig. 1) which are Steiner Triple Systems
with an extra property. Steiner Triple Systems consist of n =(m

2

)
/3 column vectors with m elements each, with each entry

being either 0 or 1 such that each column has exactly three
1 s, every pair of rows has dot product equal to 1 and every
pair of columns has dot product at most 1 [37]. This means
that each column of a Steiner Triple System corresponds to
a triplet of rows (i.e. contains exactly three 1 s), and every
pair of rows occurs together in exactly one such triplet (i.e.
for every pair of rows indexed by i, j, there exists exactly one
column index k for which Aik = A jk = 1). If the columns of
a Steiner Triple System can be arranged such that the sum
of columns from i to i + m/3 − 1 equals 1 ∈ Rm for every
i ≡ 1 modulo m/3 then the Steiner Triple System is said to be
resolvable, and is known as a Kirkman Triple System [8].
That is, the set of columns of a Kirkman Triple System can be
partitioned into (m − 1)/2 disjoint groups, each consisting of
m/3 columns, such that each row has exactly one 1 entry in
a given such group of columns. Because of this property, we
may choose any l such groups of columns of a Kirkman Triple
System to form a m × n matrix, n > m, with n = lm/3, and
3 < l ≤ (m − 1)/2, while keeping the number of 1 entries in
each row the same. From here on, we refer to such matrices as
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Kirkman matrices. If l = (m − 1)/2, then we refer to it as a
full Kirkman matrix, else it is referred to as a partial Kirkman
matrix. Note that in a partial Kirkman matrix, the dot product
of any two rows may be at most 1, whereas in a full Kirkman
matrix, it must be equal to 1.

Notice that m = 6t + 3 for some t ∈ Z≥0 for a Kirkman
Triple System to exist, since m − 1 must be divisible by 2,
and m must be divisible by 3. This, and the existence of
Kirkman Triple Systems for all t ∈ Z≥0 have been proven
in [9]. Explicit constructions of Kirkman Triple Systems for
m ≤ 99 exist [8]. Generalizations of Kirkman Triple Systems
under the name of the Social Golfer Problem is an active area
of research (see [38], [39]). The Social Golfer Problem asks
if it is possible for g × p golfers to play in g groups of p
players each for w weeks, such that no two golfers play in
the same group more than once [40, Sec. 1.1]. Kirkman Triple
Systems with m rows and

(m
2

)
/3 columns are a solution to

the Social Golfer Problem for the case when p = 3, g = m/3
and w = (m − 1)/2. Full or partial Kirkman matrices may be
constructed via greedy search techniques used for solving the
Social Golfer Problem (such as in [41]). Previously, Kirkman
matrices have been proposed for use as Low-Density Parity
Check codes in [42], due to high girth2 of Kirkman matrix
bipartite graphs and the ability to serve only part of the matrix
while keeping the row weights3 equal. Matrices derived from
Steiner Triple Systems have previously been used for pooled
testing for transcription regulatory network mapping in [43].
Further, matrices derived from Steiner Systems [44], a gen-
eralization of Steiner Triple Systems, have been proposed for
optimizing 2-stage binary group testing in [45].

4) RIP-1 AND EXPANSION PROPERTIES OF KIRKMAN
MATRICES
We show that Kirkman matrix bipartite graphs are (k, ε)-
unbalanced expanders, with ε = (k − 1)/2˜d , where d is the
left-degree of the graph and is 3 for Kirkman matrices. Given
a set S of column vertices such that |S| ≤ k, we note that
the size of the union set of neighbours of S, |N (S)|, is
at least |S|d − pr, where p = (|S|

2

)
is the number of (un-

ordered) pairs of columns in S, and r is the maximum number
of row vertices in common between any two column ver-
tices. For a Kirkman matrix, since any two columns have
dot product at most 1, hence r = 1. Therefore, |N (S)| ≥
d|S|(1 − (|S| − 1)/2˜d ). Since |S| ≤ k, therefore |N (S)| ≥
d|S|(1 − (k − 1)/2˜d ). This implies that Kirkman matrix bi-
parite graphs are (k, ε)-unbalanced expanders, with ε = (k −
1)/2˜d . If we put in the requirement that d = 3 for Kirkman
matrices and ε < 1, we find that k < 7. Hence it follows
from [25, Thm. 1] that the scaled Kirkman matrix has RIP-1
of order k for k < 7 and ε = (k − 1)/6. This suggests exact
recovery for upto 3 infected samples using CS. However, in
practice, we observe that using our method we are able to
recover much higher number of positives, at the cost of an

2The girth of a graph is equal to the length of the shortest cycle in it.
3defined as the number of 1 entries in a row

acceptable number of false positives and rare false negatives
(Section IV).

5) OPTIMALITY OF GIRTH 6 MATRICES
A Steiner Triple System bipartite graph does not have a cycle
of length 4. If it did, then there would exist two rows a and b,
and two columns u and v of the Steiner Triple System matrix
A such that Aau = Abu = 1 and Aav = Abv = 1. This would
violate the property that dot product of any two rows of the
Steiner Triple System must be equal to 1. Furthermore, [42,
Lemma 1] show that Steiner Triple System bipartite graphs
have girth equal to 6. Since Kirkman Triple Systems are re-
solvable Steiner Triple Systems (see definitions earlier in this
section), their bipartite graphs also have girth equal to 6. For
a bipartite graph constructed from a partial Kirkman matrix,
the girth is at least 6, since dropping some column vertices
will not introduce new cycles in the graph. Furthermore, it is
shown in [23, Thm. 10] that adjacency matrices of left-regular
graphs with girth at least 6 satisfy RNSP (Defn. 2) of order k
(for suitable k). Consequently, they may be used for CS decod-
ing [23, Thm. 5]. They also give lower bounds on the number
of rows m of left-regular bipartite graph matrices whose col-
umn weight4 is more than 2, for them to have high girth and
consequently satisfy RNSP of order k, given k and n [23, Eqn.
32, 33]. Given k and n, these lower bounds are minimized
for graphs of girth 6 and 8, and the bounds are, respectively,
m ≥ k

√
n and m ≥ k3/2√n ([23, Eqn. 37]). However, with

the additional requirement that m < n for CS, it is found that
girth 6 matrices can recover k <

√
n defects, while girth 8

matrices can only recover k < 3
√

n defects. Hence, matrices
whose bipartite graphs have girth equal to 6 are optimal in this
sense. Full Kirkman matrix bipartite graphs are left-regular
and have girth 6, as argued earlier, and hence they satisfy
RNSP, may be used for compressive sensing, and are optimal
in the sense of being able to handle most number of defects
while minimizing the number of measurements. We note that
since we employ Kirkman triples, each column has only three
1 s. The theoretical guarantees for such matrices hold for
signals with �0 norm less than or equal to 2. However, we
have obtained acceptable false positive and false negative rates
in practice for much larger sparsity levels, as will be seen in
Section IV.

6) DISJUNCTNESS PROPERTY OF KIRKMAN MATRICES
In order for a matrix to be suitable for our method, it should
not only be good for CS decoding algorithms, but also for
COMP. Kirkman matrices are 2-disjunct, and can recover up
to 2 defects exactly using COMP. In a k-disjunct matrix, there
does not exist any column such that its support is a subset of
the union of the support of k other columns [15]. Matrices
which are k-disjunct have exact support recovery guarantee
for k-sparse vectors, using COMP (see [15]). Disjunctness
follows from the following properties of Kirkman matrices

4defined as the number of 1 entries in a column
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TABLE 1. Performance of COMP and DD (On Synthetic Data) for 45 × 105 Kirkman Triple Matrix. For Each Criterion and Each k Value, Mean and Standard
Deviation Values are Reported Across 1000 Signals

– that two columns in a Kirkman matrix have at most one
row in common with an entry of 1, and that each column has
exactly three 1 entries. Consider Ra, Rb, and Rc, the sets of
rows for which the three columns a, b and c respectively have
a 1 entry. Note that |Ra| = |Rb| = |Rc| = 3, and |Rp ∩ Rq| ≤ 1
for p, q ∈ {a, b, c}, p �= q. If Rc ⊆ Ra ∪ Rb, then either |Rc ∩
Ra| > 1 or |Rc ∩ Rb| > 1, which presents a contradiction.

Empirically we find that even for k > 2, COMP reports only
a small fraction of the total number of samples as positives
when using Kirkman matrices (Table 1). In Section S.XIV
(Proposition 6) of the supplemental material, we prove that
if a fraction f ∈ (0, 1) of the tests come out to be positive,
then COMPreports strictly less than fraction f 2 of the samples
as positive for a full Kirkman matrix. This provides intuition
behind why Kirkman matrices may be well-suited for our
combined COMP + CS method, since most samples are already
eliminated by COMP. On the other hand, CS decoding (without
the earlier COMP step) on the full Kirkman matrix does not
perform as well, as shown in the supplemental Section S.IX.

7) ADVANTAGES OF USING KIRKMAN MATRICES
As we have seen in earlier sections, Kirkman matrices are
suitable for use in compressed sensing due to their expansion,
RIP-1 and high girth properties, as well as for binary group
testing due to disjunctness. Furthermore, the dot product be-
tween two columns of a Kirkman matrix being at most 1
ensures that no two samples participate in more than one test
together. This has favourable consequences in terms of plac-
ing an upper bound on the mutual coherence of the matrix,
defined as:

μ(A) := maxi �= j
|Ai

t A j |
‖Ai‖2‖A j‖2

, (20)

where Ai refers to the ith column of A. Matrices with lower
μ(A) values have lower values of worst case upper bounds on
the reconstruction error [46]. These bounds are looser than
those based on the RIC that we saw in previous sections.
However, unlike the RIC, the mutual coherence is efficiently
computable.

A practical benefit of Kirkman triples that is not shared by
Steiner triples is that the former can be served for number of
samples far less than n = (m

2

)
/3 while keeping pools balanced

(i.e. ensuring that each pool is created from the same num-
ber of samples). In fact, we can choose n to be any integer
multiple of m/3, and ensure that every pool gets the same
number of samples, as discussed in section III-F3. Notice that

the expansion, RIP-1, high girth and disjunctness properties
hold for full as well as partial Kirkman matrices, as proven in
previous sections. This allows us to characterize the properties
of the full Kirkman matrix, and use that analysis to predict
how it will behave in the clinical situation where the pooling
matrix to be served may require very specific values of m, n
depending on the prevalence rate.

Column weight: Kirkman matrices have column weight
equal to 3 - that is, each sample goes to 3 pools. It is possible
to construct matrices with higher number of pools per sample
(such as those derived from the Social Golfer Problem [38],
which will retain several benefits of the Kirman matrices: (1)
They would have the ability to serve only part of the matrix;
(2) They would retain the the expander and RIP-1 properties,
following a proof similar to the one in Section III-F4; (3) They
would not have any 4-cycles in the corresponding bipartite
graph, following a similar argument as in Section III-F5; and
(4) They would possess the disjunctness property following a
proof similar to the one in Section III-F6). Nevertheless, the
time and effort needed for pooling increases with more pools
per sample. Further, higher pools per sample will come at the
cost of a larger number of tests (if pool size is kept constant),
or larger pool size (if number of tests is kept constant). Higher
number of tests is undesirable for obvious reasons, while
larger pool size may lead to dilution of the sample within a
pool, leading to individual RT-PCR tests failing.

8) OPTIMAL BINARY SENSING MATRICES WITH RANDOM
CONSTRUCTION
While Kirkman matrices which satisfy RNSP of order k must
have at least k

√
n measurements, we can get much better

bounds in theory if we use random constructions. From [7,
Prop. 10] we see that with high probability, 0/1 Bernoulli(p)
matrices need only O(k log n) measurements in order to sat-
isfy �2-RNSP (Defn. 3) of order k, with p ∈ (0, 1) being the
probability with which each entry of the matrix is indepen-
dently 1.

In the supplemental Section S.V, we prove that �2-RNSP
is preserved by COMP. That is, the reduced matrix AX̄ ,Ȳ
obeys �2-RNSP of order k with the same parameters as the
original matrix A. Hence our method only needs O(k log n)
measurements for robust recovery of k-sparse vectors with
such random matrix constructions. Bernoulli(p) matrices are
also good for COMP – [12, Thm. 4] shows that Bernoulli(p)
matrices with p = 1/k need only O(k log n) measurements for
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exact support recovery of k-sparse vectors with COMP with
vanishingly small probability of error.

In practice, we observe that Kirkman matrices perform bet-
ter than Bernoulli(p) matrices using our method in the regime
of our problem size. This gap between theory and practice
may be arising due to the following reasons: (1) The k

√
n

lower bound for Kirkman triples is for a sufficient but not
necessary condition for sparse recovery; (2) The O(k log n)
may be ignoring a very large constant factor which affects
the performance of moderately-sized problems such as the
ones reported in this paper; and (3) The theoretical bounds
are for exact recovery with vanishingly small error, whereas
we allow some false positives and rare false negatives in our
experiments. Similar comparisons between binary and Gaus-
sian random matrices have been recently put forth in [23].
Moreover, the average column weight of Bernoulli(p) ma-
trices is pm, where m is the number of measurements. This
is typically much higher than column weight 3 of Kirk-
man matrices and hence undesirable (see Section III-F7). In
the supplemental Section S.VI, we compare the performance
of Kirkman matrices with Bernoulli(0.1) and Bernoulli(0.5)
matrices.

9) MUTUAL COHERENCE OPTIMIZED SENSING MATRICES
As mentioned earlier, the mutual coherence from Eqn. (20) is
efficient to compute and optimize over. Hence, there is a large
body of literature on designing CS matrices by minimizing
μ(A) w.r.t. A, for example [47]. We followed such a procedure
for designing sensing matrices for some of our experimental
results in Section IV-B. For this, we follow simulated anneal-
ing to update the entries of A, starting with an initial condition
where A is a random binary matrix. For synthetic experiments,
we compared such matrices with Bernoulli(p) random ma-
trices, adjacency matrices of biregular random sparse graphs
(i.e. matrices in which each column has the same weight, and
each row has the same weight - which may be different than
the column weight), and Kirkman matrices. We found that
matrices of Kirkman triples perform very well empirically in
the regime of sizes we are interested in, besides facilitating
easy pipetting, and hence the results are reported using only
Kirkman matrices.

IV. EXPERIMENTAL RESULTS
In this section, we show a suite of experimental results on
synthetic data as well as on real data.

A. RESULTS ON SYNTHETIC DATA
1) CHOICE OF SENSING MATRIX
Recall from section II that a typical RT-PCR setup can test 96
samples in parallel. Three of these tests are used as control
by the RT-PCR technician in order to have confidence that
the RT-PCR process has worked. Hence, in order to optimize
the available test bandwidth of the RT-PCR setup, the number
of tests we perform in parallel should be ≤ 93, and as close
to 93 as possible. Since in Kirkman matrices, the number of
rows must be 6t + 3 for some t ∈ Z≥0, hence we choose 93.

With this choice, the number of samples tested n has to be a
multiple of 93/3 = 31, hence we chose n = 961. This matrix
is not a full Kirkman matrix – a full matrix with 93 rows will
have 1426 columns. However, we keep the number of columns
of the matrix under 1000 due to challenges in pooling large
number of samples. Furthermore, n = 961, m = 93 satisfies
more than 10x factor improvement in testing while detecting
1% infected samples with reasonable sensitivity and speci-
ficity and is in a regime of interest for widespread screening
or repeated testing.

We also present results with a 45 × 105 partial Kirkman
matrix in the supplemental Section S.VIII. This matrix gives
2.3x improvement in testing while detecting 9.5% infected
samples with reasonable sensitivity and specificity. Further,
two such batches of 105 tests in 45 pools may be run in
parallel in a single RT-PCR setup.

2) SIGNAL/MEASUREMENT GENERATION
For the case of synthetic data, we generated k-sparse
signal vectors x of dimension n = 961, for each k in
{5, 8, 10, 12, 15, 17, 20}. We choose a wide range of k in
order to demonstrate that not only do our algorithms have
high sensitivity and specificity for large values of k, they also
keep performing reasonably, well beyond the typical operating
regime. The support of each signal vector x – given k – was
chosen by sampling a k-sparse binary vector uniformly at
random from the set of all k-sparse binary vectors. The mag-
nitudes of the non-zero elements of x were picked uniformly
at random from the range [1,32 768]. This high dynamic range
in the value of x was chosen to reflect a variance in the
typical threshold cycle values (Ct ) of real PCR experiments,
which can be between 16 and 32. From Eqn. (6), we can
infer that viral loads vary roughly as 2−Ct (setting q = 1), up
to constant multiplicative terms. In all cases, m = 93 noisy
measurements in y were simulated following the noise model
in Eqn. (3) with σ = 0.1 and q = 0.95. A 93 × 961 Kirkman
sensing matrix was used for generating the measurements.
The Poisson nature of the elements of x in Eqn. (3) was
ignored. This approximation was based on the principle that if
X ∼ Poisson(λ), then Std. Dev.(X )/E (X ) = √

λ/λ = 1/
√

λ

which becomes smaller and smaller as λ increases. The recov-
ery algorithms were tested on Q = 1000 randomly generated
signals for each value of k.

3) ALGORITHMS TESTED
The following algorithms were compared:

1) COMP (see Table 1)
2) COMP followed by NNLASSO (see Table 2)
3) COMP followed by SBL (see Table 3)
4) COMP followed by NNOMP (see Table 4)
5) COMP followed by NNLAD (see Table V)
6) COMP followed by NNLS (see Table S.VI in the Supple-

mentary)
For each algorithm any positives missed during the CS

stage but caught by DD were declared as positives, as men-
tioned in Section III-D. For small sample sizes we also tested
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TABLE 2. Performance of Comp Followed by Nnlasso (On Synthetic Data) for 93 × 961 Kirkman Triple Matrix. For Each Criterion and Each k Value, Mean
and Standard Deviation Values are Reported, Across 1000 Signals

TABLE 3. Performance of Comp Followed by Sbl (On Synthetic Data) for 93 × 961 Kirkman Triple Matrix. For Each Criterion and Each k Value, Mean and
Standard Deviation Values are Reported, Across 1000 Signals

TABLE 4. Performance of Comp Followed by Nnomp (On Synthetic Data) for 93 × 961 Kirkman Triple Matrix. For Each Criterion and Each k Value, Mean
and Standard Deviation Values are Reported, Across 1000 Signals

TABLE 5. Performance of Comp Followed by Nnlad (On Synthetic Data) for 93 × 961 Kirkman Triple Matrix. For Each Criterion and Each k Value, Mean and
Standard Deviation Values are Reported, Across 1000 Signals

COMP-BF, i.e. COMP followed by brute-force search for sam-
ples in x with non-zero values. Details of this algorithm and
experimental results with it are presented in the supplemental
Section S.IV.

4) COMPARISON CRITERIA
In the following, x̂ denotes the estimate of x. Most numerical
algorithms do not produce vectors that are exactly sparse and
have many entries with very tiny magnitude, due to issues
such as choice of convergence criterion. Since in this applica-
tion, support recovery is of paramount importance to identify
which samples in x were infected, we employed the following
post-processing step: All entries in x̂ whose magnitude fell
below a threshold τ := 0.2 × xmin were set to zero, yielding a

vector x̄. Here xmin refers to the least possible value of the viral
load, and this can be obtained offline from practical experi-
ments on individual samples. In these synthetic experiments,
we simply set xmin := 1. We observed that varying the value of
τ over a fairly wide range had negligible impact on the results,
as can be observed from Section S.XII of the supplemental
material. For SBL, we set τ to 0 and also set also negative
entries in the estimate to 0. For NNOMP, such thresholding was
inherently not needed. The various algorithms were compared
with respect to the following criteria:

1) RMSE := ‖x − x̄‖2/‖x‖2

2) Number of false positives (FP) := |{i : xi = 0, x̂i > 0}|
3) Number of false negatives (FN) := |{i : xi > 0, x̂i = 0}|
4) Sensitivity (also called Recall or True Positive rate) :=

#correctly detected positives/#actual positives
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5) Specificity (also called True Negative Rate) :=
#correctly detected negatives/#actual negatives.

5) MAIN RESULTS
It should be noted that all algorithms were evaluated on 1000
randomly generated sparse signals, given the same sensing
matrix. The average value as well as standard deviation of
all quality measures (over the 1000 signals) are reported in
the Tables I, II, III, IV, V, S.VI. A comparison of Table 1
to Tables II, III, IV, V, S.VI indicates that COMP followed by
NNLASSO/SBL/NNOMP/NNLAD/NNLS significantly reduces the
false positives at the cost of a rare false negative. The RMSE
is also significantly improved, since COMP does not estimate
viral loads. At the same time, COMP significantly reduces the
size of the problem for the CS stage. For example, for the
93 × 961 Kirkman matrix, when number of infected samples
k is 12, the average size of the matrix after COMP filtering
is ∼ 30 × 37. From Table 1 we see that Definite Defectives
classifies many positives as high-confidence positives, for k
upto 8. We note that the experimental results reported in
these tables are quite encouraging, since these experiments
are challenging due to small m and fairly large k, n, albeit
with testing on synthetic data. We noticed that running the
CS algorithms without the COMP step did not perform as well,
results for which are presented in the supplemental Section
S.IX. We observed that the advantages of our combined group
testing and compressed sensing approach holds regardless of
the sensing matrix size. For comparison, results of running
our algorithms using a 45 × 105 Kirkman matrix instead of
the 93 × 961 Kirkman matrix are presented in supplemental
Section S.VIII.

6) PARAMETER SELECTION
As mention earlier, the regularization parameters in various
estimators such as COMP-NNLASSO, COMP-NNLAD, COMP-
NNOMP, etc. are estimated via cross-validation. For these es-
timators, we therefore do not require knowledge of the σ

parameter in the noise model from Eqn. (3). The q parameter
in the noise model is set to 0.95 in all our experiments. It is a
reasonable choice as the molecule count is known to roughly
double in each cycle of RT-PCR [14]. Moreover, variation of
q in the range from 0.7 to 1 showed negligible variation in the
results of our wet-lab experiments as can be seen in Section
S.XI and Table S.VIII of the supplemental material. Also note
that we only report viral loads relative to ymin (see Eqn. (8)) -
we do not attempt to estimate ymin. These relative viral loads
are interpretable by the RT-PCR technicians since they know
tmin, the minimum Ct (threshold cycle) value observed in that
experiment. Note as well that since ymin is the viral load of the
pool with the minimum Ct value – it corresponds to the pool
with the maximum viral load in that experiment.

7) COMPARISON WITH DORFMAN POOLING
We also performed a comparison of our algorithms with
the popular two-stage Dorfman pooling method (an adaptive

TABLE 6. Expected Number of Tests Needed by Optimal Dorfman Testing
for Number of Samples (n) 105 and 961 for Various k. Note That Our
Proposed Methods Based on CS Require Much Fewer Tests (45 and 93)
Typically, and Do Not Require Two Rounds of Testing

method), with regard to the number of tests required. In the
first stage of the Dorfman pooling technique, the n samples
are divided into n/g pools, each of size g. Each of these n/g
pools are tested, and a negative result leads to all members
of that pool being considered negative (i.e. non-infected).
However, the pools that are tested positive are passed onto
a second stage, where all members of those pools are indi-
vidually tested. The optimal pool size g∗ will minimize the
expected number of tests taken by this process (given that the
membership in each pool is decided randomly). A formula
for the expected number of tests taken by Dorfman testing is
derived in [2]. The derivation in [2] assumes the following:
(1) Any given sample may be positive with probability p,
independently of the other samples; (2) The number of sam-
ples n is divisible by the pool size g. We modify the formula
from [2] for the case that n is not divisible by g (supplemental
section S.XIII), and find g∗ by choosing the value of g which
minimizes this number. We set p = k/n, so that out of n
samples, the number of infected samples is k in expectation.
Table VI shows the expected number of tests computed from
the formula in supplemental section S.XIII, assuming that the
expected number of infected samples k (and thus the optimal
pool size g∗) is known in advance. We also empirically veri-
fied the expected number of tests by performing 1000 Monte
Carlo simulations of Dorfman testing with the optimal pool
size g∗ for each case, and did not observe much deviation from
the numbers reported in Table VI. Comparisons of Tables I,
II, III, IV with the two-stage Dorfman pooling method in VI
show that our methods require much fewer tests, albeit with a
slight increase in number of false negatives. Moreover, all our
methods are single-stage methods and therefore require less
time for testing, unlike the Dorfman method which requires
two stages of testing.

8) ESTIMATION OF NUMBER OF INFECTED SAMPLES
The number of CS measurements for successful recovery
depends on the number of non-zero elements (�0 norm) of
the underlying signal. For example, this varies as O(k log n)
for randomized sensing matrices [5] or as O(max(k2,

√
n) for

deterministic designs [22]. There is a lower bound of k
√

n
measurements for certain types of expander matrices to satisfy
a sufficient (but not necessary) condition for recovery [23].
However, in practice k is always unknown, which leads to
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TABLE 7. True Sparsity k Versus Estimated Sparsity kest (On Synthetic Data)
for 93 × 961 Kirkman Matrix. Mean and Standard Deviation of Estimated
Sparsity is Computed Over 1000 Signals for Each k

TABLE 8. Comparison of Mean Number of False Negative and False
Positives for COMP, COMP-SBL and COMP-SBL With Graceful Failure Mode
for High Values of k for the 93 × 961 Kirkman Matrix. The Algorithm Goes
Into Graceful Failure Mode When Estimated Sparsity is Greater Than or
Equal to 20

the question as to how many measurements are needed as a
minimum for a particular problem instance. To address this,
we adopt the technique from [48] to estimate k on the fly
from the compressive measurements. This technique does not
require signal recovery for estimating k. The relative error in
the estimate of k is shown to be O(

√
log m/m) [49], which di-

minishes as m increases (irrespective of the true k). Table VII
shows the accuracy of our sparsity estimate on synthetic data.

The advantage of this estimate of k is that it can drive the
COMP-BF algorithm, as well as act as an indicator of whether
there exist any false negatives. We can use this knowledge to
enable a graceful failure mode. In this mode, if our estimate
of k is larger than what the CS algorithms can handle, we
return only the output of the COMP stage. Hence in such
rare cases, it minimizes the number of false negatives, at the
cost of many false positives. In these cases a second stage
of individual testing must be done on the samples which
were declared positive. Table VIII shows the effect of using
graceful failure mode with COMP followed by SBL for large
values of k. In these experiments, output of COMP is returned
if the estimated sparsity, kest , is greater than or equal to 20.
We see that COMP-SBL with graceful failure mode matches
the behaviour of COMP-SBL at sparsity value lower than 20,
and that of COMP at sparsity value greater than 20. At sparsity
equal to 20, it compromises between the high false positives
of COMP, and the high false negatives of COMP-SBL. This is
because of the variability in kest , which can occasionally be
less than 20 even if k is equal to 20.

B. RESULTS ON REAL DATA
We acquired real data in the form of test results on pooled
samples from two labs: one at the National Center of Bio-
logical Sciences (NCBS) in India, and the other at the Wyss
Institute at the Harvard Medical School, USA. In both cases,
viral RNA was artificially injected into k of the n samples

where k � n. From these n samples, a total of m mixtures
were created. For the datasets obtained from NCBS that we
experimented with, we had m = 16, n = 40, k ∈ {1, 2, 3, 4}.
For the data from the Wyss Institute, we had m = 24, n = 60,
k = 2 and m = 30, n = 120, k = 2. The results for all these
datasets are presented in Table IX. The 16 × 40 and 24 × 60
pooling matrices were obtained by performing a simulated
annealing procedure to minimize the mutual coherence (see
Section III-F9), starting with a random sparse binary matrix
as initial condition. The 30 × 120 pooling matrix was a Kirk-
man matrix. We used q = 0.95 in all cases to obtain relative
viral loads from Ct values, using Eqn. (8). While q may be
estimated from raw RT-PCR data (Section S.XI, supplemen-
tal material), we found q = 0.95 to be a reasonable choice,
and did not observe any variation in the number of reported
positives when this parameter was changed between 0.7 to 1.
For NNLASSO, NNLS and NNLAD, we use τ = 0.2 × ỹmax as
the threshold below which an estimated relative viral load is
set to 0, since value of xmin may not always be available for
real experiments. Here ỹmax is the relative viral load of the
pool with the largest Ct value, and consequently the smallest
viral amount. We see that the CS algorithms reduce the false
positives, albeit with an introduction of occasional false neg-
atives for higher values of k. We also refer the reader to our
work in [6] for a more in-depth description of results on real
experimental data.

C. DISCUSSION
Each algorithm we ran presented a different set of tradeoffs
between sensitivity and specificity. While COMP provides us
with sensitivity equal to 1, it suffers many false positives,
especially for higher k. For other algorithms, in general both
the sensitivity and the specificity decrease as k is increased.
COMP-NNOMP (Table 4) has the highest specificity, but it
comes at the cost of sensitivity. COMP-SBL (Table 3) has the
best sensitivity for most values of k amongst the CS algo-
rithms. COMP-NNLASSO (Table 2) has better specificity than
COMP-SBL for small values of k, but loses out for k ≥ 15.
COMP-NNLAD and COMP-NNLS (Tables 5 and S.VI) start be-
having like COMP for higher values of k, effectively bounding
the number of false negatives. However, their number of false
positives is almost as much as those with COMP.

Ideally, we want both high sensitivity and high specificity
while catching a large number of infected samples. Hence, we
look at k∗, which is the maximum number of infected samples
k for which the sensitivity and specificity of the algorithm
are greater than or equal to some threshold values. For the
45 × 105 Kirkman matrix, we chose the sensitivity threshold
as 0.99 and the specificity threshold as 0.95. For the 93 × 961
Kirkman matrix, we chose both thresholds to be 0.99, since
a specificity threshold of 0.95 gives too many false positives
for 961 samples. We observed that COMP-SBL has k∗ = 10
for both matrices, which is the highest amongst all algorithms
tested. Typically we do not know the number of infections,
but a prevalence rate of infection. The number of infected
samples out of a given set of n samples may be treated as a
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TABLE 9. Results of Lab Experiments With Each Algorithm

Binomial random variable with probability of success equal
to the prevalence rate. Under this assumption, using COMP-
SBL with the 93 × 961 Kirkman matrix, we observed that the
maximum prevalence rate for which sensitivity and specificity
are both above 0.99 is 1%. Similarly, using COMP-SBL with
the 45 × 105 Kirkman matrix, we observed that the maxi-
mum prevalence rate for which sensitivity is above 0.99 and
specificity is above 0.95 is 9.5%. Thus, Tapestry is viable at
prevalence rates as high as 9.5%, while reducing testing cost
by a factor of 2.3. On the other hand, if the prevalence rate
is only 1% or less, it can reduce testing cost by a factor of
10.3.

Comments about sensitivity and specificity: We observe
that the sensitivity and specificity of our method on syn-
thetic data is within the recommendations of the U.S. Food

and Drugs Administration (FDA), as provided in this docu-
ment [50]. The document provides recommendations for per-
cent positive agreement (PPA) and percent negative agreement
(PNA) of a COVID-19 test with a gold standard test (such
as RT-PCR done on individual samples). PPA and PNA are
used instead of sensitivity and specificity when ground-truth
positives are not known. Since for synthetic data we know
the ground truth positives, we compare their PPA and PNA
recommendations with the sensitivity and specificity observed
by us. We use COMP-SBL for comparison, since we consider it
to be our best method.

For ‘Testing patients suspected of COVID-19 by their
healthcare provider’ (point G.4.a, page 7 of [50]), the doc-
ument considers positive and negative agreement of ≥ 95%
as acceptable clinical performance (page 9, row 2 of table
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in [50]). The sensitivity and specificity of our method on the
93 × 961 Kirkman matrix is within this range for k ≤ 17 in-
fected samples (Table 3). For the 45 × 105 matrix, it is within
this range for k ≤ 10 infected samples (Table S.XII).

For ‘Screening individuals without symptoms or other rea-
sons to suspect COVID-19 with a previously unauthorized
test’ (point G.4.c, page 10 of [50]), the document considers
positive agreement of ≥ 95% and negative agreement of ≥
98% as acceptable (along with the lower bounds of two-sided
95% confidence interval to be > 76% and > 95% respec-
tively). Similarly, for ‘Adding population screening of individ-
uals without symptoms or other reasons to suspect COVID-19
to an authorized test’ (point G.4.d, page 12 of [50]) the docu-
ment has the same criterion as for point G.4.c. Our sensitivity
and specificity are within the ranges specified for the 93 × 961
Kirkman matrix for k ≤ 12 (Table 3). While we do not report
confidence intervals (as suggested for point G.4.c and G.4.d
of [50]), the standard deviation of sensitivity and specificity
reported by us are fairly low, and we believe the performance
of our method is within the recommendations of [50]. Since
our numbers are on synthetic data - these numbers may vary
upon full clinical validation, especially considering that there
may be more sources of error in a real test. Nonetheless, we
find these numbers to be encouraging.

Further, we note that while our method incurs an occasional
false negative, the viral loads of these false negative values
are fairly small. This means that super-spreaders (who are
believed to have high viral load [10]) will almost always
be caught by our method. In the supplemental material, we
discuss this in more detail in Sec. S.X, and provide a table of
mean and standard deviations of viral loads of false negatives
(Table S.VII) for all our methods on synthetic data.

Tapestry can detect certain errors caused by incorrect pipet-
ting, pool contamination, or failed RT-PCR amplification of
some pools. This is done by performing a consistency check
after the COMP stage. If there is a pool which is positive, but
all of the samples involved in it have been declared negative
by COMP, this is indicative of error. In case of error, we list
all samples categorized by the number of tests that they are
positive in. However, the COMP consistency check will not
catch all errors. Alternately, the noisy COMP [12] algorithm
may be used to correct for errors in the COMP stage. A full
exposition on detection and correction of errors is left as
future work.

Although Tapestry can work with a variety of sensing ma-
trix designs, we found Kirkman matrices to be most suitable
for our purposes. This is due to lower sparsity and smaller
pool sizes presented by Kirkman matrices. Our algorithms
also exhibit a more stable behaviour over a wide range of the
number of infected samples k when using Kirkman matrices.
We compare some alternative matrix designs in Section S.VI.

V. RELATION TO PREVIOUS WORK
We review some recent work which apply CS or combi-
natorial group testing for COVID-19 testing. The works
in [51]–[53] adopt a nonadaptive CS based approach. The

works in [54]–[56] use combinatorial group testing. Com-
pared to these methods, our work is different in the following
ways (also see [6]):

1) Real/Synthetic data: Our work as well as that in [52]
have tested results on real data, while the rest present
only numerical or theoretical results.

2) Quantitative Noise model: Our work uses the
physically-derived noise model in Eqn. (3) (as opposed
to only Gaussian noise). This noise model is not
considered in [51]. The work in [53] considers unknown
noise. Combinatorial group testing methods [54]–[56]
do not make use of quantitative information. The work
in [52] uses only binary test information, even though
the decoding algorithm is based on CS.

3) Algorithms: The work in [51] adopts the BPDN tech-
nique (i.e P1 from Eqn. (11)) as well as the brute-force
search method for reconstruction. The work in [52],
[57] uses the LASSO, albeit with a ternary representa-
tion for the viral loads. The work in [53] uses NNLAD.
We use the LASSO with a non-negative constraint, the
brute-force method, NNLAD, as well as other techniques
such as SBL and NNOMP, all in combination with COMP.
The work in [51] assumes knowledge of the (Gaussian)
noise variance for selection of ε in the estimator in Eqn.
(11), whereas we use cross-validation for all our esti-
mators. The technique in [52] uses a slightly different
form of cross-validation for selection of the regular-
ization parameter in LASSO. Amongst combinatorial
algorithms, [56] uses COMP, while [54] and [55] use
message passing.

4) Sensing matrix design: The work in [51] uses randomly
generated expander graphs, whereas we use Kirkman
matrices. The work in [52] uses randomly gener-
ated sparse Bernoulli matrices or Reed-Solomon codes,
while [55] uses Low-Density Parity Check (LDPC)
codes [58]. The work in [53] uses Euler square matri-
ces [59], and the work in [56] uses the Shifted Transver-
sal Design [60]. Both are deterministic disjunct matrices
like Kirkman matrices. Each sample in our matrix par-
ticipates in 3 pools as opposed to 5 pools as used in [55],
6 pools as used in [52] and [56], and 8 pools as used
in [53], which is advantageous from the point of view
of pipetting time.

5) Sparsity estimation: Our work uses an explicit sparsity
estimator and does not rely on any assumption regarding
the prevalence rate.

6) Numerical comparisons: We found that COMP-NNLAD

works better than the NNLAD method used in [53] on
our matrices (see Tables 5 and S.XIX). We also found
that COMP-NNLASSO and COMP-SBL have better sensi-
tivity and specificity than COMP-NNLAD (see Tables 2,
3, and V). The method in [52] can correctly identify
up to 5/384 (1.3%) of samples with 48 tests, with an
average number of false positives that was less than
2.75, and an average number of false negatives that
was less than 0.33. On synthetic simulations with their
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48 × 384 Reed-Solomon code based matrix (released
by the authors) for a total of 100 x vectors with �0

norm of 5 using COMP-NNLASSO, we obtained 1.51
false positives and 0.02 false negatives on an average
with a standard deviation of 1.439 and 0.14 respectively.
Using COMP-SBL instead of COMP-NNLASSO with all
other settings remaining the same, we obtained 1.4 false
positives and 0.0 false negatives on an average with a
standard deviation of 1.6 and 0.1 respectively. As such,
a direct numerical comparison between our work and
that in [52] is not possible, due to lack of available real
data, however these numbers yield some indicator of
performance.

7) Number of Tests: We use 93 tests for 961 samples while
achieving more than 0.99 sensitivity and specificity for
k = 10 infections using COMP-SBL. In a similar set-
ting, [55] use 108 tests for Q = 1000 samples under
prevalence rate 0.01 for exact 2-stage recovery. The
work in [56] uses 186 tests for 961 samples under the
same prevalence rate, albeit for sensitivity equal to 1 and
very high specificity. Matrix sizes studied in other work
are very different than ours. The work in [61] builds
on top of our Tapestry scheme to reduce the number of
tests, but it is a two-stage adaptive technique and hence
will require much more testing time.

VI. CONCLUSION
We have presented a non-adaptive, single-round technique for
prediction of infected samples as well as the viral loads, from
an array of n samples, using a compressed sensing approach.
We have empirically shown on synthetic data as well as on
some real lab acquisitions that our technique can correctly
predict the positive samples with a very small number of false
positives and false negatives. Moreover, we have presented
techniques for appropriate design of the mixing matrix. Our
single-round testing technique can be deployed in many dif-
ferent scenarios such as the following:

1) Testing of 105 symptomatic individuals in 45 tests.
2) Testing of 195 asymptomatic individuals in 45 tests

assuming a low rate of infection. A good use case for
this is airport security personnel, delivery personnel, or
hospital staff.

3) Testing of 399 individuals in 63 tests. This can be used
to test students coming back to campuses, or police
force, or asymptomatic people in housing blocks and
localities currently under quarantine.

4) Testing of 961 people in 93 tests, assuming low in-
fection rate. This might be suitable for airports and
other places where samples can be collected and tested
immediately, and it might be possible to obtain liquid
handling robots.

Outputs: We have designed an Android app named Byom
Smart Testing to make our Tapestry protocol easy to deploy
in the future. The app can be accessed at [62]. We are also
sharing our code and some amount of data at [63]. More
information is also available at our website [64].

Future work: Future work will involve extensive testing
on real COVID-19 data, and extensive implementation of a
variety of algorithms for sensing matrix design as well as
signal recovery, keeping in mind the accurate statistical noise
model and accounting for occasional pipetting errors.
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