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Abstract—In response to anticipated shortages of ventilators
caused by the COVID-19 pandemic, many organizations have de-
signed low-cost emergency ventilators. Many of these devices are
pressure-cycled pneumatic ventilators, which are easy to produce
but often do not include the sensing or alarm features found on
commercial ventilators. This work reports a low-cost, easy-to-
produce electronic sensor and alarm system for pressure-cycled
ventilators that estimates clinically useful metrics such as pressure
and respiratory rate and sounds an alarm when the ventilator
malfunctions. A low-complexity signal processing algorithm uses a
pair of nonlinear recursive envelope trackers to monitor the signal
from an electronic pressure sensor connected to the patient airway.
The algorithm, inspired by those used in hearing aids, requires little
memory and performs only a few calculations on each sample so
that it can run on nearly any microcontroller.

Index Terms—Biomedical monitoring, biomedical signal
processing, envelope detectors, pressure measurement, ventilators.

I. INTRODUCTION

THE COVID-19 crisis may cause shortages of ventilators
used to treat patients with severe respiratory symptoms [1].

COVID-19 patients can experience acute respiratory distress
syndrome (ARDS), which causes extreme difficulty breathing
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due to fluid leaking into the lungs [2]–[4]. Mechanical ventila-
tion can help to treat these patients by providing oxygen while
the underlying disease runs its course [2], [5], [6]. Appropriate
oxygen delivery is a mainstay of critical care and in COVID-19
can prevent death from ARDS and hypoxemia.

Because the growing number of COVID-19 cases may ex-
ceed the number of available ventilators, dozens of compa-
nies, university research teams, and other organizations have
developed emergency ventilators under special authorizations
from regulators [7], [8]. Pressure-cycled pneumatic ventilators,
like the Illinois RapidVent developed by the authors’ insti-
tutions [9], [10], are especially attractive for this emergency
because they can be rapidly and inexpensively manufactured.
They are powered by pressurized gas and controlled by a me-
chanical modulator, so they require no electronic components
to operate [11]–[13]. However, they lack the sensors found in
more-expensive commercial ventilators that provide closed-loop
control, monitoring, and alarm capabilities. Clinicians rely on
these electronic systems to adjust ventilator settings and to alert
them to ventilator malfunctions or patient activity that require
their attention. Without sensing and alarm features, clinicians
must constantly monitor each patient and cannot be sure that
ventilator settings are correct.

This work describes an electronic sensor and alarm system
for pressure-cycled emergency ventilators. Like the pneumatic
ventilators it is designed to complement, this device must be
of low cost and must be easy to produce from readily available
components. The most important function of the device is to
sound an alarm when the breathing cycle is abnormal. Because
pressure-cycled ventilators use pressure levels to switch between
inhalation and exhalation modes, they produce distinctive pres-
sure waveforms [14], [15]. The sensor and alarm system can
analyze this pressure signal to determine whether the ventilator
is cycling normally. The same pressure signal can be used to
detect sudden pressure loss due to disconnection and pressure
spikes due to mechanical failure and to estimate clinically useful
parameters such as the peak inspiratory pressure (PIP), positive
end-expiratory pressure (PEEP), and respiratory rate (RR).

These sensing and alarm functions reproduce most of the
functionality of similar commercial monitoring products. A full-
featured monitoring system would also measure tidal volume,
or the amount of air delivered with each breath, and the oxygen
concentration in the air, and it would trigger alarms based on
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Fig. 1. Prototype of the Illinois RapidAlarm sensor and alarm system attached
to a pressure-cycled ventilator and artificial lung.

these metrics [6], [8], [13]. However, tidal volume and oxygen
concentration cannot be inferred from the pressure waveform
alone and would require more complex equipment.

The device reported here, known as the Illinois RapidAlarm
and shown in Fig. 1, monitors the pressure-cycled ventilator
using an electronic pressure sensor that connects to the patient
airway using a standard respiratory tubing adapter. A microcon-
troller analyzes the pressure signal using low-complexity signal
processing algorithms inspired by audio processing methods
used in hearing aids. Because the proposed algorithm does not
store past samples of the signal in memory and performs only
a few calculations on each sample, it can run on nearly any
microcontroller. The hardware design files and software code for
the Illinois RapidAlarm are available online under open-source
licenses.1 This work describes the design of the system, with
particular attention to the signal processing algorithm used to
estimate breathing metrics and detect malfunctions. The algo-
rithm is validated using animal data and a hardware prototype
is demonstrated using an artificial lung.

II. PRESSURE-CYCLED VENTILATION

Pressure-cycled pneumatic ventilators, which are powered by
pressurized gas, are useful in the present emergency because they
have low cost, are easy to manufacture, and require no electronic
components for basic operation. They provide pressurized gas
to the patient airway and cycle between inhalation and exhala-
tion modes using a pressure-switching mechanism controlled
by pneumatic logic, as shown in Fig. 2. During inhalation,
high-pressure gas flows from the ventilator to the patient’s lungs.
As the lungs inflate, the pressure in the airway increases until it
reaches the peak inspiratory pressure (PIP), a maximum pressure
threshold that can be adjusted by the user.

Once PIP is reached, the modulator opens a path to the atmo-
sphere that allows air from the lungs to exit the ventilator. During
exhalation, the pressure in the airway drops steadily, but does
not fall to atmospheric pressure. Instead, once it drops below
the positive end-expiratory pressure (PEEP), a spring closes the
path to the atmosphere to initiate the next inhalation. During
assisted-breathing mode, also known as pressure-support mode,

1[Online]. Available: https://rapidalarm.github.io

Fig. 2. A pressure-cycled ventilator uses positive pressure to deliver gas to
the patient airway. During normal operation, it produces a distinctive pressure
waveform.

the patient initiates a breath by inhaling to pull the pressure
below the PEEP threshold. The clinician can control flow by
adjusting a PIP dial and a rate dial, which determines expiratory
time.

In pneumatic ventilators, the PEEP threshold is a fixed frac-
tion of PIP determined by the mechanical design of the device.
Because COVID-19 patients can require PEEP levels in the
range 10–15 cm H2O and PIP levels in the range 30–40 cm
H2O [4], some COVID-19 emergency ventilators are designed
with smaller PIP-to-PEEP ratios than commercial ventilators.
For example, the Illinois RapidVent has a measured PIP-to-
PEEP ratio of about 2.4.

Pressure-cycled ventilators produce characteristic pressure
waveforms, as shown in Fig. 2. During mandatory breathing,
the airway pressure rises from PEEP to PIP during inspiration,
then drops from PIP to PEEP during exhalation. During assisted
breathing, the basic shape is the same, but the pressure may fall
below PEEP when the patient initiates inhalation. The pressure
signal can be used to estimate the PIP, PEEP (or minimum
pressure for assisted breathing), and RR.

Because pressure-cycled ventilators produce well-defined
pressure waveforms during normal operation, the pressure sig-
nal can also be used to detect malfunctions. If the gas circuit
becomes obstructed or disconnected, the modulator will stop
cycling between inhalation and exhalation modes, causing the
pressure signal to remain constant. The proposed alarm system
uses low-complexity signal processing algorithms to detect this
constant-pressure condition.

III. SENSING SYSTEM

To ensure that it is broadly useful in as many settings as
possible, the sensor and alarm system is not designed to be

https://rapidalarm.github.io
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Fig. 3. An electronic pressure sensor monitors gas pressure in the patient
airway. A low-power microcontroller processes the pressure signal to generate
measurements and alarms.

integrated with any particular model of ventilator. Rather, it is
a standalone component that can be attached to any pressure-
cycled ventilator. Because it is intended to address an emergency
shortage, the design prioritizes cost and ease of production. The
system uses low-cost, widely available parts, can be assembled
on a two-layer printed circuit board using either through-hole or
surface-mount components, and runs on a standard 5 volt power
supply.

The sensor and alarm system is shown in Fig. 3. The de-
vice connects to the patient airway using standard respiratory
tubing adapters attached on the patient side of the ventilator.
The electronic system consists of a microcontroller, a display
module, push buttons, a buzzer, and a pressure sensor. Our im-
plementation uses the 8-bit microcontroller ATmega328, which
was selected for its ease of use and wide availability. It is
driven by an internal 8 MHz clock and does not require an
external oscillator. Because the computational requirements of
the proposed algorithm are low, as explained in Section VII,
nearly any microcontroller with an analog-to-digital converter
and several digital inputs and outputs should be suitable for the
sensor and alarm module. The open-source firmware provides
a hardware-agnostic C implementation of the monitoring algo-
rithm that can be ported to other systems.

The user interface consists of three buttons and a four-
character seven-segment display. In display mode, the display
cycles through the three metrics (PIP, PEEP, and RR) every few
seconds. The buttons are used to enable and disable the alarm and
to adjust user-configurable alarm settings, which are described
in Section VI. The alarm itself is a 4 kHz piezoelectric buzzer.

The key component in the system is the pressure sensor. The
sensor interfaces with the patient airway via a tube and converts
pressure levels into electrical signals, which are transmitted
to the analog-to-digital converter on the microcontroller. To
capture the range of pressure levels produced by pressure-cycled
ventilators, the sensor should have a range of at least 0 to 50 cm
H2O. In our implementation, we used the NXP MPXV5010
piezoresistive pressure sensor, which has a pressure range of
about 0 to 100 cm H2O and provides output voltages from about
0 to 5 volts.

IV. PRESSURE TRACKING

The behavior of pressure-cycled ventilators is well charac-
terized by the pressure signal measured at the patient airway.

Fig. 4. Alarm conditions and clinical metrics are derived from the measured
pressure signal.

Fig. 5. A pair of recursive peak detectors track the envelope of the pressure
signal without storing past samples in memory.

During normal operation, the pressure cycles between PIP and
PEEP once per breath, as shown in Fig. 2. In an ideal system,
breaths could be tracked by simply finding maxima and minima
in this signal. However, real signals do not always increase
and decrease monotonically like the waveform in that figure.
The tracking algorithm must be robust against small pressure
variations and must have low computational requirements so
that it can run on inexpensive, low-power microcontrollers.

The proposed processing system, illustrated in Fig. 4, uses a
pair of nonlinear recursive filters to track the envelope of the
pressure signal. Recursive filters of the form y[t] = ay[t− 1] +
bx[t] are widely used in signal processing for their computational
efficiency: because they use feedback from the output to the
input of the filter, they can perform many filtering tasks with less
memory and fewer multiplications than feed-forward filters [16].
Envelope tracking uses a nonlinear version of this recursive
filter: each performs a moving average, but gives more weight
to changes in one direction than another. The high-pressure
envelope increases quickly but decreases slowly, so it follows
the top of the pressure signal, while the low-pressure envelope
decreases quickly and increases slowly, following the bottom of
the signal, as illustrated in Fig. 5. Envelope detection is widely
used as part of dynamic range compression in music production
and in digital hearing aids, which also have severe computational
constraints [17], [18].

Let p[t] be the discrete-time pressure signal from the sensor,
where t is the sample index. The high-pressure envelope vhigh[t]
and the low-pressure envelope vlow[t] are given by

vhigh[t]=

{
αAvhigh[t−1] + (1−αA)p[t], if p[t] ≥ vhigh[t−1]
αRvhigh[t−1] + (1−αR)p[t], if p[t] < vhigh[t−1]

(1)
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Fig. 6. The inhalation/exhalation state of the ventilator is inferred from attack
events on the high-pressure and low-pressure peak detectors.

vlow[t]=

{
αAvlow[t−1] + (1−αA)p[t], if p[t] ≤ vlow[t−1]
αRvlow[t−1] + (1−αR)p[t], if p[t] > vlow[t−1],

(2)

where αA ∈ [0, 1] and αR ∈ [0, 1] are called the attack coef-
ficient and release coefficient, respectively. These coefficients
determine the relative importance of old and new samples in the
moving average; they control how quickly the envelope tracker
responds to changes in the pressure signal.

When the tracker is responding rapidly to a change in signal
level (an increase for the high-pressure envelope or a decrease
for the low-pressure envelope), it is said to be in attack mode.
The attack coefficient αA is relatively small so that the tracker
quickly forgets past estimates and follows the new sample. For
example, in our implementation at 100 samples/sec, αA = 0.9
so that the 1/e decay time of past samples in attack mode is
around 100 ms.

When the tracker is responding slowly (to a decrease in
pressure for the high-pressure envelope or an increase for the
low-pressure envelope), it is said to be in release mode. The
release coefficient αR is closer to 1 so that the envelope decays
more slowly, allowing the algorithm to ignore small fluctuations
in pressure within a single breath cycle. The rate of decay in
release mode should be slow enough that the high and low
envelopes stay far apart during a normal breath cycle. If the
tracker is too slow, however, it could miss breaths when the
pressure settings are adjusted or, worse, might take too long to
trigger an alarm when the ventilator stops working. The choice
of αR is discussed further in Section VI-C.

Notice that each recursive envelope tracker need only store
one previous envelope value in memory. For comparison, a
system using a rolling maximum/minimum filter approach at
a sample rate of 100 samples per second would need to store
about 200 past measurements for a window size of two seconds.

V. VENTILATION MONITORING

The monitoring system estimates three metrics: PIP, PEEP (or
the minimum pressure of the breath cycle for assisted breathing),
and RR. All three of these metrics are tracked by detecting
inhalation and exhalation cycles from the pressure envelopes,
as shown in Fig. 6.

The two envelope trackers each store the most recent pressure
sample that triggered their attack mode, as shown in the figure.
During each inhalation cycle, there are several attack-mode

samples in a row for the high-pressure envelope. During ex-
halation, there are several attack-mode samples in a row for
the low-pressure envelope. The system tracks breath cycles by
looking for low-pressure attack events that follow high-pressure
attack events and vice versa. A low-pressure attack event causes
the system to switch from inhalation to exhalation mode, and a
high-pressure attack event causes it to switch from exhalation to
inhalation mode.

A. PIP and PEEP

When a mode switch occurs, the previous attack value is
used to update the corresponding PIP or PEEP estimate. That
is, when a low-pressure attack event occurs, the PIP display is
updated with the most recent high-pressure attack value. When a
high-pressure attack event occurs, the PEEP display is updated
with the most recent low-pressure attack value. Let Vhigh[n]
and Vlow[n] be the peak values of the high- and low-pressure
envelopes, respectively, during breath cycle n, and let Thigh[n]
and Tlow[n] be the sample indices at which they occur.

Both PIP and PEEP are recursively smoothed over time to
remove small fluctuations:

PIP[n] = αSPIP[n− 1] + (1− αS)Vhigh[n] (3)

PEEP[n] = αSPEEP[n− 1] + (1− αS)Vlow[n], (4)

where αS is a smoothing coefficient between 0 and 1. This is
a linear filter with an exponential impulse response; the contri-
bution of sample n0 to the moving average decays as α(n−n0)

S .
The closer αS is to 0, the more quickly the display will respond
to changes. We used αS = 0.5 in our implementation.

B. Respiratory Rate

The system also keeps track of the time elapsed between
these mode-switch events. A complete breath cycle is measured
between high-pressure peaks. After smoothing, the average
number of samples per breath is

Tb[n] = αSTb[n−1] + (1− αS)(Thigh[n]− Thigh[n−1]).
(5)

Then the respiratory rate in breaths per minute is given by

RR[n] =
60fs
Tb[n]

, (6)

where fs is the pressure sensor sample rate in samples per
second. Note that although they are described mathematically as
signals, in practice Thigh and Tlow are implemented as counters
that reset on each breath cycle, as described in Section VII.

Figure 7 shows estimated PIP, PEEP, and respiratory rate
values superimposed on a pressure waveform measured using
the Illinois RapidVent connected to an artificial lung. Unlike
the pressure envelopes, the displayed measurements are updated
only once each breath cycle. Smoothing over multiple breaths
prevents the values from changing too quickly, as observed in
the respiratory rate plot.
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Fig. 7. Displayed PIP, PEEP, and respiratory rate values for experimental data
from an artificial lung.

TABLE I
ALARM CONDITIONS

VI. ALARM CONDITIONS

The monitoring device triggers alarms in several conditions
that indicate the ventilator is not working properly, as shown in
Table I. The alarm thresholds may vary between patients and
between ventilator devices and so they are configurable by the
user. The table shows the range of values that users of the Illinois
RapidVent may select; these were chosen in consultation with
local intensive-care experts.

A. Pressure and Respiratory Rate

The high- and low-pressure alarms trigger immediately if
the sensor detects a pressure outside the permitted range. In
a pressure-cycled ventilator, the pressure should never exceed
the PIP value set by the user. A pressure reading above the range
of the PIP dial indicates a mechanical failure. The low-pressure
threshold pmin can be set close to zero, that is, atmospheric
pressure, to detect a disconnect in the breathing circuit. Note
that because pressure-cycled ventilators apply positive pressure
even during exhalation, the airway should never drop to at-
mospheric pressure unless the patient is attempting to breathe
spontaneously.

The high- and low-respiratory-rate alarms trigger if the aver-
age respiratory rate falls outside the range specified by the user.
A high respiratory rate could indicate a low tidal volume, for
example due to deteriorating lung compliance, that requires a
clinician’s attention. The low-respiratory-rate alarm has some
overlap with the noncycling alarm, but it triggers based on

Fig. 8. Different pressure signals that should trigger a noncycling alarm.

the average time between complete breath cycles, while the
noncycling alarm is triggered by the time elapsed since the last
breath event.

B. Noncycling Conditions

The noncycling alarm condition is more complex than the first
four. It must detect when the breathing cycle has stopped, which
can happen in several ways, as illustrated in Fig. 8. Thus, the
alarm can be triggered by several conditions.

First, the alarm triggers if too much time has passed since the
last attack event of either envelope. For example, if the pressure
drops to PEEP and remains constant, as shown in the top panel
of Fig. 8, there will be no attack events in the high-pressure
envelope tracker, so it will trigger the alarm. If, however, the
pressure fluctuates slightly over time, as shown in the bottom
panel, the tracking algorithm will still detect frequent peaks.

To handle this case, the alarm will also trigger if the high-
pressure envelope and low-pressure envelope are too close to-
gether. In pressure-cycled ventilators, the ratio between PIP
and PEEP is a constant, here denoted rnom, determined by
the mechanical design of the device. For the Illinois Rapid-
Vent, the nominal ratio is around 2.4. An alarm is triggered
if vhigh[t]/vlow[t] drops below rmin, a pressure-ratio threshold
between 1 and rnom. The alarm also triggers if the difference
vhigh[t]− vlow[t] is too small. In our implementation, this min-
imum difference is fixed at 3 cm H2O.

C. Parameter Selection

Because the pressure envelopes vhigh[t] and vlow[t] naturally
move toward each other during most of the breath cycle, the
release coefficientαR and the high-to-low-pressure-ratio thresh-
old rmin jointly determine when the high-to-low-pressure-ratio
alarm will trigger. This alarm condition can detect several types
of ventilator malfunctions with low computational complexity.



COREY et al.: LOW-COMPLEXITY SYSTEM AND ALGORITHM FOR AN EMERGENCY VENTILATOR SENSOR AND ALARM 1093

Fig. 9. The parametersαR and rmin must be carefully chosen to avoid several
types of detection errors.

However, it is also prone to false positives and false negatives
and its parameters must be carefully calibrated.

Figure 9 shows three types of errors that could result from
poorly chosen values of αR and rmin. First, if rmin is too
small—that is, if it is close to 1—the system could mistake noise
in the pressure signal for breath cycles. The alarm would then
fail to trigger in the event of an obstruction that prevents the
ventilator from cycling but still maintains a positive pressure.
However, if rmin is too large—that is, close to rnom—it could
trigger false alarms during normal breath cycles as the two
envelopes fluctuate, as shown in the middle of the figure.

The false-positive ratio alarm could be prevented by increas-
ing the value of αR to make it closer to 1. A larger release
coefficient causes the envelopes to decay more slowly between
breaths, so that the ratio vhigh[t]/vlow[t] varies less over the
breath cycle. However, large values of αR can impair the ability
of the system to adapt to changes in the pressure signal. For
example, if a clinician lowers the PIP setting using the dial
on the ventilator, as shown in the bottom panel of Fig. 9, the
high-pressure envelope could miss the peaks of several breath
cycles. These missed attack-mode samples could falsely trigger
the time-since-last-peak alarm and would also cause errors in
the PIP, PEEP, and RR calculations.

These three cases illustrate the tradeoffs involved in the
selection of αR and rmin. To prevent the second error type,
the false alarm within a normal breath cycle, we can constrain
the relationship between the two parameters: as rmin increases,
αR must also increase. In our implementation, we have set
αR so that, if the pressure were to fall suddenly from PIP to
PEEP and remain constant at PEEP, the noncycling alarm’s
high-to-low-envelope-ratio condition (vhigh[t]/vlow[t] < rmin)
would be triggered at around the same time as its time-since-
last-peak condition (t− Thigh[n] > Tmax) for the default alarm
setting ofTmax = 15 seconds. In this scenario, the high-pressure

envelope decays as

vhigh[t] = PEEP + α
t−Thigh

R (PIP− PEEP). (7)

The alarm will therefore be triggered when

vhigh[t] = rmin × PEEP, (8)

or

rmin = 1 + α
t−Thigh

R

(
PIP

PEEP
− 1

)
. (9)

Setting the elapsed time to the alarm time Tmax and solving for
αR, we have

αR =

(
rmin − 1

rnom − 1

)1/Tmax

. (10)

Having fixedαR as a function of rmin, we must choose rmin to
trade off between false positives and false negatives. Choosing
small values of rmin andαR can lead to false negatives, as shown
in the top panel of Fig. 9. Choosing large values can lead to
false positives, as shown in the bottom panel. Because false
negatives are worse than false positives in a life-support device,
rmin should be chosen to be comfortably larger than 1. In our
implementation, we use rmin = 1.5.

Figure 10 shows alarms triggered by experimental data from
the Illinois RapidVent connected to an artificial lung. The venti-
lator was obstructed and disconnected to create noncycling con-
ditions. Notice that the low-pressure alarm triggers immediately
when the breathing circuit is disconnected, while the noncycling
alarm triggers after 15 seconds based on the user-specified alarm
threshold.

VII. ALGORITHM IMPLEMENTATION

The monitoring algorithm can be implemented with low com-
putational complexity and a small memory footprint. The core
loop of the algorithm is shown in Algorithm 1. The algorithm
state comprises a binary inhalation/exhalation state variable;
seven floating-point values, the envelopes vhigh and vlow, the
breath-cycle peaks Vhigh and Vlow, and the estimated PIP, PEEP,
and RR; and the three integer counters Tpeak, Thigh, and Tlow.
The program must also store the user-configurable alarm thresh-
olds in memory.

For every observed sample, the envelopes are updated ac-
cording to (1) and (2) and the alarm conditions from Table I are
checked. Breaths are tracked using a state variable that toggles
from inhalation to exhalation at the first low-pressure attack
value in each breath cycle and from exhalation to inhalation at
the first high-pressure attack value in each cycle. The time since
the last attack for each envelope is tracked using counters Thigh

and Tlow. Thus, the time-based noncycling alarm conditions
from Table I can be written Thigh > Tmax and Tlow > Tmax. An
additional counter Tpeak counts the samples since the previous
high-pressure peak (the circles in Fig. 6), which allows the
system to compute the time between breath cycles. The PIP,
PEEP, and RR metrics are each updated once per breath cycle,
regardless of the sample rate.

To assess the computational complexity of the system, the ex-
ecution time of the algorithm was measured on the ATmega328
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Algorithm 1: Ventilator Monitoring Algorithm
loop

Read p from pressure sensor
Tpeak ← Tpeak + 1

if p ≥ vhigh then
vhigh ← αAvhigh + (1− αA)p
Vhigh ← p
Thigh ← 0
if breath state = exhaling then

breath state← inhaling
PEEP← αSPEEP + (1− αS)Vlow

end if
else
vhigh ← αRvhigh + (1− αR)p
Thigh ← Thigh + 1

end if

if p ≤ vlow then
vlow ← αAvlow + (1− αA)p
Vlow ← p
Tlow ← 0
if breath state = inhaling then

breath state← exhaling
PIP← αSPIP + (1− αS)Vhigh

RR←
(
αSRR

−1 + (1− αS)
Tpeak−Thigh

60fs

)−1
Tpeak ← Thigh

end if
else
vlow ← αRvlow + (1− αR)p
Tlow ← Tlow + 1

end if

Check alarm conditions from Table I
end loop

�p– current pressure sample
� vhigh – high-pressure envelope
� vlow – low-pressure envelope
�Vhigh – breath-cycle maximum
�Vlow – breath-cycle minimum
�Thigh – samples since most recent breath-cycle maximum
�Tlow – samples since most recent breath-cycle minimum
�Tpeak – samples since previous breath-cycle maximum
�PIP, PEEP, RR– smoothed PIP, PEEP, and RR output
�αA, αR – envelope attack and release coefficients
�αS – smoothing coefficient
� fs – sample rate (samples per second)

with a clock speed of 8 MHz. Table II shows storage, memory,
and execution time of the monitoring algorithm and of the user
interface logic that controls the buttons, buzzer, and display.
The monitoring algorithm requires less than one millisecond per
sample. The memory and storage requirements are dominated
by the user interface logic.

TABLE II
RESOURCE UTILIZATION

TABLE III
SAMPLE RATE AND PERFORMANCE

Because the recursive envelope tracker performs a fixed
number of calculations for each pressure sample, the overall
computational complexity of the system depends on the sample
rate. To select an appropriate sample rate for the monitoring
system, we must characterize the performance of the algorithm at
different sample rates. If the sample rate is too low, the sampled
sequence might not capture the narrow peak of the pressure
waveform, causing errors in the estimated PIP and RR values.

Table III shows the root-mean-square error in PIP and RR
measurements when the algorithm is run at different sample
rates. The pressure data is from an artificial lung cycling at a
rate of more than 30 breaths per minute, which is faster than
typical human respiratory rates. The error at lower sample rates
is calculated relative to estimates performed at a baseline rate
of 100 samples per second. Even for these fast breaths, the
estimated PIP and RR values are accurate within the display
resolution of 1 cm H2O and 1 breath/min for sample rates as
low as 10 samples per second.

These results suggest that the sensor and alarm module should
use a sample rate of at least 10 samples per second. This rate
is well within the capability of most modern microcontrollers,
even low-cost 8-bit processors that must use many clock cycles
to perform floating-point calculations.

VIII. ANIMAL TESTING

The monitoring algorithm was validated using animal-testing
data collected during the development of the Illinois RapidVent.
The prototype ventilator was tested using sedated pigs, which
have lungs that are similar in size to those of humans [19],
[20]. The tests were conducted at the University of Illinois at
Urbana-Champaign under protocol number 20071 approved by
the Institutional Animal Care and Use Committee. Details are
given in an upcoming paper about the Illinois RapidVent [10].
The primary purpose of the tests was to evaluate the performance
of the ventilator itself and the experiment did not include the
prototype monitoring device. However, the pigs’ airway pres-
sure was measured continuously during the tests using a Rose-
mount 3051S differential pressure transducer sampled about
seven times per second. The experiments included multiple
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Fig. 10. Alarm-triggering conditions were simulated with an artificial lung. The dashed lines indicate alarm events.

Fig. 11. The monitoring algorithm was validated using data from a pressure-
cycled ventilator on a sedated pig. Dashed lines indicate alarms triggered by the
algorithm.

combinations of PIP and rate dial settings, both mandatory and
assisted breathing, and accidental and deliberate disconnections.
Therefore, the pressure data captured during the animal tests are
valuable for validating the proposed monitoring algorithm.

Figure 11 shows excerpts from the pressure data and the
alarms triggered by the monitoring algorithm. In the top panel,
the pig inhaled strongly enough to pull pressure near zero (at-
mospheric level), triggering the low-pressure alarm. This alarm
does not indicate ventilator failure, but alerts clinicians that the
patient is breathing spontaneously. The middle panel shows a
disconnection event: the pig rolled over, breaking the respiratory
circuit. The pressure did not drop to atmospheric level but
remained at a steady low level, triggering the noncycling alarm.
In the bottom panel, the ventilator was deliberately blocked for
several seconds in order to measure tidal volume, leading to
a momentary drop and then steady high pressure level. This
event triggers both the low-pressure and noncycling alarms. The
envelope-tracking algorithm was found to work for all tested
settings of the PIP and rate dials, although sudden changes in
the dial settings can trigger false alarms and cause temporary
inaccuracies in metric estimates.

IX. CONCLUSION

The proposed sensor and alarm system can improve the func-
tionality of pressure-cycled emergency ventilators. While it is
not as robust as a full-featured commercial ventilator system,
it provides critical monitoring features that are not available on
purely mechanical ventilators. The recursive envelope-tracking
algorithm allows the system to track breathing, estimate metrics,
and detect malfunctions with only a few calculations per sample
and a tiny memory footprint. Therefore, the system can be built
quickly using nearly any low-cost microcontroller and a few
other electronic components.
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