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Abstract—Diagnosis techniques based on medical image
modalities have higher sensitivities compared to conven-
tional RT-PCT tests. We propose two methods for diag-
nosing COVID-19 disease using X-ray images and differ-
entiating it from viral pneumonia. The diagnosis section
is based on deep neural networks, and the discriminating
uses an image retrieval approach. Both units were trained
by healthy, pneumonia, and COVID-19 images. In COVID-19
patients, the maximum intensity projection of the lung CT is
visualized to a physician, and the CT Involvement Score is
calculated. The performance of the CNN and image retrieval
algorithms were improved by transfer learning and hashing
functions. We achieved an accuracy of 97% and an overall
prec@10 of 87%, respectively, concerning the CNN and the
retrieval methods.

Index Terms—Content-based medical image retrieval,
convolutional neural networks, COVID-19, deep learning,
lung image processing.

I. INTRODUCTION

THE most common approach for the diagnosis of COVID-
19 disease is the Reverse Transcription-Polymerase Chain

Reaction (RT-PCR) with clinical symptoms [1]. The method has
some restrictions, including the limited number of the corre-
sponding kits, its low sensitivity, repeatability, and the process’s
stability in different sampling conditions. Sometimes, one has
to repeat the test several times before the final confirmation of
the results [2]. However, medical imaging is a replacement for
diagnostic kits.

Chest X-ray and Computed Tomography (CT) scan images
are widely used in the diagnosis of the Coronavirus disease
(COVID-19); however, automatic fulfillment of the task is an
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emerging field in medical image processing [3]–[6]. The trans-
parency of a COVID-19 infected lung is changed in X-ray/CT
images, and some Ground Glass Opacities (GGOs) are seen as
well [7]. The thickening of some pulmonary vessels is the other
symptom. Compared to laboratory tests, imaging techniques
have higher sensitivity and True Positive (TP) rates, and they
are prepared more quickly. Moreover, they can reveal the illness
even in its initial stages [2], [8], [9]. More on the significance of
imaging approaches are found in [10]–[13].

II. RELATED WORKS

The research on COVID-19 detection using X-ray images
can be classified into two groups. (1) Some researchers evalu-
ated the performance of available deep architectures, including
ResNet50 and ResNetV2, to obtain the best achievement. [14],
[3]. (2) Others developed their proprietary architectures [6], [4],
[15], [8]. Almost all these methods used the transfer learning
technique to compensate for the small amount of available data.
Nearly half of the researches discriminated between healthy
and COVID-19 X-ray images [14], [3], [4], [16] while others
considered viral/bacterial pneumonia, severe acute respiratory
syndrome (SARS), and other lung diseases [8], [6], [15], [17].

Mohammadi et al. employed several pre-trained networks to
differentiate between COVID-19 and healthy X-ray images [14].
They achieved 99% accuracy; however, they did not discriminate
between viral pneumonia and COVID-19, which show similar
signs in the X-ray images. Narin et al. compared three available
network architectures, including ResNet50, InceptionV3, and
Inception-ResNetV2 models, to differentiate between health y
and COIVD-19 [3]. They concluded that a ResNet50 pre-trained
model obtained the best performance with an accuracy of 98%
among other architectures. Zhang et al. differentiated between
pneumonia and COVID-19 datasets using a proprietary archi-
tecture [6]. Wang et al. used COVIDNet, a proprietary network,
to detect Coronavirus disease [4]. To solve for the low number
of data, they suggested a data generation algorithm to prepare
16756 synthesized data and called them CovidX. Khan et al.
tailored an already developed model, Xception, to differentiate
between healthy, pneumonia, and COVID-19 X-ray images [15].
Che Azemin used ResNet-101 to distinguish COVID-19 cases
[16]. Unlike previous methods, the work presented by Jian
et al. is a distinct innovation [17]. They proposed a two-step
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architecture consisting of two deep neural networks. In the first
step, they classified input data into normal, bacterial pneumonia,
and viral pneumonia. The second stage labeled viral data as
COVID-19 and others. This two-step classification achieved the
best performance among similar studies. Finally, Ghoshal et al.
addressed uncertainty in the classification of X-ray images [5].

Most of the above researches used available techniques to
detect COVID-19. The problem overlooked in these researches
is designing an algorithm that complies with the limitation of the
specific situation, including the low number of available data,
the disease’s similarity to some other pulmonary illnesses, and
the explainability issue of deep neural networks. As solutions for
data shortage and similarity of COVID-19 to other pulmonary
diseases, we propose two main novelty to our CNN train-
ing method: (1) two-stage domain adaptation, (2) incremental
knowledge transfer. We take advantage of the low-level features
available in the pre-trained networks and add extra knowledge
about the high-level features of the domain of X-ray images. This
form of domain adaptation is performed in two stages: Once
with more available X-ray images of the Normal-Pneumonia
dataset on the pre-trained network, then, using fewer data of the
COVID19-Normal-Pneumonia dataset on the fine-tuned model
of the previous stage. Both of the above steps gradually transfer
knowledge to the model and eliminate the risk of overfitting. In
the incremental knowledge transfer, first, we regulate the end
layers of the pre-trained network (in which the weights would
correspond to the high-level features), then we include more
layers and continue the training.

To develop an explainable deep neural network, we propose
a decision support system to give a physician an appropriate
insight into CNN’s result. It includes an image retrieval compo-
nent to fetch similar images and a visualization unit to quantify
the disease’s extent. As far as we know, there is no research
to use Content-Based Image Retrieval techniques as a medical
consultation system to detect coronavirus infection. Moreover,
the employed visualization techniques, together with the CT
involvement scores calculation, have been performed for the
first time based on our knowledge.

III. MATERIALS AND METHODS

A. Datasets

The available dataset consists of two chest X-rays and one set
of CT images. The first data belongs to Kaggle’s Chest X-ray
Images (Pneumonia) [18] containing healthy and pneumonia
cases. We used the COVID19 dataset curated by J. Cohen [19]
as the second dataset. Specifications of the training and test
sets are in Table I. For the CNN model, we prepared two sets
of images from the datasets. The first set which was used the
Normal-Pneumonia (NP) phase contained 1000 training and 100
test images from each class, all from the Kaggle’s dataset. In
the Covid19-Normal-Pneumonia (CNP) phase, we used an extra
200 training and 100 test images from Normal and Pneumonia
classes in the Kaggle’s dataset and 110 training and 100 test
images obtained from J. Cohen’s COVID-19 dataset.

Concerning CT data, we used ten public volumes from the
COVID-19 image collection [19]. The size of the images was

TABLE I
NUMBER OF THE TRAINING AND TEST SETS

Fig. 1. The overview of the proposed framework.

200-301 × 512 × 512, the inter-slice resolution was 0.6836 ×
0.6836 to 0.8105 × 0.8105 mm2, and the slice thickness was
1–1.5 mm.

B. Methods

1) Overview of the Method: The proposed decision support
system consists of three modules (Fig. 1). First, a CNN-based
infection diagnosis uses deep neural networks to differentiate be-
tween COVID-19, healthy, and pneumonia cases. The remaining
modules give interpretation support to the results of the CNN.
They consist of a system retrieving similar images from an atlas
of X-ray data and quantification and visualization modules that
evaluates the percentage of the GGOs in an infected lung and
displays their locations.

The proposed system accepts an X-ray of a patient as input
data. Then, a Convolutional Neural Network (CNN) calculates
the probability of the infection by the coronavirus. Moreover,
a Content-Based Medical Image retrieval (CBMIR) algorithm
retrieves similar images and labels the input test image. Both the
CNN and the CBMIR algorithms distinguish between healthy,
COVID-19, and viral pneumonia infected cases. If the patient is
diagnosed with Corona, segmentation of the abnormalities and
lung lobes of the corresponding CT image are performed, the
CT Involvement Score is calculated, and the location of the lung
lobes, GGOs, and vasculatures are represented in 3D view.
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Fig. 2. Training stages of the proposed model. (a) Only the classifica-
tion front is trained. (b) The last ConvBlock of the base model and the
classification head are trained (c) The two last ConvBlocks of the base
model and the classification head are trained.

We implemented the proposed algorithms using Python, the
TensorFlow [20] framework, MATLAB, C++, and VTK toolkit
[21]. A personal computer running MS Windows 10 was used
with Intel Core i5-7500 CPU, 16 GB RAM, and a GeForce GTX
1070Ti graphics card. The CNN codes were performed on the
graphics processing unit (GPU).

2) The CNN Model: The architecture of the proposed CNN
model is illustrated in Fig. 2. We use the VGG16 [22] model that
is pre-trained on the ImageNet [23] dataset without the Dense
(Fully-connected) layers. Therefore, our pre-trained VGG16
(which we call the ‘base model’) is made up of five Con-
volutional (Conv) blocks. Each block has two or three Conv
layers that end with a Max-pooling layer. We replace the Dense
layers of the VGG16 with our classification layers (Fig. 2). Our
classification front consists of a Global Max-pooling layer, a
Dense layer with 64 units and the Rectified Linear Unit (ReLU)
activation function, a Dropout layer with a rate of 50%, and fi-
nally a Dense layer (output layer in Fig. 2) with two or three units
(based on the number of the classes) with the Softmax activation
function. We have also tried other available pre-trained models
like the InceptionV3 [24], DenseNet [25], or ResNet [26] for the
base model, but all of them led to overfitting.

Our incremental domain adaptation and knowledge transfer
method have two main phases. The first phase is called the
NP Phase, in which we train our model on the NP (Normal-
Pneumonia) dataset to learn the domain of the chest X-ray im-
ages. The second phase is called the CNP (COVID19-Normal-
Pneumonia) Phase, in which we use the trained model of the
previous stage and fine-tune it using the CNP dataset.

Both phases have two steps; one step is the warm-up in
which we freeze most layers of the base model and train our
classification layers. The second step acts as fine-tuning, in
which we unfreeze some of the final layers of the base model
and continue the training. With this method, the knowledge of
the pre-trained base model with the additional learned domain
of the chest X-ray images from the NP phase is transferred to

Fig. 3. The architecture of the feature extraction network.

Fig. 4. The Accuracy plot for the training of the NP phase.

the CNP model, where we perform a fine-tuning using our few
data of the CNP set. The transferred knowledge helps our model
learn faster with fewer samples and improves the predictions’
performance compared to a model that is trained only on the
CNP dataset ( Fig. 4).

All training sessions were performed using Adam [27] op-
timizer, the Categorical cross-entropy loss function, and the
batch size of 5. All images were resized to the 224 × 224
pixels and preprocessed using the per-sample-standardization
(i.e., zero mean and unit variance for each image intensities).
Random rotation in the range of 0-15 degrees was used as the
data augmentation on-the-fly (i.e., data augmentation is done at
the training time).

In the NP phase, we perform our incremental domain adapta-
tion method using the NP dataset. First, we freeze all layers of
the base model except the last Conv block (Fig. 2(b)) and train
the model for 30 epochs with the learning rate (LR) of 1e-4 as
the warm-up step. Afterward, we unfreeze another Conv block
(Fig. 2(c)) and continue the training for another 30 epochs but
with a lower learning rate (LR = 1e-5). The last dense layer has
two neurons in this phase.

In the CNP phase, we use the trained model of the previous
phase and replace the last Dense layer with a new Dense layer
with three neurons and retrain the model for another two steps.
We freeze all layers of the base model (Fig. 2(a)) and train the
classification layers (for 30 epochs with LR = 1e-4). Then, we
unfreeze the last Conv block of the base (Fig. 2(b)) and continue
the training (for 30 epochs with LR = 1e-5).

3) The CBMIR Model: The CBMIR algorithm characterizes
an X-ray image by a convolutional neural network [4], [27].
The output of the corresponding encoder layer is then used as the
feature vector, and it is encoded using a supervised kernel-based
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hashing function [28]. The hashing function converts high di-
mensional features into compressed binary codes, thus reducing
the image recovery time and the memory required for hardware
systems.

Feature extraction is a crucial step in a CBMIR system that can
improve the results of retrieval. We employ CNN and integrate
it with an autoencoder to extract image attributes. We train the
autoencoder without supervision and keep the encoder part of
the trained model for feature extraction. The CNN improves
discrimination ability, and the autoencoder reduces the dimen-
sionality of the extracted features [29].

The architecture of the encoder part of the CNN autoencoder
is shown in Fig. 3. It accepts an X-ray image as its input and
gives a 1× 128 vector as its output. Based on our experience, the
deep learning-based technique performs better than traditional
methods, and it provides more efficient attributes when big data
is available.

In recent years, hashing methods have been studied to rep-
resent big data. Concerning image retrieval, they are functions
that accept an image or the corresponding feature vector and
output a multi-bit number. Therefore, the search for similar data
is performed in the binary field instead of a high-dimensional
space. We employ a supervised hashing with kernels, which uses
a limited number of labeled data to learn the similarity of two
images. A kernel-based hashing function, defined in (1), is more
appropriate for nonlinear data.

f(x) =

m∑
j=1

K(xj , x)aj − b. (1)

In (1), x1 to xm are the samples from the training dataset, a1
to am are sets of coefficients, and b is the bias and is defined to
normalize the whole training data (2).

b =
1

n

n∑
i=1

m∑
j=1

K(xj , xi) · aj . (2)

In (2), n is the size of the training data. By substituting (2) in
(1), we get (3).

f(x) =

m∑
j=1

[
K(xj , x)− 1

n

n∑
i=1

K(xj , xi)

]
· a
j
=

T
a ·K (3)

where a = [a1, . . . , am] and K : Rd → Rm is a vector map de-
fined by K(x) = [K(x1, x)− µ1, . . . ,K(xm, x)− µm]T , and
µj =

1
n

∑n
i=1 K(xj , xi). The kth hashing function (hk(x)) is

defined in (4).

hk(x) = sgn
{
aTkK(x)

}
, 1 ≤ k ≤ r. (4)

In (4), sgn()is the sign function, which gives 1/-1 for pos-
itive/negative inputs. Vector a is obtained using labeled data.
More details on the method are found in [28].

In the process of image retrieval, features are extracted from
the query image by the CNN technique. The features are then
converted to binary codes by the hashing method, and a search
is performed among the available dataset.

4) The Visualization and Quantification Stage: In the case of
an infected patient, we illustrate the lung volume, its vasculature

structures, the GGOs, and the pulmonary lobes’ boundaries.
Therefore, a physician observes disease progression and knows
the number of lung lobes infected by the virus.

An essential measure for the severity of the illness is the
CT Involvement Score that measures infection progress for
individual lung lobes. Anatomically, the left lung is divided into
Left Upper Lobe (LUL), Left Middle Lobe (LML), Left Lower
Lobe (LLL). A right lung is split into Right Upper Lobe (RUL)
and Right Lower Lobe (RLL). The proportional volume of the
GGO in a lung lobe is rated from 0 to 5. Therefore, the total
rate ranges from 0 to 25, corresponding to a healthy and fully
infected lung, respectively. We calculate the CT score for each
lobe and the whole lung as well.

Visualization of the results consists of the Maximum Intensity
Projection (MIP) of the lung, its vessels, and the GGOs in a 360˚
view. Moreover, we demonstrate the surface rendering of the
lungs and the GGOs.

The first step of the quantification is the segmentation of
the lung. We have developed a GUI in MATLAB environment
to segment the lungs interactively. User-interaction is required
since an infected lung has no homogenous texture, and most
conventional lung segmentation algorithms fail in such cases. A
user starts segmentation by brushing on a typical left and right
lung slices as seeds. We call this slice the middle slice. The result
of the thresholding of a middle slice is several disconnected
objects. We label all objects that include a seed as the lung. The
medial axis of the obtained mask is considered as seeds for the
next images. Segmentation continues from the middle slice up
to the superior and then to inferior directions. A trimming tool is
implemented in the GUI as well. Then, we define the boundary
of the lung lobes using the Slicer-CIP [30], [31]. The result of
lobe segmentation fails when the GGO considerably infects the
lung. In such cases, we use the lung’s mask and the incomplete
lobe masks of the Slicer-CIP and employ the Euclidean distance
map to compensate for the lobes’ lost parts.

Concerning the segmentation of the GGOs, we follow a
new approach. Since the intensity of the GGOs is similar to
pulmonary vessels, we first delineate lung vasculatures by the
Frangi method [32]. Then, we use the thresholding technique to
find pixels in an approximate range of [−100, 900] and exclude
extracted vessels from the previous step.

Visualization of the lung is performed in the C++ environ-
ment using the VTK toolkit. The mask of the lung is multiplied
by the input CT image to extract the pulmonary tissue. Then,
a snapshot of the MIP of the extracted lung is formed. The CT
data is rotated axially by one degree, and a new MIP image is
captured. All 360 MIP images are stored in an animated image
format, and it is displayed to a physician. Moreover, the lung,
its lobes, and GGOs are visualized by the surface rendering
technique.

IV. RESULTS

A. Classification Results

We evaluated the trained model of the NP phase on 200
test images. The loss and accuracy plots for the training and
validation dataset are shown in Fig. 4. The Precision, Recall,
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TABLE II
RESULTS OF THE NP PHASE ON THE NP TEST SET

TABLE III
CONFUSION MATRIX OF THE NP PHASE ON THE NP TEST SET

Fig. 5. Accuracy plots for two modes of the CNP phase.

F1-score, and confusion matrix results are shown in Table II
and Table III, respectively. We achieved an accuracy of 0.97, a
sensitivity of 0.99, and a specificity of 0.99 using the test set.

Concerning the CNP phase, we set up two experimental
modes. In the first mode, we trained the model without the
domain adaptation (i.e., without the NP phase). We call this
mode as no_DA. In the second mode, we used the trained model
from the NP phase and transferred its weight to the CNP model,
then we improved training using the CNP dataset. We call this
mode as with_DA.

Fig. 5 shows the comparison of the training accuracy between
no_DA and with_DA modes. The generalization effect of the
domain adaptation can be seen in the validation accuracy plot,
where the performance of the CNP model with_DA is signifi-
cantly better than the no_DA mode on the unseen test images.

The comparison of the accuracy and loss of the test images for
the two modes of the CNP phase are listed in Table IV. Table V
and Table VI show the predictions’ evaluation results on the test
set for the CNP model (with_DA). The average prediction time
was 0.26 seconds for each image.

TABLE IV
RESULTS OF THE TWO MODES OF THE CNP PHASE ON THE CNP TEST SET

TABLE V
RESULTS OF THE CNP PHASE (WITH DA) ON THE CNP TEST SET

TABLE VI
RESULTS OF THE CNP PHASE (WITH DA) ON THE CNP TEST SET

The loss plots in Figs. 3 and 4 and the comparison of the results
in Table IV showed that our incremental knowledge transfer and
the domain adaptation had improved the baseline model (i.e.,
simple fine-tuning on the whole dataset). The promising results
on the test set (provided in Table V and Table VI) also prove that
the overfitting has not occurred on the training data.

To visualize the model’s attention on the input images, we
used the Gradient-weighted Class Activation Mapping (Grad-
CAM) method to visualize the model’s attention on the input
images [33]. With Grad-CAM, we can produce a heat map of
the significant regions in the model’s image. As depicted in
Fig. 6, brighter zones are where the model activations are higher
in the last convolutional layer for that specific image and its
corresponding class label. We can see that the activations of
the Normal case are almost identical for all regions. For the
Pneumonia and COVID19 cases, some parts of the lungs are
highlighted in the Grad-CAM’s output. Our model uses these
regions to decide on the class of the input image.

In Table VII, we compared our results with recent researches.
As s shown in Table VII, we achieved the best sensitivity,
specificity, and recall, among other methods. Moreover, the
F-score, accuracy, and precision of our approach are comparable
to other researches. Considering the number of coronavirus
infected images that we used for testing, our algorithm achieved
the best performance compared to state-of-the-art techniques.

B. Retrieval Results

We used precision to quantify the retrieval performance of the
proposed CBMIR framework. For a given query image, preci-
sion is the ratio of correctly retrieved instances. Its variations
are Prec@6, Prec@10. Prec@k is the ratio of the accurately
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TABLE VII
COMPARISON OF THE RESULTS WITH SIMILAR METHODS

Fig. 6. Sample X-ray images from each class and the output of the
Grad-CAM for the corresponding category. Brighter regions are where
the model activates more.

achieved images at top k-retrieved data. Results of precision for
different image classes are shown in Fig. 7.

To verify the hashing method’s effectiveness, we repeated
retrieval of the test data without the hashing function. The total
prec@6 of the COVID-19 result is reduced from 83% to 43%.
In this case, most COVID-19 images are recognized as viral
pneumonia.

Moreover, we used common test data to evaluate the CNN
model and the CBMIR algorithm together. We utilized 22 -,

Fig. 7. Retrieval results of the proposed CBMIR algorithm.

Fig. 8. Snapshots of the developed GUI for (a) segmentation of lung,
and (b) quantification of the CTIS.

134 healthy, and 134 pneumonia X-ray images. The results
show that the CNN model’s accuracy (97%) is better than the
CBMIR algorithm (89%). Concerning COVID-19, healthy, and
pneumonia data, the two methods prepared similar results in
81%, 90%, and 71% of cases, respectively.

C. Visualization and Quantification Results

In Fig. 8(a) and (b), snapshots of the developed GUIs for
segmentation of lung and quantification of the CTIS are shown.
Moreover, in Fig. 9, MIPs and surface rendering of typical
CT lungs are shown. In the first and second rows of Fig. 9,
the CT scores are 5, and in the third row, the CTIS is 10. In
Fig. 9, GGOs are shown as red objects in the surface rendering
visualization. The GGOs are seen as white masses in the MIPs as
well. Concerning Fig. 9, the CT scores of each lobe ([RUL, RML,
RLL, LUL, LLL]) are [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], and [1, 1, 3, 2,
3], corresponding to the first, second and third rows, respectively.



MOHAGHEGHI et al.: INTEGRATION OF CNN, CBMIR, AND VISUALIZATION TECHNIQUES FOR DIAGNOSIS 1879

Fig. 9. Surface rendering (Left column) and MIP (Right column) of
three lung CT images. The CT scores of the first and second rows are
5, and that of the third row is 10. In the left column, GGOs are shown as
red objects. Arrows emphasize the GGOs.

The total lung volume scores are 5, 5, and 10, correspondingly
to the first, second, and third rows.

V. DISCUSSION

Our solution to train the model accurately with a limited
number of data is to use pre-trained models and domain adap-
tation strategy. As shown in Table VII, the proposed method
outperforms methods like Wang et al. [4] and Che Azemin
[16] using fewer images and no data augmentation. However,
despite its remarkable performance, it seems that our model
tends to make overconfident predictions. One reason can be the
inter-class similarities in the NP dataset. The model, therefore,
might have learned the preprocessing pattern of the NP dataset
to predict the classes. This issue can be fixed by using appropri-
ate preprocessing methods and randomized image alterations.
Another solution is to include clinical knowledge in the training
process. We believe that it is highly essential to use multi-domain
techniques integrated with existing clinical experience.

Concerning the CBMIR model, we performed data separation
linearly and retrieved the query images well using the hashing
function. Moreover, we improved Prec@10 by 86.6% using
the proposed deep features. Contrary to the CNN model, the
results of the CBMIR is not influenced by the imbalanced class
problem. Reducing the feature vectors’ size by the DNN reduces
the memory cost and increases our algorithm’s speed. Retrieval
by the hashing function was performed in less than 0.03 seconds,
which is less than the KNN (7.56 seconds) and KNN+PCA (0.07

seconds) [34]. To improve retrieval results, we need to utilize a
more significant number of training data since hashing functions
are more favored when big data is available.

Concerning visualization and quantification algorithms, the
lung segmentation is a fundamental step for the next parts of
the method. Delineation of the lung fails when the virus con-
siderably infects it. In such cases, user interaction is a solution.
Segmentation of the lobes has difficulties in the regions where
there are GGOs and needs cooperation by a specialist. The slice
thickness of the input data should be less than or equal to 1.5mm
to obtain proper masks of lung and lobes. Therefore, we need to
improve the available algorithms to include images with lower
resolutions.

VI. CONCLUSION AND FUTURE WORKS

In this paper, we proposed a novel training method using
incremental domain adaptation and knowledge transfer. We
achieved state-of-the-art accuracy on the COVID-19 detection
from the X-ray images. The proposed model was trained using
a small set of available images, and it made high accuracy and
generalization. The generalization can be improved with more
training images. One future approach is to use an ensemble of
different models or different imaging modalities like CT images
to obtain more confidence in the results.
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