Skip to main content
. 2020 Aug 20;24(10):2787–2797. doi: 10.1109/JBHI.2020.3018181

TABLE V. Accuracy of COVID-19 Classification Network With Different Training Strategies. (PRE.–Precision, REC.–Recall (%)).

Number of Negative Samples
14% (246) 28% (500) 56% (1,000)
PRE. REC. F1 PRE. REC. F1 PRE. REC. F1
Random 81.0 68.0 73.9 68.8 88.0 77.2 82.0 82.0 82.0
Normal distribution 77.6 76.0 76.8 70.8 92.0 80.0 85.7 84.0 84.8
Top-Inline graphic 41.8 66.0 51.2 60.0 78.0 67.8 84.6 88.0 86.3
Long-tail distribution 74.5 82.0 78.1 74.2 92.0 82.1 93.0 80.0 86.0
Long-tail w/ Rubik's cube Pro* 75.9 88.0 81.5 78.9 90.0 84.1 97.7 84.0 90.3
* Rubik's cube Pro trained with all samples.