TABLE I. The Results for Random Forest, Gradient Boosting, MLP and Our IE-Net in Terms of Accuracy, Recall, Precision and AUC (%).
4]*Methods | Evaluation Metrics (mean std) | |||
---|---|---|---|---|
ACC | Recall | Precision | AUC | |
GradientBoosting | 85.403.08 | 79.725.54 | 89.314.06 | 85.223.36 |
Random Forest | 84.763.65 | 80.626.77 | 85.216.07 | 84.424.19 |
MLP | 82.062.99 | 74.985.29 | 88.035.25 | 82.193.55 |
IE-Net (zeros) | 64.419.74 | 92.352.36 | 83.0511.65 | 71.706.60 |
IE-Net | 94.801.98 | 92.793.07 | 92.973.06 | 94.932.00 |