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Abstract—Medical image processing is one of the most
important topics in the Internet of Medical Things (IoMT).
Recently, deep learning methods have carried out state-
of-the-art performances on medical imaging tasks. In this
paper, we propose a novel transfer learning framework
for medical image classification. Moreover, we apply our
method COVID-19 diagnosis with lung Computed Tomogra-
phy (CT) images. However, well-labeled training data sets
cannot be easily accessed due to the disease’s novelty
and privacy policies. The proposed method has two com-
ponents: reduced-size Unet Segmentation model and Dis-
tant Feature Fusion (DFF) classification model. This study
is related to a not well-investigated but important transfer
learning problem, termed Distant Domain Transfer Learning
(DDTL). In this study, we develop a DDTL model for COVID-
19 diagnosis using unlabeled Office-31, Caltech-256, and
chest X-ray image data sets as the source data, and a small
set of labeled COVID-19 lung CT as the target data. The main
contributions of this study are: 1) the proposed method
benefits from unlabeled data in distant domains which can
be easily accessed, 2) it can effectively handle the distribu-
tion shift between the training data and the testing data,
3) it has achieved 96% classification accuracy, which is
13% higher classification accuracy than “non-transfer” al-
gorithms, and 8% higher than existing transfer and distant
transfer algorithms.

Index Terms—COVID-19 diagnosis, deep learning, distant
transfer learning, domain adaptation, machine learning,
medical image processing, transfer learning.

I. INTRODUCTION

R ECENTLY, with state-of-art performance, deep learning
has dominated the field of image processing [1]–[3].

However, deep learning methods require a massive amount of
well-labeled training data, and the majority of deep leaning
methods are sensitive to the domain shift [4]. Therefore, transfer
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learning (TL) has been introduced to deal with the issues [5],
[6]. In this paper, we propose a novel medical image classifi-
cation framework. Moreover, we implement our framework to
COVID-19 diagnose with CT images. Generally, medical image
data sets are difficult to access due the rarity of diseases and
privacy policies. Moreover, it is not feasible to manually collect
a massive amount of high-quality labeled lung CT scans associ-
ated with of COVID-19. Therefore, it is hard to develop a regular
deep lea ring model with insufficient training data. To overcome
this obstacle, artificial and synthetic data can be used to expand
the volume of the data. However, these methods can lead to a
distribution mismatch between the training data and the testing
data. Furthermore, transfer learning can handle both problems
simultaneously. In theory, transfer learning algorithms aim to
develop robust target models by transferring knowledge from
other domains and tasks. Previously, [7] proposed an adaptation
layer with domain distance measurements to transfer knowledge
between deep neural networks. In general, conventional transfer
learning algorithms assume that the source domains and the
targets share a certain amount of information. However, this
assumption does not always hold in many real-world applica-
tions, such as medical image processing [8], [9], rare species de-
tection [10] and recommendation systems [11], [12]. Moreover,
transferring between two loosely related domains usually causes
negative transfer [13], meaning that the knowledge transfer
starts hurting the performance on the task in the target domain.
For instance, building a dog classification model by directly
transferring knowledge from a car classification model would
likely to lead to negative transfer due to the weak connection
between the two domains. Therefore, it is not always feasible to
apply transfer learning to areas where we cannot easily obtain
enough source domain data related to the target domain. For
instance, COVID-19 diagnosis based on lung CT is a typical
example where we cannot easily find related source data for
training.

In this paper, we develop a lung CT scan-based COVID-19
classification framework by studying a challenging problem,
DDTL, which aims to deal with the shortcomings of traditional
machine learning and conventional TL. As shown in Fig. 1,
the proposed framework contains two parts: semantic segmen-
tation and DFF. It can perform knowledge transfer between
seemingly unrelated domains. Moreover, DDTL [14] is a newly
introduced transfer learning method that mainly aims to address
the issue of negative transfer caused by loose relations of the
source domains and the target domains. Unlike conventional TL
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Fig. 1. Architecture overview of distant feature fusion model.

methods, the proposed DDTL algorithm benefits from fus-
ing distant features extracted from distant domains. Generally,
DDTL is usually involved with situation that the source domain
and the target domain have completely tasks. Moreover, the
inspiration for DDTL is from the ability of human beings to learn
new things by bridging knowledge acquired from several seem-
ingly independent things. For example, a human who knows
birds and airplanes can recognize a rocket even without seeing
any rockets previously. Importantly, DDTL dramatically extends
the use of transfer learning to more areas, and applications where
do not always have adequate related source data. In this case, we
consider COVID-19 classification as a DDTL problem that can
benefit from distant but more accessible domains. Furthermore,
we use three open-source image data sets as source domain data
sets to develop a robust COVID-19 classification method based
on lung CT images.

Previously, there are few proposed distant transfer algo-
rithms [14], [15], but most of them are task-specific and lack
the stability in performance. Inspired by an instance-based
method [15] and multi-task learning [16], we build a DDTL
algorithm to solve COVID-19 classification tasks by extracting
and fusing distant features. There are two main improvements
made by our algorithm. Firstly, it does not require any labeled
source domain data, and the source domains can be completely
different from the target domain. The proposed model only
needs a small amount of labeled target domain and can produce
very promising classification accuracy on the target domain.
Secondly, it only focuses on improving the performance of the
target task in the target domain. To the best of our knowledge,
it is the first time that DDTL has been applied to medical
image classification. Furthermore, we introduce a novel feature
selection method (DFF) to discover general features across
distant domains and tasks by using convolutional autoencoders
with a domain distance measurement. To outline, there are four
main contributions made in this study: 1) Propose a new DDTL
algorithm for fast and accurate COVID-19 diagnose based on
lung CT, 2) Examine existing deep learning models (transfer
and non-transfer) on COVID-19 classification problem, 3) The
proposed algorithms has achieved the highest accuracy on this
task, which has a small set of labeled target data and some
unlabeled source data from different domains. Moreover, com-
pared with other transfer learning methods, supervised learning
methods, and existing DDTL methods, the proposed DFF model
has achieved up to 34% higher classification accuracy and 4) The
proposed framework can be easily generalized to other medical
image processing problems.

The remainder of this paper is structured as follows: In Sec-
tion II, we first review the most recent DTTL works. And then,

we formulate the problem definition in Section III. Next, we
present the details of the proposed algorithm in Section IV. After
that, we present experimental results and analysis in Section V.
Lastly, we conclude the paper and discuss future directions in
Section VI.

II. RELATED WORK

Insufficient training data and domain distribution mismatch
have become the two most challenging problems in machine
learning. To address these two issues, transfer learning has
emerged a lot of attention due to its training efficiency and
domain shift robustness. However, transfer learning also suf-
fers from a critical shortcoming, negative transfer [17], which
significantly limits the use and performance of transfer learning.
In this section, we introduce some related works in three fields:
conventional transfer learning, DDTL, and existing ML methods
for COVID-19 classification.

A. Conventional Transfer Learning

First of all, TL methods aim to solve the target task by
leveraging the common knowledge learned from source tasks in
different domains, so it does not need to learn the target task from
scratch with a massive amount of data. Furthermore, [18]–[20]
expanded the use of transfer learning from traditional machine
learning models to deep neural networks. Typically, there are
two types of accessible transfer learning: feature-based and
instance-based. Both types focus on closing the distribution
distance between the source domain and the target domain.
In instance-based algorithms, the goal is to discover source
instances similar to target instances, so that highly unrelated
source samples would be eliminated. Differently, feature-based
algorithms aim to map source features and target features into a
common feature space where the distribution mismatch is min-
imized. However, both of them assume that the source domain
and the target domain share a fairly strong connection. Unlike
conventional transfer learning, our work can transfer knowledge
between different domains and tasks that are not closely related.

B. DDTL

Secondly, the setting of DDTL is similar to multi-task learn-
ing [21], which also benefits from shared knowledge in multiple
close domains. Generally, multi-task learning tends to improve
the performance on all tasks. Differently, DDTL only focuses
on using the knowledge in other domains to improve the per-
formance of the target task. Moreover, most previous studies of
DDTL are instance-based and they tend to take the advantage of
massive related source data. Firstly, [14] introduced an instance-
based algorithm, transitive transfer learning (TTL). It transfers
knowledge between text data in the source domain and the image
data in the target domain by using annotated image data as a
bridge. However, TTL is highly case-dependent and unstable in
performance. Similarly, [15] introduced another instance selec-
tion method, Selective Learning Algorithm (SLA). However,
this algorithm was mainly designed for binary classification
problems. Differently, [22] proposed a feature-based method to
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deal with scarce satellite image data. It predicts the poverty based
on daytime satellite images by transferring knowledge learned
from an object classification tasks with the aid of nighttime light
intensity information as a bridge. However, this method relies
heavily on a massive amount of labeled intermediate training
data. Notably, our method benefits from multiple source do-
mains without labeled data, and those source domains can have
significant discrepancies. Furthermore, our method can also
handle multi-class classification while consistently producing
promising results.

C. Machine Learning for COVID-19 Diagnosis

Moreover, to overcome the shortage of COVID-19 testing
toolkits, many efforts have been made to search for alternative
solutions. Several studies [23]–[25] introduced machine tech-
niques to COVID-19 diagnosis, including but not limited to, con-
volutional neural networks (CNN), transfer learning, empirical
modeling. However, most existing non-transfer models suffer
from a common shortcoming that is insufficient well-labeled
training data. Transfer leanings methods can carry out fairly
decent classifications, but they are still limited by the domain
discrepancy between the source data and the target data.

III. PROBLEM STATEMENT

In this DDTL problem, we assume that the data of each
target domain is insufficient to train a robust model. And
we have a number of unlabeled source domains denoted as
S = {(x1

1, . . ., x
nS1
1 ), . . ., (x1

SN
, . . ., x

nSN

SN
)}, where n and SN

represent the number of samples in each source domain and
the number of source domains. Then we denote one or multiple
labeled target domains as:

T = [(x1
1, y

1
1), . . ., (x

nT1
1 , y

nT1
1 )],

. . ., [(x1
TN

, y1TN
), . . ., (x

nTN

TN
, y

nTN

TN
)], (1)

where n and TN represent the number of samples in each source
domain and the number of source domains. Let P (x), P (y|x)
be the marginal and the conditional distributions of a data set.
In this DDTL problem, we have the following:

PS1−SN
(x) �= PT1−TN

, (2)

PT1
(y|x) �= PT2

(y|x) �= . . . �= PTN
(y|x). (3)

The main objective of the proposed work is to develop a model
for the target domain with a minimal amount of labeled data by
finding generic features from distant unlabeled source domain
data. The motivation behind this study is that data in distant
domains is usually seemingly unrelated in the instance-level
but related in the feature-level. However, the connection on the
feature level from one distant domain can be too weak to be
used to train an accurate model. As such, simply using one or
two sets of source data is likely to fail in building the target
model. Therefore, we leverage from multiple unlabeled distant
source domains to obtain enough information for the target
task.

Fig. 2. Segmented lung area.

IV. METHODOLOGY

In this section, we introduce the proposed COVID-19 diag-
nose framework. Firstly, we present the reduced-size ResNet
segmentation model. After that, we introduce the novel DDTL
algorithm, DFF.

A. Lung CT Segmentation by Reduced-Size ResUnet

First of all, extracting features from a full size lung CT image
with a small training set can be difficult because the model might
end up focusing on noise in the useless parts of the images.
Therefore, it is important tp pre-process the image by applying
semantic segmentation. As shown in Fig. 2, we can remove
random noise and preserve the important information in the lung
area of a image. Moreover, a small data set for training can lead
to a over-fitting for a deep neural network. Therefore, we develop
a reduced-size ResNet for this Covid-19 diagnose task.

Fisr of all, the proposed reduced-size ResUnet [26] contains
two feature extraction parts: four convolutional blocks layers
with down-sampling and four deconvolutional layers with up-
sampling. Moreover, we reduce the numbers of convolutional
layers and deconvolutional layers, and apply dropout layers to
prevent over-fitting. Furthermore, we adopt skip-connection to
prevent two main problems in the training process: gradient
explode and gradient disappear. In this study, we implement
a single skip-connection to form convolutional and deconvolu-
tional blocks. By doing this, the convergence time of the model
is faster and the training process is more stable.

Commonly, image segmentation tasks require to perform ac-
curate pixel-level classification on the input images. Therefore,
it is critical to design a proper loss function based on each
task. In this study, the final loss function is composed by a
soft-max function over the last feature map combined with the
cross-entropy loss. The expressions of the soft-max function and
cross-entropy functions are:

pk(x) = exp(fk(x))/
K∑

k=1

exp(fk(x)), (4)

E =
∑
x

ω(x)log(p(l(x))(x)), (5)
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Fig. 3. DFF Architecture: there are three main components in DFF,
distant feature extractor, distant feature adaptation, and the target clas-
sification. There are three types of losses from three components: re-
construction loss, domain loss, and classification loss.

where fk(x) represents the activation map of the kth feature
at xth pixel and K is the total number of classes, and the
cross-entropy penalizes at each position the deviation of p(l(x)).
Furthermore, the segmentation boarder is computed with mor-
phological operations. The weight map is expressed as:

ω(x) = ωc(x)ω0exp

(
− (d1(x) + d2(x))

2

2σ2

)
, (6)

where ωc is the weight map to balance the class frequencies, d1
and d2 are the distances between a pixel to the closest boarder
and the second coolest boarder, andω0 andσ are the initialization
values.

B. DFF

As shown in Fig. 3, there are three main components in
DFF: distant feature extractor, distant feature adaptation, and the
target classification. There are three types of losses from three
components: reconstruction loss, domain loss, and classification
loss.

1) Distant Feature Extraction: As one of the inspirations
of this study, a convolutional autoencoder pair is used as a
feature extractor in DFF. convolutional autoencoders [27] usu-
ally benefit unsupervised image processing related problems.
Firstly, a convolutional autoencoder is a feed-forward neural
network working in an unsupervised manner, which suits this
DDTL problem perfectly since there is no labeled data in source
domains. Moreover, there are two main components: encoder
(EConv(.) and decoder (DConv(.). The standard process of
convolutional autoencoder pairs can be demonstrated as:

Encoding : f = EConv(x),Decoding : x̂ = DConv(f̂ ), (7)

where f is the extracted features of x, and x̂ is the reconstructed
x. In addition, the way to tune the parameters of a convolutional
autoencoder pair is to minimize the reconstruction error on all
the training instances. Conceptually, the output of the encoder
can be considered as high-level features of the unlabeled training
data. Furthermore, these features are learned in an unsupervised
manner, so they are robust if the reconstruction error is lower
than a certain threshold.

In this DDTL problem, as shown in Fig. 3, we use a convolu-
tional autoencoder pair to discover robust feature representation

from unlabeled source domain data sets and the labeled target
data sets simultaneously. The structure of the auto-encoder pair
contains two convolutional layers and two pooling layers in both
the encoder and decoder. Up-sampling is applied to the encoder
to ensure the quality of the reconstructed images. The process
of feature selection has three main steps: feature extraction,
instance reconstruction, and reconstruction measurement. First,
we feed both the source data and the target data into the encoder
to obtain high-level features fS and fT . Then, extracted features
are sent into the decoder to get reconstructions, X̂S and X̂T . The
equations of the first two steps are expressed as:

fS = EConv(XS), fT = EConv(XT ); (8)

X̂S = DConv(fS), X̂T = DConv(fT ); (9)

where XS and XT are the source and the target samples, and fS
and fT are the source and the target features. Finally, we define
the reconstruction errors from both the source domains and the
target domains as the loss function of the feature extractor, LR

as follow:

LR =

SN∑
i=1

nSi∑
j=1

1

nSi

(
ˆ

Xj
XSi

−Xj
XSi

)2

+

ST∑
i=1

nTi∑
j=1

1

nTi

(
ˆ

Xj
XTi

−Xj
XTi

)2. (10)

where SN and ST are the numbers of the source domains and
the target domains, nSi

and nSi
are the numbers of instances in

the ith source domain and the target domain.
2) Distant Feature Adaptation: Commonly, minimizing the

reconstruction errorLR can discover a certain amount of features
with the given input. However, there is a large distribution mis-
match between the source and the target domains, so minimizing
LR alone cannot extract enough robust and domain-invariant
features. Therefore, we need extra side information to close the
domain distance. In this research, as shown in Fig. 3, we add a
distant feature adaptation layer to the convolutional autoencoder
pair to close the domain distance LD. The maximum mean
discrepancy (MMD) [28] is important statistical domain distance
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TABLE I
MODEL COMPARISON

estimator. The domain loss is expressed as:

LD = MMD

⎛
⎝ SN∑

i=1

nSi∑
j=1

f j
Si
,

ST∑
i=1

nTi∑
j=1

f j
Ti

⎞
⎠ , (11)

MMD(X,Y ) =

∥∥∥∥∥∥
1

n1

n1∑
i=1

ϕ(xi) +
1

n2

n2∑
f=1

ϕ(yj)

∥∥∥∥∥∥ , (12)

where n1 and n2 are the numbers of instances of two different
domains, and ϕ(·) is the kernel that converts two sets of features
to a common reproducing kernel Hilbert space (RKHS) where
the distance of two domains is maximized.

3) Target Classifier: Furthermore, with extracted distant fea-
tures, we add a target classifier CT after the encoder. As the
motivation of this step, [29] proves that fully-connected layers
aim find the best feature combination for each class in the target
task. In other words, fully-connected layers do not learn more
new features but connect each class to a specific set of features
with different weights. In this work, there is only one fully-
connected layer followed by the output layer with cross-entropy
loss, LC :

LC = −x[Class] +

TN∑
i=1

nTi∑
j=1

exp(Xj
Ti
). (13)

where Xj
Ti

is the jth sample in the ith target domain. Finally,
by embedding all three losses from 10, 11, and 13, the overall
objective function of DFF is formulated as:

Minimize
θE ,θD,ΘC

L = LR + LD + LC , (14)

where θE , θD,ΘC are the parameters of the encoder, decoder,
and the classifier, respectively. Moreover, L is the final loss
constructed by the reconstruction error, domain loss, and clas-
sification loss. Finally, all the parameters are optimized by
minimizing the objective function in Equation 14.

4) Algorithm Summary: Lastly, an overview of the proposed
work is summarized in Algorithm 1.

V. EXPERIMENT AND ANALYSIS

In this section, we introduce a number of benchmark mod-
els, such as supervised learning models, conventional transfer
learning models, and DDTL models. Then we set up a serious
of experiments. After that, we demonstrate the experimental
results. Finally, we present training details and the analysis of
experimental results.

TABLE II
DATA SETS

TABLE III
SEGMENTATION PERFORMANCE

A. Benchmark Models

In this study, as shown in Table I, we choose several transfer
models and non-transfer models for comparisons. By comparing
results from different methods, we can justify the improve-
ments made by the proposed methods. Firstly, we select three
supervised non-transfer baseline models: convolutional neural
works (CNN), Alexnet [29], and Resnet [30]. For CNN, the
model is constructed with three convolutional layers with 3× 3
kernels followed by a 2× 2 max pooling kernel. Secondly, we
also choose three conventional transfer learning models: fine-
tuned Alexnet, fine-tuned Resnet, and self-transfer (SelfTran)
model [23]. What is more, we choose one instance-based DDTL
method: selective learning algorithm (SLA) [15]. Furthermore,
all details of each benchmark model are specified in Table I.

B. Date Sets and Experiment Setups

In this study, as shown in Table II, we totally use six open-
source data sets: Caltech-256 [31], Office-31 [32], chest X-Ray
for pneumonia detection [33], Lung CT [34], and Covid19-
CT [35]. The first, Caltech-256 includes labeled data of 256 dif-
ferent classes. For each class, the number of instances is from 80
to 827. Then, Office-31 has 31 different common office objects,
with total 4110 instances collected from three different data
sources: “amazon,” “webcam,” and “dslr”. However, Office-31
is an unbalanced data set. Moreover, the chest X-Ray data set
contains 5226 well-labeled images. Intuitively, the chest X-Ray
images should have the most similarity with lung X-Ray images,
so we wonder if directly transfer and fine-tune would carry
out better performance than the proposed method. Moreover,
Covid19-CT contains 565 labeled lung CT images: 349 positive
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TABLE IV
TOP ACCURACIES (%) OF EXAMINED MODELS

TABLE V
ACCURACIES (%) OF DDTL MODELS WITH SINGLE SOURCE DOMAIN

TABLE VI
ACCURACIES (%) OF DDTL MODELS WITH MULTIPLE SOURCE DOMAINS

samples, and 216 negative samples. It is considered as a fairly
small data set for training deep learning models. Finally, we use
the lung CT data set for the segmentation model. The data set
has 367 lung CT images with pixel-level masks.

Moreover, we run each experiment five times to investi-
gate the performance fluctuation range. Firstly, we produce 4
experiments on CNN and conventional TL models with the
Covid19-CT data. And then, we set up a series of experiments
on DDTL models with single source domain and multi-source
domains to explore the potential of the learning method. As
shown in Table V, there are five unlabeled source domains data
sets: Caltech-256, Amazon, Amazon, Webcam, Chest X-Ray, and
one labeled target data set: Lung CT for Covid-19. What is
more, another regular Lung CT contains masks for segmentation.
Moreover, the first four source domains are seemingly unrelated
to the target domain, but the last source domain is visually related
to the target domain.

Furthermore, unlike previous methods, the proposed method
is able to utilize multiple source domains to improve the per-
formance in the target domain. Therefore, as we can tell from
Table VI, we choose four primary source domains and use the
Chest X-Ray data set as the auxiliary domain. In the following
sections, we will present the results and analysis.

C. Performance and Analysis

In this section, we first present the performance of the seg-
mentation model. After that, we give an overview of results

TABLE VII
DFF PERFORMANCE

of all examined classification methods and present insights on
performance differences. Then, we provide training details and
analysis of our proposed DDTL algorithm.

1) Segmentation Performance: Firstly, the most informative
part of a lung CT is the lung area, and it allows machines to
better imitate the behaviors of real specialists. The proposed
reduced-size ResUnet is trained from scratch because there is
no pre-trained model for this novel architecture. Moreover, the
drop-out layers and the skip-connections are applied to prevent
over-fitting and non-convergence problems. As we can tell from
Fig. 2, the segmented image shows an accurate and clear contour
of the lung area, so we can select only the lung area as the input
for the DFF model. Furthermore, Fig. 4 shows a better visual
results of the segmentation model. The first column presents the
original image, the second column shows the ground truth of the
lung area, the third column gives the pixel-level classification
of the model, and the fourth column illustrates the pixel-level
difference between the ground truth and the prediction.

Moreover, we use two common evaluation metrics for image
segmentation tasks to quantify the performance. In the study, we
use IoU (intersection over union), Dice (F1 Score), and pixel-
level accuracy as the evaluation metrics. The definitions of them
are:

IoU =
TP

TP + FP + FN
, (15)

Dice =
2TP

2TP + FP + FN
, (16)
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Fig. 4. Lung CT segmentation.

Accuracy =
TP + TN

TP + TN + FP + FN
. (17)

Furthermore, for the comparison, we also conduct experiments
on the original Unet with the same data set. The details are shown
in Table III. Obviously, the reduced-size ResUnet outperforms
the original Unet. The possible reasons are: 1) the original Unet
cannot effectively prevent the model from learning noise, 2) the
skip-connection helps the model to extract deeper features.

2) Classification Performance Overview: As demonstrated
in Table IV, the proposed DFF algorithm outperforms the highest
test classification accuracy (96%). And more, the CNN model is
only at (78%) classification accuracy. Intuitively, it is caused by
insufficient training data. Moreover, the Alexnet and SelfTran
output promising accuracies (85%, 88%). In theory, initializing
with pre-trained parameters can boost the performance due to
the pre-train data set. However, the settings are more or less
similar to TL, and the accuracies are still lower than the proposed
DDTL method. This performance gap can be caused by large do-
main discrepancy between two distant domains. The traditional
models cannot close the domain distance to avoid the perfor-
mance degradation. However, there is no evidence of negative
transfer in the fine-tuning models. The instance-based DDTL
model (SLA) has the worst accuracy (62%), which is clearly a
negative transfer case. Theoretically, the instance selection by
the re-weighting matrix eliminates way too many source domain
samples due to a large distribution discrepancy. As such, it
cannot extract sufficient information for the knowledge transfer.
It can be considered as the same situation as the CNN model
with insufficient training data. Furthermore, pre-processing the

data with semantic segmentation can improve the performance.
Moreover, it proves that preserving the most informative part by
eliminating random noise from a small data set can enhance the
final classification performance.

Furthermore, we have observed other interesting things. First
of all, feature-based algorithms have more promising perfor-
mances on the COVID-19 classification problem. Differently,
the instance-based method completely failed to solve this task.
Intuitively, samples in distant domains are seemingly unrelated
at the instance level, but they might still share common informa-
tion at the feature level. Therefore, the instance selection method
tend to miss important information with only learning features
at the visual-level. Differently, the feature-based models tend to
ignore the large discrepancy at the visual-level. Instead, they aim
to discover the relationship of two domains at the feature-level.
Therefore, it can close the distribution mismatch by extracting
domain-confusing features.

Moreover, Table V shows performances of conventional TF
models and DDTL models with single source domain. Firstly,
the proposed DDTL algorithm achieves the highest classification
accuracy (90%, and SLA method shows negative transfer on all
five source domains. It further approves that instance selection
process might not be reliable for DDTL problems. However, the
advantage of SLA is that it does not require labeled target data,
while the proposed method needs labeled target data. In addition,
not all source domains are suitable for distant knowledge trans-
fer. The seemingly related domain, chest X-Ray, is actually not
the most transfer-friendly for this task. Other data sets that are
visually distant from the target domain carry out better results.
It approves the theory that seemingly unrelated domains might
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Fig. 5. Training Details of experiments on ADFE with 4 setups: Caltech-256 to Covid19-CT, Office-31-Amazon to Covid19-CT, Office-31-Webcam
to Covid19-CT, Office-31-dslr to Covid19-CT. In each sub-figure, up left is total loss, up right is target classification loss, down left is domain
distance, and down right is reconstruction error.

be statistically connected in the feature-level. We will provide
more evidences in later contents.

The best performance of conventional TL models is (88%
which is better than non-transfer methods. Initializing with
pre-trained weights only yields a faster convergence but it does
not improve the performance in this case. Accuracies from
experiments of Chest X-Ray to Covid19-CT turns out to be worse
than other experiment setups even the chest X-Ray is commonly
assumed to be the most similar to the target domain. However,
as shown in Fig. 6, the domain loss between the Covid19-Xray
and chest X-Ray is the greatest in all experiments. It also proves
that seemingly related domains might be distant in the feature
level, so it is not always reliable to hand-pick source domains in
DDTL problems.

Moreover, the enhancement from semantic segmentation is
still not good enough to reach the human-level performance.
Therefore, unlike most existing DDTL algorithms, we wish to
even improve the performance by using multiple source domain.
Importantly, in DDTL problems, finding shared information
cross different domains is the key to perform a safe knowledge
transfer. However, the amount of common information extracted
from a single distant domain might not be sufficient. As shown
in Table VI, the proposed method achieves (96% classification

Fig. 6. DFF domain losses with single source domain.

accuracy with using Caltech-256 as the primary source domain
and Chest X-Ray as the auxiliary source domain. It means that
these two data sets have less information overlapping, so the DFF
model can extract more useful shared knowledge to transfer to
the target domain. Differently, performance degradation appears
in others multi-source domain experiments, which means others
pairs have shared information that causes over-fitting.
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However, one significant weakness of DDTL models is that
they are highly dependent on the quantity and versatility of the
source domains. As we can tell from Table V, the performances
of the proposed model decreases dramatically when the webcam
and the dslr data sets of Office-31 are set as the source domains.
Theoretically, DDTL models benefit from extracting the com-
mon knowledge of the source domain and the target domain, but
they cannot complete this type of feature extraction when the
source data set is small. There are only 550 and 640 samples
in the webcam and the Dslr data sets, which are less than the
target samples. Therefore, it is not easy to safely and effectively
transfer knowledge between different domains. On the contrary,
the Caltech-31 data set has over 33 000 samples from 256
different classes, so it is easier to perform the knowledge transfer.

3) Analysis of DFF: Fig. 5(a)–(d) shows details of the DDF
models in single source domain setting and the multi-source
domain settings, illustrating four types of losses: total training
loss, target classification loss, domain loss, and reconstruction
loss. Firstly, The proposed DFF algorithm has achieved the high-
est test classification accuracy when the Caltech-256 data set is
the primary source domain and the chest X-Ray data set is the
auxiliary source domain. Overall, it has the most smooth curves
and the smallest domain loss. Moreover, with the additional
information from the auxiliary source domain, its classification
loss and reconstruction loss are dramatically reduced. In other
words, the model is able to extract additional features from the
auxiliary domain and use it as a bridge to close the distance
from the target domain. Moreover, large declines in performance
appear in the other experiments with Amazon and Webcam. As
mentioned earlier, the performance degradation can be caused by
overlapping information in the primary and the secondary source
domains. The model is over-fit due to the duplicated knowledge
in two source domains. Especially, in the experiment 5(b), the
domain loss is increased but the classification loss is not lowered.
Furthermore, this proves that seemingly distant instances might
share a certain amount of common features. And, such features
can be extracted by properly adding a domain loss to the loss
function. Moreover, Fig. 6 supports another point: the smaller
domain loss means a closer distance between two domains. As
we can tell from the figure, the Caltech-256 to Covid19-CT
combination has the lowest domain loss, and it also has the
best classification accuracy. Furthermore, the domain loss curve
of Dslr data set increases during the training. It indicate that
the quantity and the versatility of the source data set play an
important role in this task. Finally, we quantify the performance
of DFF model with four evaluation metrics: accuracy, precision,
recall, and F1 score.

VI. CONCLUSION & FUTURE WORK

To draw a conclusion, in this paper, we introduce a novel
DDTL framework (DFF) for medical imaging. Moreover, we
apply the proposed framework on COVID-19 diagnosis task to
justify its proficiency. Moreover, we conduct experiments with
another 5 methods with different leaning manners: non-transfer,
fine-tuning, DDTL (SLA). To distinguish our work from oth-
ers, the proposed method can use seemingly unrelated data

sets to develop an efficient classification model for COVID-19
diagnose. Unlike previous DDTL models, our method enables
knowledge transfer from multiple distant source domains, and
it can effectively enhance the performance on the COVID-19
diagnose. Moreover, the proposed method has great potential
of expanding the usage of transfer learning on medical image
processing by safely transferring the knowledge in distant source
domains, which can be completely different from the target
domain. Furthermore, this study is related to one of the most
challenging problems in transfer learning, negative transfer. To
the best of our knowledge, this is the first study that uses distant
domain source data for COVID-19 diagnosis and outperforms
promising test classification accuracy.

In addition, the framework is designed for general medical
imaging tasks. COVID-19 diagnosis is just an example to justify
the performance of the proposed work. However, we also apply
the framework to pneumonia diagnosis task. It also achieves
decent performance (95.1%) test classification accuracy. Intu-
itively, the reduced-UNet segmentation part is the key to improve
the generalization ability of the framework. Is is justified in [26]
that the original UNet is effective for medical imaging tasks.
Therefore, the framework can be extended to other medical
imaging tasks by adjusting the size or the structure of the
UNet based on the given data set. It proves that the proposed
method has the ability of being adapted to other medical imaging
methods. However, without the segmentation part, the proposed
framework might also have the potential for regular image pro-
cessing tasks. We plan to conduct more research in the direction,
but it is out of the scope of this study.

Four contributions of this paper are made: 1) it successfully
adopts DDTL methods to COVID-19 diagnosis, 2) we introduce
a novel feature-based DDTL classification algorithms, 3) the
proposed methods achieve state-of-art results on COVID-19
diagnosis task, and 4) proposed methods can be easily expanded
to other medical image processing problems.

However, there are several drawbacks of DDTL algorithms:
1) most algorithms tend to be case-specific, 2) source domain
selection is too complicated in some cases, 3) distant feature
extraction process is computationally expensive.

In the future, there are a number of research directions
regarding COVID-19 diagnosis and DDTL problems. Firstly,
the explainability of the feature-based DDTL algorithm is a
challenging but essential topic. Visualizing the changes on
features in deep layers through the training process can not
only help us to better understand the domain adaptation in
the feature level and decision making process of deep ANN
models, but also discover the relationship between two distant
domains. Moreover, how to improve the efficiency of feature
extraction process is another key to improve the performance.
Commonly, generative adversarial networks (GANs) is widely
acknowledged as a better feature extraction method. However,
how to avoid non-convergence in the training process of adver-
sarial networks is very challenging, and gradient explode and
disappear make the training process for adversarial networks
extremely difficult. As an inspiration, designing new adversarial
loss functions is a possible way of dealing with this problem. Ad-
ditionally, cross-modality TL, such as from image to audio, can
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be another potential solution to DDTL problem since semantic
information can also exist in different cross-modality domains.
Solving this problem can expand the use of transfer learning
to an even higher level. Furthermore, for multi-source DDTL
algorithms, source domain selection is important to stabilize
the performance. Recently, active learning methods attract more
and more attention from researchers. Finally, using medical
CT images from other diseases as the source domain might
or might be able to produce better results because seemingly
related domains can also have large discrepancies in the feature
level. Moreover, image data sets are usually not easy to access,
so it is not always feasible to develop a TL model by using
medical image data from other diseases. Therefore, granting
access to medical image data sets to the public and generating
distribution shift embedded artificial data is a promising future
research direction in the field of medical image processing.
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