TABLE V. Results of COVID-19 Prediction Using Retrained COVIDNet-CXR A, Retrained COVID-CAPS, ResNet-50 With and Without Segmentation, FuCiTNet and COVID-SDNet. All Four Levels of Severity in the Positive Class are Taken Into Account.
| Class | N | P | Accuracy | |||||
|---|---|---|---|---|---|---|---|---|
| Metric | Specificity | Precision | F1 | Sensitivity | Precision | F1 | ||
| COVIDNet-CXR | 88.82 0.90 |
3.36 6.15 |
73.31 3.79 |
46.82 17.59 |
81.65 6.02 |
56.94 15.05 |
67.82 6.11 |
|
| COVID-CAPS | 65.74 9.93 |
65.62 3.98 |
65.15 5.02 |
64.93 9.71 |
66.07 4.49 |
64.87 4.92 |
65.34 3.26 |
|
| Without seg. | 79.87 8.91 |
71.91 3.12 |
75.40 4.91 |
68.63 6.08 |
78.75 6.31 |
72.689 3.45 |
74.25 3.61 |
|
| With seg. | 78.41 7.09 |
73.36 4.66 |
75.46 2.97 |
70.80 8.26 |
77.17 4.79 |
73.40 4.01 |
74.60 2.93 |
|
| FuCiTNet |
80.79 6.98
|
72.00 4.48 |
75.84 3.18 |
67.90 8.58 |
78.48 4.99 |
72.35 4.76 |
74.35 3.34 |
|
| COVID-SDNet | ||||||||
79.76 6.19 |
74.74 3.89
|
76.94 2.82
|
72.59 6.77
|
78.67 4.70
|
75.71 3.35
|
76.18 2.70
|
||









































