TABLE 4. Comparison With Existing Models.
| Set | Precision | Sensitivity | F1 Score | Accuracy |
|---|---|---|---|---|
| Original CXR images | 0.505 | 0.429 | 0.46 | 0.45 |
| Regrouped lung images | 0.51 | 0.45 | 0.48 | 0.48 |
| Original CXR images | 0.88 | 0.82 | 0.85 | 0.85 |
| AlexNet-SVM | 0.736 | 0.722 | 0.729 | 0.74 |
| DenseNet-SVM | 0.90 | 0.76 | 0.826 | 0.8219 |
| VGG-SVM | 0.852 | 0.743 | 0.794 | 0.7952 |
| PCA-SVM | 0.87 | 0.76 | 0.81 | 0.81 |
| Patch-based CNN [6] | 0.947 | 0.90 | 0.923 | 0.925 |
| DarkNet and YOLO [7] | 0.905 | 0.835 | 0.867 | 0.8702 |
| COVID-SDNet [17] | 0.853 | 0.771 | 0.81 | 0.81 |
| Hussain et al. [4] | 0.821 | 0.765 | 0.792 | 0.7952 |
| Novitasari et al. [38] | 0.96 | 0.86 | 0.92 | 0.9174 |
| Misra, S. et al [39] | 0.896 | 1 | 0.91 | 0.933 |
| Jain, R. et al [40] | 0.91 | 0.78 | 0.86 | 0.93 |
| Asif Iqbal, et al. [41] | 0.90 | 0.892 | – | 0.896 |
| Mohammad, et al. [42] | 0.85 | 0.80 | – | 0.914 |
| Apostolopoulos, et al. [43] | 0.933 | 0.9285 | – | 0.934 |
| Our method | 1 | 0.88 | 0.936 | 0.936 |