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ABSTRACT As a result of the worldwide transmission of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), coronavirus disease 2019 (COVID-19) has evolved into an unprecedented pandemic.
Currently, with unavailable pharmaceutical treatments and low vaccination rates, this novel coronavirus
results in a great impact on public health, human society, and global economy, which is likely to last for
many years. One of the lessons learned from the COVID-19 pandemic is that a long-term system with
non-pharmaceutical interventions for preventing and controlling new infectious diseases is desirable to be
implemented. Internet of things (IoT) platform is preferred to be utilized to achieve this goal, due to its
ubiquitous sensing ability and seamless connectivity. IoT technology is changing our lives through smart
healthcare, smart home, and smart city, which aims to build a more convenient and intelligent community.
This paper presents how the IoT could be incorporated into the epidemic prevention and control system.
Specifically, we demonstrate a potential fog-cloud combined IoT platform that can be used in the systematic
and intelligent COVID-19 prevention and control, which involves five interventions including COVID-19
Symptom Diagnosis, Quarantine Monitoring, Contact Tracing & Social Distancing, COVID-19 Outbreak
Forecasting, and SARS-CoV-2 Mutation Tracking. We investigate and review the state-of-the-art literatures
of these five interventions to present the capabilities of IoT in countering against the current COVID-19
pandemic or future infectious disease epidemics.

INDEX TERMS COVID-19, SARS-CoV-2, smart healthcare, Internet of Things, artificial intelligence, big
data, fog computing.

I. INTRODUCTION
Coronavirus disease 2019 (COVID-19) is a human infec-
tious illness caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) [1]. SARS-CoV-2 has been
spreading all across the world in 213 countries, which results
in over 88 million cumulative cases of COVID-19 illness as
of January 2021 [2]. So far, the COVID-19 pandemic situa-
tion is not optimistic due to many factors including the low
vaccination rates [3] and unavailable pharmaceutical treat-
ment for COVID-19. The spreading control of COVID-19
mainly depends on the duration of immunity to SARS-CoV-2
and the non-pharmaceutical interventions (NPIs) [4], such
as contact tracing, quarantine, and social distancing. On the
one hand, the duration of immunity to SARS-CoV-2 is still
a mystery, which requires more longitudinal studies to figure
out. However, it has been known that the immunity to other
coronaviruses (e.g, SARS-CoV and MERS-CoV) gradually
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wanes over time and the coronavirus reinfections exist [5].
Similarly, the immunity to SARS-CoV-2 is highly possible to
be short-term instead of permanent. Based on the prediction
from Harvard Public Health School [4], the COVID-19 out-
breaks would occur recurrently and regularly if the immunity
to SARS-CoV-2 is not permanent. Even if it is permanent,
SARS-CoV-2 could be spreading for many years.

On the other hand, the non-pharmaceutical interventions
do contribute to mitigating the severity of COVID-19 epi-
demics. A study [4] estimates that social distancing could suc-
cessfully yield a 60% reduction of COVID-19 infections [4].
The combined non-pharmaceutical interventions, involving
self-isolation and public events banning, have effectively con-
trolled the transmission of SARS-CoV-2 in some regions like
Europe [6] and China [7]. Although the non-pharmaceutical
interventions are particularly important to COVID-19 pre-
vention and control, it is worth noticing that these inter-
ventions probably have profound influence on the economy
and society [8]. Also, the interventions, such as prolonged
self-isolation and complete city lockdown, have impacts on
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FIGURE 1. Overview of our survey paper.

people’s both physical [9] and mental health [10]. It is thus
highly desirable to build a more intelligent and system-
atic implementation of non-pharmaceutical interventions to
ensure effective COVID-19 control with the minimal possible
impacts on our lives and society.

Meanwhile, our living environments are increasingly cov-
ered by various sensors inside everyday objects. Internet of
Things (IoT) technology seamlessly integrates them into the
online network and enable them to operate automatically
without manual efforts [11]. It is reported that in 2019,
26.66 billion IoT devices are utilized and the number will
be increased to 35 billion in 2020 [12]. Due to the pow-
erful sensing capability of ubiquitous IoT devices, human
features, such as health condition [13], activities [14] and vital
signs [15], can be captured and analyzed spontaneously in the
IoT platform. Moreover, the immense data produced by IoT
networks can be further explored to perform event prediction
using big data analytics and machine/deep learning [16].
Thus, with the support of IoT infrastructures accompanied
by other emerging technologies (e.g., artificial intelligence
(AI), fog computing, and big data), it is feasible to extend
the COVID-19 NPIs into our daily lives to achieve intelligent
and effective prevention and control. In this paper, we review
an intelligent IoT-based platform for COVID-19 prevention
and control that can be used in both the COVID-19 pandemic
and post-pandemic periods. Specifically, this IoT platform
involves three NPIs including COVID-19 Symptom Diagno-
sis, Quarantine Monitoring, and Contact Tracing & Social
Distancing in a fog layer. In a cloud layer, another two NPIs
are implemented in the IoT platform, including COVID-19
Outbreak Forecasting and SARS-CoV-2 Mutation Tracking.
We comprehensively investigate and review the state-of-the-
art studies of IoT-basedmonitoring and sensing, which can be
used to implement these five NPIs for COVID-19 prevention
and control. Fig. 1 presents a summary of our survey paper,
which shows the contents of this paper and also illustrates
how to associate existing IoT platform and IoT applications
with COVID-19 prevention and control.

The remainder of this paper is organized as follows.
Section II presents functional layers of a fog-cloud combined

IoT platform for COVID-19 prevention and control.We intro-
duce the key techniques in each layer and review the related
work in building an IoT platform. We review the work
related to edge-based NPIs in Section III, Section IV, and
Section V, which refer to COVID-19 Symptom Diagnosis,
Quarantine Monitoring, and Contact Tracing & Social Dis-
tancing, respectively. In Section VI, we review the work
related to COVID-19 Outbreak Forecasting. Section VII
investigates the work and future directions in SARS-CoV-2
Mutation Tracking. Finally, we conclude this paper in
Section VIII.

II. IoT PLATFORM FOR COVID-19 PREVENTION AND
CONTROL: PERCEPTION LAYER, NETWORK LAYER, FOG
LAYER, CLOUD LAYER
In this section, we introduce a proposed Fog-Cloud-IoT plat-
form for COVID-19 Prevention and Control. As illustrated
in Fig. 2, we adopt a hierarchical computing architecture,
which involves four layers including perception layer, net-
work layer, fog layer, and cloud layer. In the first per-
ception layer, it consists of various IoT sensors which are
implemented in an individual, home/hospital environment,
or outdoor environment to gather all kinds of information,
such as vital signs or symptoms of individuals and human
activities. Next, the sensing data is transmitted through a
certain networking technology, such as WiFi, 4G/5G cellular,
and satellite. Then, distributed fog nodes are deployed with
network connections. The fog nodes can be some physical
devices (e.g., LAN-connected processor) that are capable of
computing and are close to the IoT sensors, which minimizes
the latency of real-time data analysis. Therefore, in the fog
layer, we can implement time-sensitive NPIs includingQuar-
antine Monitoring and Contact Tracing & Social Distancing.
Finally, all the data streams are fed into a centralized cloud
server that has more powerful computing capability. In the
cloud layer, we can perform the complex event prediction
using sophisticated machining/deep learning algorithms and
big data analysis, where two NPIs including COVID-19 Out-
break Forecasting and SARS-CoV-2 Mutation Tracking are
implemented.
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FIGURE 2. Illustration of an IoT platform for COVID-19 prevention and control.

A. PERCEPTION LAYER
The perception layer involves various devices that sense the
surrounding environment and individuals. We specifically
describe details of data acquisition in the perception layer by
using common IoT sensors. These IoT sensors are frequently
investigated in non-clinical healthcare and human activity
sensing.

1) CAMERA
Camera is a very common and key senor in mobile devices
and IoT devices. By using the camera, image and video
data can be captured and analyzed for various applications,
such as non-contacting monitoring and recognition of human
activities [17].

2) INERTIAL SENSOR
Inertial sensors, equipped in the mobile devices and wearable
devices, are the sensors based on inertia and relevant measur-
ing principles [18], including accelerometer and gyroscope.
Accelerometer, is used for measuring acceleration along three
axes. By deriving the 3-axis acceleration measurements, it is
able to detect the dynamic forces of the device, including
gravity, vibrations, and movement. Gyroscope is another type
of inertial sensors, which is conceptually a spinning wheel
with the 3-axis of rotation. It can lead to the measurement of
orientation and its rate of change, which tells us how much
the device is tilted. Human behavior attributes can be derived
from the readings of inertial sensors.

3) MAGNETOMETER
Magnetometer is another key sensor in IoT devices, which
can detect the magnetic fields along three perpendicular
axes. It is originally used to detect the orientation of the
device. Recent researches show that magnetic fields contain
spatial information, which can be exploited to estimate dis-
tances between devices based magnetic measurements [19].

Therefore, the magnetometers are studied to perform proxim-
ity sensing, which usually serves as a proxy for applications
of contact tracing and social distancing.

4) MICROPHONE
Microphone basically is an acoustic sensor that detects and
measures ambient sound signals. Current IoT devices typ-
ically equip the microphone with micro-electro-mechanical
systems (MEMS) technology, which offers a small foot-
print/thickness, a high signal to noise ratio (SNR), and lower
power consumption. Many researches utilize microphones
to sense ambient sounds for activity recognition [20], [21].
Moreover, microphones are used in conjunction with speak-
ers, where speakers transmit the deigned acoustic signals and
the reflected signals are received by microphones used to
analyze Doppler shifts for detecting human activities [22].

5) COMMODITY WiFi
Researchers use two main measurements of WiFi, received
signal strength indicator (RSSI), and channel state information
(CSI), to facilitate sensing tasks. First, RSSI characterizes the
attenuation of WiFi signals during propagation [23]. When
people have activities in a WiFi environment, they create
perturbations of RSSI, which can be used as the fingerprints
of different human activities. But RSSI is coarse-grained
and unstable, which is easily affected by the environment
changes. Thus, the fine-grained PHY layer channel state
information (CSI) of WiFi signals is recently utilized for
sensing tasks [24].

6) mmWave RADAR
mmWave radar is also explored to achieve non-invasive
and non-contacting sensing. mmWave radar can modulate
the transmitting wireless signals to sweep across a cer-
tain frequency band (i.e., frequency modulated continuous
wave) and then derive the object movements based on the
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phase information of reflected signals from objects [25].
The mmWave radar is robust to environmental changes. For
example, light and sound cannot affect its sensing perfor-
mance. Since it is capable of precisely modulating the trans-
mitting wireless signals, the mmWave radar is increasingly
installed in IoT devices to achieve higher accuracy for activity
recognition [26].

7) RADIO FREQUENCY IDENTIFICATION (RFID)
RFID is a wireless communications technology that allows
recognition of a specific target by radio signals. RFID con-
sists of three components that are a reader, an antenna, and
a tag. The antenna is connected to the reader and is used to
transmit radio signals between the tag and the reader. The
reader is used to read and recognize the signals from the tag.
The tag is composed of a coupling element, a chip, and a tiny
antenna, which is used to receive the radio signals from the
reader and antenna. Each tag has a unique electronic code
inside and is attached to the object to identify the target object.
RFID is widely applied in healthcare [27] and human activity
recognition [28].

B. NETWORK LAYER
The network layer is responsible for transferring information
data or instructions in the perception layer to the whole IoT
platform. The information transmission relies on the public
or private networkwith thewireless or wired communications
mode, which includes 4G/5G cellar networks,WiFi networks,
and satellite networks.

C. FOG LAYER
Fog computing is a promising technology introduced by
Cisco [29], which is closer to the physical IoT sensors at
the network edge comparing with cloud computing and thus
brings lower latency for data processing. In the fog layer,
the data of IoT devices would be transferred into the cor-
responding fog node for real-time analysis. The fog node
can be the devices that are capable of computing, stor-
age, and network connectivity, such as embedded servers
or routers. Fog nodes are not powerful servers, but a set
of low-end and decentralized devices with various function-
alities, which is able to infer its own location and track
underlying IoT devices to support mobility. Due to the low
latency andmobility support of fog computing, we can imple-
ment time-sensitive and location-sensitive NPIs in the fog
layer, which include COVID-19 Symptom Diagnosis, Quar-
antineMonitoring, andContact Tracing& Social Distancing.
The input features/samples defined in these three NPIs are
obtained from multiple sensors in the perception layer. Those
features/samples, are listed in Table 1, can be utilized in
machine/deep learningmodels for recognition and prediction.

D. CLOUD LAYER
In the cloud layer, there is a centralized server or data center,
which possesses strong information processing and storage
capability. The cloud layer is responsible for taking over the
tasks that the fog layer is incapable of handling, for instance,

TABLE 1. Defined input features/samples in the fog layer.

the task of complex event prediction. Due to its powerful
computing capability, sophisticated algorithms, such as big
data analysis algorithms and deep learning algorithms, can
be adopted in the cloud layer to improve the system per-
formance. Therefore, another two NPIs including COVID-19
Outbreak Forecasting and SARS-CoV-2 Mutation Tracking
are implemented in this layer.

E. TASK OFFLOADING STRATEGY
Fog layer and cloud layer are respectively responsible for
low-latency tasks and high-computing-resource tasks. To
reduce the power consumption and efficiently allocate the
computing resources to fog nodes or cloud server, a well-
designed strategy for task offloading is desired in a fog-cloud
IoT system. Recent works have studied the task offloading
mechanism for fog-cloud systems, which can be utilized in
our IoT platform. For example, we can use a potential game
to obtain near–optimal offloading decisions by maximizing
the quality of experience (QoE) of each user. Based on the
quality of service (QoS), such as energy consumption and
computational time, Firefly technique can be utilized to mini-
mize the QoS to address the efficient offloading in Fog-Cloud
environment. In addition, we can implement a smart gateway
prior to the fog layer, which is capable of making offloading
decisions based on data type, network congestion and energy
consumption.

F. INTEGRATING WITH MACHINE/DEEP LEARNING
Machine/deep learning is a promising technique for data
processing and analytics. However, machine/deep learning
requires large computing resources, which is hard to be
applied in fog nodes. To resolve this issue, some works
propose technologies for scalable and efficient deep learning
models, which enable the fog-cloud IoT platform to facilitate
the deep learning. For example, Project Adam is proposed
to use a distributed deep learning system largely to reduce
the training time. Another concept is named few-shot/zero-
shot learning, where we can train a machine/deep learning
model with limited training data. Also, meta-learning is a new
technique that improves the learning algorithm to learn the
multiple task more efficiently.

III. COVID-19 SYMPTOM DIAGNOSIS
Symptom diagnosis is important for contagion preven-
tion and control. By recognizing subjects with symptoms,
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corresponding interventions (e.g., self-isolation or medica-
tion) can be adopted in time, which prevents further trans-
mission of diseases. In addition, since hospital visiting is
inconvenient and has risks of infection during an outbreak of
the pandemic, remote healthcare is desirable. IoT technolo-
gies can achieve symptom diagnosis in non-clinical settings
and share data with doctors, which makes remote healthcare
possible. In this section, we review existing IoT-based stud-
ies, including breathing monitoring, blood oxygen saturation
monitoring, and body temperature monitoring, which can be
used for COVID-19 symptom diagnosis.

A. BREATHING MONITORING
Breathing rates and patterns can reflect the physical condition
of individuals, where abnormal breathing patterns could indi-
cate more serious conditions of COVID-19 patients. Breath-
ing monitoring is thus very important in clinical applications.
Traditional breathing measurements require hospital visits
and professional medical devices attached to the human body,
which is not convenient for individuals in need. With the
advancement of IoT technologies, breathing monitoring are
becoming pervasive and ubiquitous. Many studies use var-
ious IoT sensors, such as inertial sensor [30]–[32], camera
[33]–[40], microphone [41]–[44], mmWave radar [45]–[48],
and WiFi [49]–[52], to continuously monitor breathing
activities in both indoor and outdoor environments.

Hernandez et al. [30] propose a system named
BioWatch, which uses the accelerometer and gyroscope of
wrist-mounted devices (e.g, smartwatch) to measure both
heart rates and breathing rates. BioWatch exploits a bandpass
digit filter with fixed cut-off frequencies of 0.13 Hz and
0.66 Hz to extract the breathing signal from the wrist motion
data measured by inertial sensors. Hao et al. [31] further
improve the robustness and accuracy of extracting breath-
ing patterns from inertial sensor readings, which utilizes a
self-adaptive algorithms to recognize changes in both wrist
postures and breathing patterns. Moreover, a accelerometer-
based sleepmonitor [32] is proposed to estimate the breathing
rates during sleep. It uses a more advanced fusion technique
(i.e., Kalman filter) to adaptively merge 3-axes acceleration
data to obtain more accurate breathing estimations.

To achieve non-contacting measurements, Murthy et al.
[33] propose a system that can measure the breathing rates
by using thermal camera to capture exhaled air flows near
the nose. More studies [34], [35] then improve the thermal
camera-based breathing monitoring system by developing
algorithms for automatically tracking the changes near nasal
region, which can not only accurately estimate breathing
rates but also generate the real-time breathing waveform. In
addition, Tan et al. [36] utilize a regular camera to realize
the breathing monitoring by analyzing the chest movements
in a camera recorded video. Bartula et al. [37] propose
a new algorithm to efficiently distinguish between breath-
ing and non-breathing motions from video streams, which
improves the accuracy of breathing monitoring using cam-
eras. By using the off-the-shelf cameras in mobile devices,

FIGURE 3. The waveform of WiFi signals while a person is breathing [49].

Nam et al. [38] andMassaroni et al. [39] respectively develop
smartphone-based and laptop-based breathing monitoring
system to constantly record breathing information. Recently,
Wang et al. [40] propose to use deep neural networks to
model the breathing data from depth cameras to recognize
the six types of COVID-19 breathing patterns like Eupnea
and Tachypnea.

Although camera-based approaches can achieve
non-contacting breathing monitoring, they are constrained
by the lighting conditions. Therefore, some studies [41]–[43]
explore breathing patterns from breathing sounds recorded
by microphones. For example, the microphone embedded in
smartphones or headsets [41] is used to capture the breathing
sounds when users place the microphone around the head.
Similarly, Martin and Voix [42] propose to use in-ear micro-
phone to recover the breathing waveform from breathing
sounds and also apply a normalized least mean squared
adaptive filter to eliminate ambient noises. With regard to
diagnosing COVID-19 breathing patterns, Faezipour and
Abuzneid [44] use breathing sounds acquired from smart-
phones to distinguish healthy and unhealthy users based on
machine learning models.

Recently, more studies focus on using radio frequency (RF)
sensing techniques to monitor breathing motions based on
radar and WiFi. Petkie et al. [45] use a continuous-wave
(CW) based Doppler radars to measure the chest displace-
ments of breathing based on the Doppler shifted reflected
signals. To improve the rang resolution of Doppler radar,
Lai et al. [46] propose to use an ultra-wideband (UWB) radar
to detect breathing motions, which can achieve high-range
resolution for tracking breathing of multiple subjects. But the
transmission power of UWB radar is limited, which reduces
the signal-to-noise ratio and the sensing range. To avoid the
disadvantages of the Doppler radar and UWB radar, recent
studies [47], [48] utilize frequency modulated continuous
wave (FMCW) radars to perform reliable and multi-subject
breathing monitoring. In addition, the chest and abdominal
movements of breathing can impact the WiFi signal indoor
propagation (e.g., reflection and scattering), thus it is fea-
sible to capture human breathing motions by analyzing the
received WiFi signals. Fig. 3 (a) shows the raw data of WiFi
signal strength while a person is breathing in a WiFi environ-
ment. By using mean filter/removal and wavelet denoising
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to mitigate the effects of interfering objects and movements,
clear breathing cycles can be obtained from WiFi signals as
shown in Fig. 3 (b). Abdelnasser et al. [49] first propose a
WiFi-based breathing estimator named UbiBreathe, which
can derive the breathing rates from WiFi signal strength
values. Liu et al. [50] utilize the amplitude changes of WiFi
channel state information (CSI) to estimate the breathing
rates, which is a fine-grainedmeasurement for breathing. Fur-
ther studies [51] [52] exploit phase information of WiFi CSI
to realize accurate breathing monitoring for multi-subjects.

B. BLOOD OXYGEN SATURATION MONITORING
Blood oxygen saturation (SpO2) is a measure of the
oxygen-carrying capability of red blood cells. Healthy
individuals can regulate blood oxygen to a high level
(i.e., > 95%). For COVID-19 patients, low blood SpO2 is
an early warning sign of the disease, where further treat-
ments (e.g., supplemental oxygen) are needed if the blood
SpO2 of a COVID-19 patient is lower than 90% [54]. In
addition, research indicates that many COVID-19 patients
are measured as low blood SpO2 even they do not have
any discomfort or symptoms [55]. Therefore, monitoring
relative changes of blood SpO2 is significant for COVID-19
diagnosis and treatment. In the clinical situations, a pulse
oximeter [56], [57], which is a noninvasive device placed
over an individual’s finger, is used to continuously mea-
sure the blood SpO2 of patients. Blood with different oxy-
gen levels has differences in the absorption of near-infrared
light. Thus, the pulse oximeter emits near-infrared light to
pass through the blood of the finger to measure the blood
SpO2. However, this clinical pulse oximeter is not convenient
for the normal usages in daily lives. More studies exploit
wrist-mounted oximeters [58], [59] or wrist-mounted photo-
plethysmogram (PPG) sensors [60], [61] tomeasure the blood
SpO2 by analyzing the absorption difference of reflected light
on the blood in wrist. These wrist-mounted sensors can be
integrated into smartwatch or Fitbit to continuously monitor
the relative changes of blood Spo2.

Recently, remote SpO2 measurements [53], [62]–[64]
draw more and more attention to researchers. Wieringa et al.
[65] propose a pioneering idea that uses a camera with three
different wavelengths of LED light to measure blood SpO2.
But they did not build a real system or give any measurement
results. Kong et al. [62] use two cameras under ambient
light to detect a narrow level range (i.e., 97% − 99%) of
blood SpO2. To measure the blood SpO2 in a wider range
varying from 80% to 100%, Guazzi et al. [63] utilize a RGB
camera to detect the blood SpO2 of an individual 1.5 m
away. Moreover, Shao et al. [53] propose a new approach
to measure the blood SpO2 by using the camera-recorded
videos of a individual’s face area. Fig. 4 shows the setup
of the approach in [53]. We can see that a individual, sit-
ting 0.3 meters away from a camera and two LED lights,
is being captured blood SpO2 in a non-contact way, which
is a low-cost method suitable for SpO2 monitoring in home
settings.

FIGURE 4. Illustration of camera-based SpO2 measurements [53].

C. BODY TEMPERATURE MONITORING
Fever is a typical symptom of COVID-19, where clinical
statistics shows that more than 80% COVID-19 patients
has the symptom of fever [68]. During the COVID-19 pan-
demic, many hospitals setup infrared temperature sensors at
the entry to identify the febrile patients and isolate them
from other patients for further assessment [69], which sig-
nificantly reduces the COVID-19 transmission in hospitals.
Thus, it is important for both COVID-19 diagnosis and pre-
vention to monitor the changes of human body tempera-
ture. Traditional electronic thermometers are based on the
principle that different temperatures can cause the changes
of probe’s resistance and we can measure the resistance of
probe to obtain the temperature values. This thermometer is
usually required to be placed in oral, which causes inconve-
nience and is hard to achieve continuous monitoring. Infrared
temperature sensors [70], [71] thus are commonly used for
non-contact measurement of the body temperature in the
situation of long-term and continuous monitoring, which are
suitable to be implemented in high-risk areas, such as hos-
pitals, schools, and airports, to perform fever screening. For
example, Chan et al. [72] explore the feasibility of using an
infrared thermography (IRT) camera to screen fever subjects
in the airport during the SARS outbreak. The experiments
involving 176 subjects shows that IRT-based approach can
recognize fever subjects (i.e., > 38◦C) with accuracy of over
88% in the distance of 0.5 m. Moreover, many researchers
propose IRT-based body temperature monitor for remote
healthcare [73] [74], which enables real-time remote health
monitoring. Similarly, Mohammed et al. [75] [66] propose to
use infrared thermography imaging with drones to recognize
COVID-19 infected person in the outdoor environment. As
shown in Fig. 5 [66], a drone is controlled using virtual
reality (VR) techniques by a pilot who takes charge of the
drone flight. The drone is equipped with both optical and
thermal sensors to detect body temperatures by using image
processing algorithms. All the captured data from drone are
transmitted back to a administrative terminal device (i.e.,
smartphone) in real-time. In addition, the accuracy of infrared
approaches is limited from a distance. Some studies [76]–[78]
explore RF identification (RFID) technologies for accurate
body temperature monitoring. They integrate temperature
sensors into RFID tags and attach tags onto human skin
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FIGURE 5. Drone-based infrared thermography imaging for COVID-19
detection [66].

to enable the body temperature monitoring with an error
of 0.25◦C.

IV. QUARANTINE MONITORING
Quarantine is used to isolate the individuals, who have been
diagnosed with COVID-19 disease or have been exposed to
coronavirus, which is implemented to prevent the spread of
COVID-19 [80]. In addition to keeping away from others,
their health needs to be monitored for further assessment
and possible treatment. Conventional procedures of quaran-
tine monitoring, such as vital signs monitoring or activity
monitoring, are implemented manually by medical staff.

However, the pandemic brings acute shortages of medical
staff and facilities. And this contact monitoring also increases
the risk of infections among nursing staff. Thus, quarantine
monitoring needs to be implemented in home settings dur-
ing the pandemic. The issue is that quarantined individuals
at home may not follow the rules and their health cannot
be monitored by professional medical staff or devices. To
address this issue, many studies explore the advances of IoT
to enable remote smart healthcare, which achieves automatic
human activity tracking and real-time health monitoring in
home settings [81]. Catarinucci et al. [67] integrate RFID into
wireless sensor network (WSN) architecture to build a hybrid
sensing network (HSN), which combines the advantages of
both RFID and WSN technologies to enable a long-range,
low-power consumption and low-cost sensing scheme for
patient monitoring. Specifically, the patients need to wear
RFID tag for monitoring their physiological data like heart-
beat and movement. Furthermore, as illustrated in Fig. 6,
the sensing real-time data of HSN is delivered through IoT
smart gateway to the local user or remote user (i.e., medical
staff) for assessment. To achieve minimum-latency real-time
monitoring, Verma and Sood [82] introduce the concept of
fog computing to an IoT-based system for remote health
monitoring. They integrate a fog layer into an IoT system to
process real-time data that delivers the information to doctors
timely. In addition, a fog-assisted IoT system is proposed
in [83] to monitor the patients of dengue fever, which can
remotely send patients’ vital signs and symptoms to doctors
with short response time.

Many studies [79], [84]–[87] have exploit IoT tech-
niques for the quarantine monitoring of COVID-19 subjects.

FIGURE 6. Hybrid sensing network-based IoT health monitoring
system [67].

El-Din et al. [84] propose a basic IoT sensor-based system to
monitor COVID-19 infected subjects, which uses ear sensor,
blood sensor and motion sensor to measure the patients’
physical information (i.e., temperature, respiratory rate, and
blood pressure) and sends alerts to hospitals if anomaly is
detected. Also, Singh et al. [85] use a wearable band attached
to the body to track the real-time locations of COVID-19
quarantine subjects. Similarly, in [86], an IoT framework is
used for monitoring and identify COVID-19 subjects during
the quarantine. Specifically, several bio-sensors are deployed
to detect the COVID-19 symptoms of subjects and these
data would be delivered to quarantine center for further
assessment and, in the cloud data center, machine learn-
ing algorithms are used to build a model for COVID-19
identification.

In addition to professional IoT-based bio-sensors,
Maghdid et al. [79] propose to use the built-in sensors of
smartphones to detect the COVID-19 of monitoring subjects
at the network’s edge. As shown in Fig. 7, a smartphone
camera and inertial sensors are used to track the activities
of monitoring subjects. The microphone records the acoustic
signals of cough and the fingerprint sensor is utilized to
measure the body temperature. The sensing data is then
fed into a machine learning model to predict COVID-19.
This proposed IoT-based framework is a low-cost solution
for COVID-19 monitoring. Moreover, to achieve an outdoor
quarantine monitoring, Dobrea and Dobrea [87] propose to
use a drone with a high-definition camera to monitor the
quarantine zones.

V. CONTACT TRACING & SOCIAL DISTANCING
Social distancing means keeping a safe distance (i.e.,> 6 feet
or 2 meters) between individuals, which is a very effective
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FIGURE 7. Smartphone-based COVID-19 detection [79].

intervention for preventing infectious diseases such as coron-
avirus and influenza virus that spread through droplets while
coughing and talking. In addition, contact tracing is also a
good way to slow down the spread of infectious diseases
like COVID-19. Through contact tracing, the close contacts,
who did not keep social distancing, are found and required
for treatment or self-quarantine to prevent further spread of
virus [89]. Conventionally, those close contacts are provided
by the infected individual, which is hard to cover all close
contacts and may have omissions. IoT devices can provide a
more accurate and convenient way for social distancing and
contact tracing.

IoT devices in possession of various sensors, such as
GPS [90], microphone [91], [92], and magnetometer [88],
have been frequently used for proximity detection, which
can be implemented for social distancing and contact trac-
ing. GPS is a positioning system that gives the coordinates
of users. The most intuitive method is using GPS to track
the trajectories of users and determine the contact distance
based on coordinates [90]. Although the GPS-based method
is easy to be realized, it is also obviously flawed due to
the high power consumption and low distance resolutions
(i.e., 10 meters). Therefore, more researchers explore to inte-
grate high accurate algorithms into power-efficient sensors
to achieve proximity detection. In [91] [92], researchers use
microphones of smartphones and IoT devices to records
ambient sound and then calculate the acoustic power
spectrum to estimate distance between users. Moreover,
researchers find that magnetic fields [19] contain spatial
information, which can be explored for proximity detec-
tion. As shown in Fig. 8, Jeong et al. [88] propose a
magnetometer-based method for contact tracing in epi-
demics, which exploits linear correlations of smartphone
magnetometer readings to estimate distance between two
phones to detect the events of close human contact.

In addition, RF-based signals, such as Bluetooth [94],
WiFi [95], and RFID [96], are explored to detect proximity.
Liu et al. [94] build a model based on Bluetooth signal
propagation to map Bluetooth received signal strength val-
ues to distance values, which can achieve a precise distance

FIGURE 8. Smartphone magnetometer-based contact tracing and social
distancing [88].

resolution of 1 meter. By using signals from multiple sources
(i.e., WiFi and Bluetooth), Sapiezynski et al. [95] propose a
more accurate and robust system that can estimate distance
between individuals with more precise distance resolution of
0.5 meters. Bolic et al. [96] utilize the backscatter signals
from RFID tags to derive the proximity with a small error
of 0.3 meters. Moreover, Farrahi et al. [97] propose to make
cellular communication traces act as a proxy for contact
tracing, which use social network information like phone call
activities to obtain contact networks of individuals.

Recently, more and more work for COVID-19 con-
tact tracing and social distancing has been reported.
In [98], Gupta et al. envision the smart city and intelli-
gent transportation system to guarantee social distancing.
Polenta et al. [99] use WiFi and Bluetooth signals from
IoT devices to determine whether two individuals follow
social distancing. Also, this work develops a web App for
users to manage the collected data. Xia and Lee [100] pro-
pose to use Bluetooth Low Energy (BLE) to perform con-
tact tracing based on proximity detection. Also, this work
analyzes the relationships between the adoption rate of the
contact tracing and COVID-19 control and discusses the
security and privacy issues of the contact tracing strategy.
Tedeschi et al. [101] propose an IoT-based scheme for
COVID-19 contact tracing, named IoTrace. IoTrace also uses
BLE for distance estimation similar to the previous work. The
difference is that IoTrace adopts a decentralizedmodel, which
addresses the issues of the location privacy disclosure and the
overhead of user devices. Garg et al. [93] introduce the con-
cept of blockchain to the RFID-based contact tracing, which
enhances the security and privacy by using a decentralized
IoT architecture. Fig. 9 shows the scheme of interacting the
RFID data and proximity data interact with the blockchain
in [93]. Moreover, in [102], authors analyze different archi-
tectures of IoT platform that used for COVID-19 contact
tracing in terms of protocol stack model and architectural
entities.

VI. COVID-19 OUTBREAK FORECASTING
As aforementioned sections present, IoT senors can capture a
wealth of data.With the advance of big data analytics and arti-
ficial intelligence techniques, we can explore the rich set of
IoT underlying data and perform elaborate analysis to predict

49936 VOLUME 9, 2021



Y. Dong, Y.-D. Yao: IoT Platform for COVID-19 Prevention and Control

FIGURE 9. Blockchain diagram for anonymity preserving IoT-based
contract tracing [93].

the occurrence of various events. Akbar et al. [106] propose
a generic architecture for mining IoT data based on machine
learning techniques, which can be used for early predictions
of complex events. An adaptive prediction algorithms, named
adaptive moving window regression, is designed for dynamic
IoT data analysis in near real-time. The proposed architecture
is implemented in a smart city for predicting traffic events
with high accuracy. Dami and Yahaghizadeh [107] integrate a
latent Dirichlet allocation model into support vector machine
to perform nonlinear data analysis in the IoT environments,
which can predict the complex events in an efficient manner
with high accuracy. An IoT-based frost prediction system
is proposed by Diedrichs et al. [108]. This work use IoT
sensors of weather stations to capture environmental data like
temperature and humidity and exploit Bayesian network and
random forest to predict frost events.

In addition, many researchers have explored IoT data
for predicting outbreaks of infectious diseases. Sareen et al.
[109] design an IoT-based intelligent system to predict Zika
virus outbreak. Zika virus can cause a mosquito-borne dis-
ease. The most common symptom of Zika is fever. This
system applies a fuzzy k-nearest neighbour algorithm to
recognize the possibly infected users with the fever symptom
and uses Google map to locate the infected users for risk
assessment. For similar arboviruses spreading bymosquitoes,
Tavares and Rodrigues [110] propose an IoT architecture
for summarizing data from IoT sensors and analyzing them
using big data techniques to predict andmonitor the arbovirus
outbreaks. Sood andMahajan [103] propose a healthcare sys-
tem for monitoring and predicting chikungunya virus, which
utilizes the advancement of IoT, fog computing, and cloud
computing. Chikungunya virus, spreading in many develop-
ing countries, can cause vector borne disease. As shown in
Fig. 10, this work [103] uses IoT-based wearable sensors
to acquire the data (i.e., body temperature) of users and
implements Fuzzy-C means algorithm in the fog layer to
diagnose users in real-time. All the data of infected users is
then uploaded to the cloud sever for predicting the outbreak
of chikungunya virus using the approach of social network
analysis. Similarly, Rani et al. [104] present an IoT platform
for preventing chickungunya virus, where it gathers data
from IoT sensors and analyzes them in the cloud using big

FIGURE 10. Proposed system [103] to predict and control outbreaks of
chikungunya virus.

data processing, and finally gives the suggestions of taking
preventive actions. Also, for Ebola virus disease,
Wesolowski et al. [105] build a model using mobile network
data to analyse the population mobility in Africa that can
be useful to forecast and control the Ebola outbreak. To
summarize, IoT based data analysis has been utilized for
predicting various infection diseases. Similar approaches can
be implemented for COVID-19 outbreak forecasting.

VII. SARS-CoV-2 MUTATION PREDICTION
Similar to most coronavirus, SARS-CoV-2 is a RNA virus
with unstable single-stranded structure, which is character-
ized by a high mutation rate. This mutation may evolve
the virus to become more infectious/mortal or drug resis-
tant [111]. Therefore, tracking and predicting the mutation
of SARS-CoV-2 is very significant for proactively preventing
and controlling COVID-19.

Traditionally, researchers predict the virus mutation via
analyzing the changes of RNA secondary structure [112]–[114],
which involves massive biology laboratory operations.
With the emerging of AI and big data analysis, more
researches [115], [116] use machine/deep learning models to
learn the mutation patterns of viral evolution from historical
data. Salama et al. [115] propose to use a multi-layer percep-
tron neural network to learn the rules of correlation between
nucleotides of RNA. These learned rules can be exploited
to predict the mutations in next generations of RNA, where
it achieves a prediction accuracy of 75%. Yin et al. [116]
propose a time-series prediction model based on recurrent
neural networks (RNN) to perform the mutation prediction
of influenza viruses. By leveraging the feature of RNN that
can remember all historical residue information, this work
improves the effectiveness of the predication model and
successfully derive the mutation dynamics of influenza virus.
For SARS-CoV-2, Magar et al. [117] collect 1933 antibody
sequences of SARS-CoV-2 and train a model based on these
data using support vector machine and multilayer perceptron
neural network to predict the possible neutralizing antibodies
for SARS-CoV-2.

The above studies predict virus mutations by exploring
the virus structural features. On the other hand, these inter-
nal structural features of a virus are always reflected in the
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TABLE 2. Summary of existing IoT-based solutions for COVID-19 prevention and control.

external biological features of a virus, such as symptoms of
infected subjects, virus transmission rate and virus mortality
rate. As we mention in previous sections, all those biologi-
cal features of a virus could be monitored and analyzed in
an IoT platform. Thus, we consider that exploring gathered
data from IoT platforms for COVID-19 applications is also
a feasible direction for predicting the mutation patterns of
SARS-CoV-2. However, there is no existing studies yet in this
direction, and we hope investigations can be explored soon in
this important direction.

VIII. CONCLUSION
This paper proposes a fog-cloud combined IoT platform
for COVID-19 prevention and control by implementing five
NPIs, including COVID-19 Symptom Diagnosis, Quarantine
Monitoring, Contact Tracing & Social Distancing, COVID-
19 Outbreak Forecasting, and SARS-CoV-2 Mutation Track-
ing. Table 2 summarizes various studies considering different
layers of the proposed IoT platform. We review the recent
IoT-based studies which can be applied for implementing the
five NPIs. We discuss how the recent technological advance-
ments such as fog computing, clouding computing, artificial
intelligence, and big data analysis, can be utilized for IoT and
COVID-19 applications.
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