TABLE 10. The Specific Calculation Results of Different Classification Algorithms.
Classification algorithms | Training accuracy | Training error | Test accuracy | Test error | |
---|---|---|---|---|---|
GA-BP neural network | 0.96 | 0.03 | 0.85 | 0.15 | |
BP neural network | nnet() | 1.00 | 0.00 | 0.63 | 0.55 |
neuralnet() | 1.00 | 0.00 | 0.47 | 1.24 | |
mlp() | 0.93 | 0.07 | 0.54 | 0.69 | |
newff() | 0.93 | 0.07 | 0.76 | 0.29 | |
SVM | 0.74 | 0.26 | 0.53 | 0.50 | |
Decision tree | 0.62 | 0.63 | 0.51 | 0.76 | |
Random forests | 0.61 | 0.55 | 0.61 | 0.53 | |
Naïve Bayes | 0.85 | 0.15 | 0.54 | 0.78 |