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ABSTRACT The whole world faces a pandemic situation due to the deadly virus, namely COVID-19. It takes
considerable time to get the virus well-matured to be traced, and during this time, it may be transmitted
among other people. To get rid of this unexpected situation, quick identification of COVID-19 patients is
required. We have designed and optimized a machine learning-based framework using inpatient’s facility
data that will give a user-friendly, cost-effective, and time-efficient solution to this pandemic. The proposed
framework uses Bayesian optimization to optimize the hyperparameters of the classifier and ADAptive
SYNthetic (ADASYN) algorithm to balance the COVID and non-COVID classes of the dataset. Although
the proposed technique has been applied to nine state-of-the-art classifiers to show the efficacy, it can be
used to many classifiers and classification problems. It is evident from this study that eXtreme Gradient
Boosting (XGB) provides the highest Kappa index of 97.00%. Compared to without ADASYN, our proposed
approach yields an improvement in the kappa index of 96.94%. Besides, Bayesian optimization has been
compared to grid search, random search to show efficiency. Furthermore, the most dominating features have
been identified using SHapely Adaptive exPlanations (SHAP) analysis. A comparison has also been made
among other related works. The proposed method is capable enough of tracing COVID patients spending
less time than that of the conventional techniques. Finally, two potential applications, namely, clinically
operable decision tree and decision support system, have been demonstrated to support clinical staff and
build a recommender system.

INDEX TERMS COVID-19, ADASYN, Bayesian optimization, classification, inpatient’s facility data.

I. INTRODUCTION

The world is currently experiencing a pandemic situation
due to the extensive spreading of the novel coronavirus
disease namely, COVID-19. It is an acute respiratory syn-
drome triggered by the Severe Acute Respiratory Syndrome
Coronavirus 2 (SARS-CoV-2), which was primarily detected
in Wuhan under the Hubei province of China in late 2019.
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Considering the alarming rate of infection and death from the
COVID-19, World Health Organization (WHO) announced
the COVID-19 as a pandemic disease in March 2020 [1]-[3].
As per the WHO report on the COVID-19 on
August 04, 2020, about 18,142,718 people have been infected
due to COVID-19 [4]. Among them, about 691,013 people
died so far. Due to its high contagious nature, both the
COVID-19 infection and death toll are rapidly increasing.

In most cases, this disease spreads from man to man
via respiratory droplets, transmitted from individual to
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individual via air or any other surfaces. This virus lives
multiple hours to multiple days on a suitable surface at
room temperature [5], [6]. As suggested by WHO, the
COVID-patient should get himself isolated from others as
early as possible to resist its transmission. The COVID-19
should be detected as early as possible, reducing life, liveli-
hood, and the economy. But a critical issue is the broad
maturation period of the COVID-19 that varies from 3 to
14 days. The usual symptoms of this disease include fever,
cough, dyspnea, loss of smell, loss of taste, diarrhoea,
etc. [7], [8]. People affected by COVID-19 should go through
a fruitful, real-time, fast, and accurate screening scheme to
ensure timely treatment, isolation, and safety for the patient.

Many pieces of research are going on to find out efficient
and speedy COVID-19 detection schemes in different dimen-
sions. The Reverse Transcription Polymerase Chain Reaction
(RT-PCR) is a COVID-19 detection scheme that has shown its
efficiency and has been practised worldwide. Using samples
like the nasal or oral pharyngeal swab, this method can com-
petently detect coronavirus and has attained the gold-standard
banner. However, these testing kits fail to meet the mounting
demand due to its limited supply, especially in developing
countries [9]. Another drawback of this method is that it
requires an extended period, ranging from one to two days.
Moreover, the situation is even worse in rural areas, because
people from remote areas get the results after two or more
days, even after a week [10]. This extended period increases
the vulnerability of the spreading of COVID-19 as the patient
does not usually keep himself isolated from others before
getting his result.

To optimize these limitations, the potentiality of Artificial
Intelligence (AI) and Machine Learning (ML) algorithms
in the analysis, characterization, and classification of dif-
ferent diseases have motivated the researchers to introduce
Al and ML in COVID-19 detection. Numerous researches
have already been carried out to design a COVID-19 detec-
tion model based on Al and ML [7]-[20]. Furthermore,
Rajaraman and Antani [10] proposed a COVID-19 detec-
tion model based on deep learning (DL) algorithms. Using
convolutional neural networks (CNNs), chest X-ray (CXR)
data from patients are analyzed in this model to evaluate the
presence of the SARS-CoV-2 virus. The model showed about
93% accuracy employing the VGG16 classifier. Another
DL and CNNs based automatic COVID-19 detection model
was proposed by Makris et al. [8]. Diagnosing the CXR
data, the model exhibited about 95.9% and 95.00% accu-
racy engaging VGG16 and the VGG19 classifiers, respec-
tively. A transfer learning-based model was presented by
Abbas et al. [12] to trace COVID-19. This CNN based
model diagnosed the CXR images of patients to check the
COVID-19 presence, and the model attained about 97.5%
accuracy. He ef al. [7] presented a DL model for the automatic
detection of COVID-19. This model employed the chest
computed tomography (CT) images from patients to detect
COVID-19. The anticipated 3D CNN model, MNas3DNet41,
revealed about 87% accuracy. Jim et al. [11] presented an
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automatic COVID-19 detection model based on sequen-
tial CNN. This model took the CT images in its input to detect
COVID-19. The model attained almost 92.5% accuracy along
with 94.2% sensitivity and 95.6% specificity. A lot of more
automatic COVID-19 detection models have been proposed
so far based on the computer-based diagnosis of the CT and
CXR images.

Hence, all the anticipated models require CT or CXR
data of patients as the key input parameter, only available
from diagnostic centres. So, each patient or suspected patient
has to visit the diagnostic centre in person to check the
presence of COVID-19 in his body. Most of the families in
developing countries do not have private transport. Besides,
patients from rural areas have to travel a long distance to
reach a diagnostic centre. Therefore, they have to use public
transport to visit the diagnostic centre to check COVID-19.
This will create high vulnerability to COVID-19 spreading,
among others. From another point of view, a low percentage
of people tested for COVID-19 gets COVID-positive results
in most of the countries; as an example, as of July 30, 2020,
the positive rate is about 1.30% in France, 22.20% in
Bangladesh, 9.90% in Iran, 0.90% in Italy, 7.90% in
the USA, 11.10% in India, 2.10% in Russia, and 0.40% in the
UK [21]. Visiting the diagnostic or test centre, a large percent-
age of COVID-19 negative people may meet with COVID-19
positive patients, which will enhance the risk of getting con-
taminated by COVID-19 disease. So, an inpatient data-based
COVID detection will be the best option to avoid these types
of risks. Besides, this type of detection will be very user
friendly, cost-effective, and time-efficient.

Considering all the above issues, we have proposed a fast
and user-friendly model to detect the COVID-19 based on
machine learning. A large volume of data on COVID-19 is
available in different laboratories and test centres. The dataset
comprises other features like age, temperature, pulse rate,
systolic and diastolic pressure, fever, cough, loss of smell,
runny nose, diabetics, loss of taste, asthma, etc., which are
analyzed to design the automatic COVID-19 detection model.
The most promising advantage of this model is that it is
capable of detecting the COVID-19 within a few minutes as
well as help the doctors take adequate precautionary mea-
sures while treating the COVID patients. Different classi-
fication algorithms such as Linear Discriminant Analysis
(LDA), Quadratic-DA (QDA), Naive Bayes (NB), k-Nearest
Neighbors (KNN), Decision Tree (DT), Random Forest (RF),
eXtreme Gradient Boosting (XGB), Gradient Boosting (GB),
Support Vector Machine (SVM), etc. are used to characterize
the model. These classifiers have some hyper-parameters, and
proper tuning of these hyper-parameter improves the perfor-
mance of the classification using state-of-the-art global opti-
mizers such as Bayesian optimization [22], Gradient-Based
Optimizer (GBO) [23], Slime mould algorithm (SMA) [24],
and Harris hawks optimization (HHO) [25] etc. The eval-
uation of different performance metrics such as accu-
racy, specificity, sensitivity, etc. for the anticipated model
demonstrates higher efficiency in detecting COVID-19.
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The contribution and key topics covered by this study are as
follows:

o The proposed model can be easily tested on inpatients
or inhouse facilities discussed in Section II. Therefore,
the patient needs not to visit the clinic to test the
COVID-19.

e We have designed a machine learning framework
using Bayesian optimization adapted by the ADASYN
algorithm to detect COVID-19 which is presented in
Section II.D and IL.E.

o The state-of-the-art machine learning technique is opti-
mized using our method and compared with other com-
monly used Grid-search and random search techniques;
see Section IIL.H.

o The proposed method uses the ADASYN algorithm to
balance the model, and the effect of ADASYN has also
been demonstrated in II1.A.

« Using SHapely Adaptive exPlanations (SHAP) analysis,
important features are calculated, and the SHAP values
are explained to interpret the model in Section IIL.F.

o A clinically operable decision tree is built that will
be helpful for the clinical staff stated in Section IV.A.
A decision support system has also been devel-
oped to assist the recommender system illustrated
in Section IV.B.

The remainder of the paper is organized as follows.
In Section II, we discuss the materials and methods used in
this work. We present the experimental results in Section III.
In Section IV, we present a systematic discussion and com-
parison of the work with other approaches. Finally, we draw
some conclusions in Section V.

Il. MATERIALS AND METHODS

A. DATA SOURCE

The clinically-driven information on individuals who have
undergone through RT-PCR test was collected from the [26].
The dataset, containing 11169 person’s data with 2.82% of
patients’ COVID positive and 97.18% COVID negative tests
from the United States, was prepared by Carbon Health (CH)
and Braid Health (BH). The CH started RT-PCR testing of
a coronavirus in early April 2020. The dataset is compli-
ant with the Health Insurance Portability and Accountability
Act (HIPAA) privacy rule’s de-identification standard. Five
clinical teams worked under the CH. The dataset prepared by
the CH covered multiple physiognomies on patients, includ-
ing Epidemiological (Epi) Factors, comorbidity, vital signs,
lab technician-assessed symptoms, patient-stated symptoms.
Whereas, two clinical teams gathered the dataset under
the BH, which assembled the radiological information con-
taining verdicts, CXR impressions, CXR labels, and CXR
link. We haven’t used radiological information as most of the
patient doesn’t have radiological details. The integration of
radiological information is beyond the scope of this study,
hence excluded from the analysis. The dataset consisted of
both positive and negative test results for patients having both
one or more symptoms and zero symptoms. In addition to
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COVID-19 test results, the complete dataset, available on
the GitHub website, contains multiple features of patients
such as pulse rate, temperature, age, higher danger introducer
occupation, higher danger contacts, diabetics, cancer, asthma,
smoker, systole, diastole, diarrhoea, fatigue, fever, losing
smell, losing taste, runny nose, headache, muscle pain, pain
in the throat, cough, shortness of breath, etc. The vignette of
the entire data set has been illustrated through a tabular sketch
shown in Figure 1.

From the pictorial depiction (Figure 1), it is much clearer
that there are two types of data (numeric and boolean),
where the boolean variables are more than three times that of
the numeric data. Moreover, the highest age of the patients
in this data set is 90 years old, and the extreme values
of both systolic and diastolic pressures were dramatically
higher than the natural ones. It can be further added that
days_since_symptom_onset has about 68% missing data,
while the percentage of missing data in the entire data set is
around 17. Besides the tabular display, as shown in Figure 1,
the graphical example the green bars in Figure 2 efficiently
reveals that the variables cough, diabetes, chd, htn, cancer,
asthma, COPD, autoimmune_dis, and smoker have no miss-
ing data. In contrast, the variable days_since_symptom_onset
has the highest missing values compared to others.

B. DATA PRE-PROCESSING

The overall workflow of our study is presented in Figure 3.
For data pre-processing, the dataset has been imputed using
Multivariate Imputation by Chained Equations (MICE) algo-
rithm [27]. After completing scaling, we used the ADASYN
algorithm to balance out COVID and non-COVID datasets.
ADAptive SYNthetic (ADASYN) algorithm [28] is an over-
sampling method where COVID positive is a rare instance.
It helped us generate synthetic data, solving the over-fitting
problem. In contrast, the under-sampling process is not
the right choice in COVID classification. The majority
class (i.e. COVID-no class) is downsampled to the amount
minority class (i.e., COVID-yes). This process will reduce
the amount of data that drastically cause data inefficiency,
and it loses the vital information of COVID-no class. Our
COVID data set is not a big dataset, and downsampling
could mislead the diagnosis and detection. Compared to
other correlated over-sampling methods such as AdaBoost
in conjunction with Over/Under-Sampling and Jittering of
the data (JOUS-Boost), Synthetic Minority Over-sampling
TEchnique (SMOTE), SMOTE-Boost and, DataBoost-IM
(DataBoost IMbalanced) algorithm, ADASYN can balance
the imbalanced dataset, for example, COVID-19 dataset by
reducing the bias introduced by the imbalanced data distri-
bution [28]. Besides, ADASYN shifts the decision boundary
to harder to learn examples which ultimately improves the
classification accuracy. These two objectives, i.e. (i) bias
reduction and (ii) introducing harder to learn neighbourhoods
examples, are accomplished through the dynamic weight
adjustment and adaptive learning procedure [28].
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. Variable Variable Distinct For Numeric Data The ratio of | Missing | Missing
i Types Count Maxi | Mini Mean Boolean Data (%)
E mum | mum Data (0/1)
o age Numeric 94 90 42.18 0 0
'gﬂ ] high risk covid occup Boolean 2 8933/2067 169 1.5
S ‘& g ation [Whether patient
g E_J/ E in a profession with a
= " high risk of exposure. ]
= high risk interactions Boolean 6763/2905 1501 134
diabetes Boolean 2 10924/245 0 0
chd [Choronary Heart Boolean 2 11006/163 0 0
Disease]
3 Htn [Hypertension] Boolean 2 10195/974 0 0
% cancer Boolean 2 11079/90 0 0
'g asthma Boolean 2 10513/656 0 0
g Copd [Chronic Boolean 2 11139/30 0 0
S Obstructive Pulmonary
Diseases]
autoimmune_dis Boolean 2 11092/77 0 0
smoker Boolean 2 10392/777 0 0
temperature Numeric 66 39.4 34.95 36.88 4627 41.4
pulse Numeric 96 150 40 78.73 4644 41.6
® Sys [Systolic] Numeric 91 235 75 126.04 4618 41.3
£ Dia [Diastolic] Numeric 80 135 36 79.71 4618 41.3
> Rr [Respiratory Rate] Numeric 20 32 10 15.05 5407 48.4
Sats [Oxygen Numeric 14 100 76 98.11 4783 42.8
Saturation]
Ctab [Lungs Clear To Boolean 2 4881/995 5293 47.4
Auscultation
Bilaterally]
labored respiration Boolean 2 7005/18 4146 37.1
rhonchi Boolean 2 3631/880 6658 59.6
wheezes Boolean 2 3795/1030 6344 56.8
days since symptom Numeric 20 300 1 10.14 7596 68.0
onset
g cough Boolean 2 9034/2120 15 0.1
2 fever Boolean 2 7894/743 2532 22.7
g [sob Boolean 2 9756/1207 206 18
& [Shortness of breath]
diarrhea Boolean 2 10396/586 187 1.7
fatigue Boolean 2 9318/1675 176 1.6
headache Boolean 2 9415/1571 183 1.6
loss_of smell Boolean 2 10753/226 190 1.7
loss_of taste Boolean 2 10744/235 190 1.7
runny nose Boolean 2 10016/966 187 1.7
muscle sore Boolean 2 9901/1086 182 1.6
sore_throat Boolean 2 9666/1320 183 1.6
FIGURE 1. Characteristics of the Sample.
The Mathematical explanation behind the ADASYN algo- Here d = 1 means there is a total balance between two

rithm is given below:

For illustration, if m; and my represent the majority and
minority classes, respectively, then the Degree of imbalance
of the two classes can be figured as follows:

mg

d=—.

my

ey

If d < d, (where d, is the preset threshold for the maximum
tolerated imbalance) then the total number of the synthetic
minority can be estimated as follows:

G = (m; —my)d. 2)
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classes. If r; %, where k is the number of neighbours of
each minority, and 7 L guch that 7 = 1, then the
amount of synthetic data to glenerate for each neighbourhood
can be calculated as:

— i

G; = Gr. 3

If x; and x, are two minority examples within the same
neighbourhood, where x,, is randomly selected, then the new
synthetic example, s; can be enumerated using the followings:

si = Xi + (X — XA, 4)
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FIGURE 2. Fill rate for all Variables.

where x,—x; is the difference vector in n-dimensional spaces,
and A is a random number over [0, 1].

C. CLASSIFICATION MODELS

These nine classifiers such as Linear Discriminant Analysis
(LDA), Quadratic Linear Discriminant Analysis (QLDA),
Naive Bayes (NB), KNN, DT, RF, XGB, GB, and SVM,
have been utilized in the proposed machine learning frame-
work. Among nine classifiers LDA, QLDA, NB, KNN,
DT and, SVM are common classifiers and also used in
COVID-19 classification. RF, XGB and GBC are recent
state-of-the-art classifiers. For example, XGB is recently
applied to interpret the mortality prediction in COVID-19
patient and proposed a clinically operable simple tree-based
tool which can be suitable to take the right decision from an
expert point of view [56]. Considering the above rationale,
we have used both commonly used classifiers as well as
recently updated classifiers in this study. This will allow
us to compare the classification performance in different
classifiers. Moreover, RF, XGB and GBC classifiers can be
explained through SHAP analysis which is very useful to
clinical engineers. Finally, it can be seen from the results
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that the XGB performed better in most of the classification
metrics, and we used SHAP to explain the XGB to interpret
the COVID-19 detection.

1) LINEAR DISCRIMINANT ANALYSIS (LDA)

The LDA, introduced by Ronald Aylmer Fisher in 1936 [29],
is a productive classification technique. It sorts-out
n-dimensional spaces into 2-dimensional spaces that split-up
by hyper-plane. The core objective of LDA is to trace the
mean function for each class, and the function is projected
on the directions that optimize between-groups variance and
reduces within-group variance. The LDA is generated from
the conditional distribution of the data P(X|Y = k) for
each class k, and it optimizes by taking the class k when
the measurements are made on standalone variables for each
observation are continuous quantities [30], [31].

2) QUADRATIC LINEAR DISCRIMINANT ANALYSIS (QLDA)
QLDA, an extension of LDA is exploited in machine learn-
ing and statistical analysis to classify two or more groups
by quadratic discernible using distance-based classification
techniques. There is no hypothesis like LDA that the covari-
ance matrix for every class is identical. When the regularity
hypothesis is true, the best prospective test for the hypothesis
that an assumed measurement is from a given class is the
likelihood ratio test. QLDA can be found from the conditional
distribution like LDA of the data P(X|Y = k) like LDA, and it
maximizes by selecting the class k [30], [31]. More precisely,
for LDA and QLDA, P(X|Y = k) isresulting as a multivariate
Gaussian distribution with the following equation:

>

(Y =k) = <<2n)d/2
k
exp ( —0.5(X — pp)' Y (X — m), ()
k

where d is the number of features [32]. It needs to estimate
the class priors P(y = k) for using LDA and QDA model as
classifiers, e.g. the proportion of instances of class k from the
training data, the means p; and the covariance matrix.

3) NAIVE BAYES (NB)

NB classifier is authoritative and mainly useful in the large
dataset. It is used in both machine learning and medical
science, especially the diagnosis of different diseases like
COVID-109. It is a Bayes’ theorem, based on probabilistic
classifier objects with the strong independent supposition
between the features. It generates conditional probability
models that allocate class labels to a given problem [33]. Say,

P(Patient|Covid Positive)
__ P(Covid Positive|Patient) x P(Patient)
- P(Covid Positive)

9’

where, P(Patient|Covid Positive), a conditional probability is
the likelihood of the patient occurring that s/he is affected
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Data Acquisition  Data Pre-processing

I Data Imputation I

Oversampling with

Splitting the Data

Classifiers Parameter Optimization

ADASYN Algorithm

Data Scaling |

Al -
&

COVID 19 Dataset

Feature Importance Statistical Analysis
Vv — 10 fold CV,
v—|l ANOVA, Multi
) — Comparison Test

SHAP Value Analysis

L

LDA, QDA, NB, KNN, DT,

RF, XGB, GB, SVM Bayesian Optimization

Model Performance  Building and Training
Analysis Model
Optimized <
Parameters

Accuracy, Precision, Confusion Matrix,
ROC Curve etc.

FIGURE 3. The overall workflow of the classification of COVID-19. The first phase is collecting raw data followed by pre-processing,
where the raw data is imputed, scaled, and most importantly, the imbalanced data is balanced using ADASYN algorithm. Secondly,

the pre-processed data are split into the train and test set used by different classifiers to measure the classification performance. In the
next step, Bayesian optimization has been implemented to tune the hyperparameters of the classifiers. This optimized classification
model is then tested, and different performance metrics (accuracy, precision, Confusion matrix, ROC, 10-fold cross-validation, ANOVA, and
multi-comparison test) have been used for evaluation. Finally, the important features have been efficiently traced using SHAP analysis.

with Covid; P(Covid Positive|Patient) is also a conditional
probability: the likelihood of the positive COVID occurring
that is truly a patient; P(Patient) is the prior probability of a
patient; P(Covid Positive) is the overall probability of observ-
ing COVID positive.

4) K-NEAREST NEIGHBOURS (KNN)

KNN is straightforward simplest algorithms in supervised
machine learning technique [34] uses data and classify new
data points based on similarity measures with the distance
function, be able to apply to solve both classification and
regression difficulty. It uses an integer number as 1, —1, or 0
for symbolizing the productivity (labels) of a classification
algorithm outputs. KNN is a memory-based classifier; for
example, it remembers all the training data-points to pre-
dict test data by computing the similarity between an input
sample and each training instance. For a given new data
point xg, it finds the k training points x,,r = 1,...,k
closest in distance to xp and then classify using majority vote
among the k neighbors [32]. For selecting k, it conducts the
KNN algorithm respective times with various values of k and
opts for the k that reduces the number of errors accurately.

5) DECISION TREE (DT)

DT is a hierarchical flow chart like structure that generate
some decision rules. The DT creates a model that predicts
the target variable by learning the decision rule from the data
feature [35]. The main hyper-parameters of DT are criterion,
max_depth, max_features. In DT, “Gini”’ or “entropy’ is
used as a criterion. In contrast, the max_depth is utilized to
limit the number of nodes in the tree, and the max_features
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represents the number of features to consider while searching
for the optimal split. By properly tuning the hyper-parameters
of DT (i.e., criterion, max_depth, max_features) applied on
the COVID training dataset, the classification performance
will be efficiently magnified.

6) RANDOM FOREST (RF)

RF is an ensemble learning technique for classification
that uses several DTs on different sub-samples of the
dataset to improve the classification performance and to
control over-fitting [36]. The main hyper-parameters of
RF are criterion, max_depth, max_features, n_estimators.
The criterion, max_depth, and max_features have already
been discussed in DT. Besides, n_estimators represent the
number of DTs in the forest. The performance of RF can
be increased by properly tuning the hyper-parameters of
RF through optimization.

7) GRADIENT BOOSTING CLASSIFIER (GBC)

GBC is also an ensemble classifier that combines dif-
ferent weak learners (typically DT) into a single strong
learner in a forward stage-wise fashion by optimizing the
differentiable loss function [37]. Generally, ‘deviance’ or
‘exponential’ is used as a loss function where ‘deviance’
refers to deviance (logistic regression) for classification with
probabilistic outputs. For thrashing, ‘exponential’ gradient
boosting recaptures the AdaBoost algorithm. Other con-
trolling parameters of GBC contained different parameters
such as n estimators, learning rate, and max depth where
n estimators indicate individual boosting stages to accom-
plish; learning rate reduces the performance of each tree [32].
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TABLE 1. Classifiers and their controlling parameters or hyperparameters.

Classifiers (CIf) | Parameters, z € Z Hyper-parameters name
RF 4 Criterion, max_depth, max_features, n_estimators
RBF-SVM 2 Cost(C) and Gamma(vy)
DT 3 Criterion, max_depth, max_features
NB 2 Alpha
GBC 5 Learning_rate, loss, max_depth, max_features, n_estimators
XGB 7 N_estimators, learning_rate, n_jobs, max_depth, Gamma,
min_child_weight, colsample_by_tree
KNN 1 Number of Neighbours

8) eXtreme GRADIENT BOOSTING (XGB)

XGB is designed based on the principles gradient boosting
framework. It can be used for supervised learning tasks such
as regression, classification, and ranking; similarly, it gen-
erates a prediction model in the form of an ensemble of
weak prediction models. The model in a stage-wise approach
is compassed with it as other boosting methods do, and it
generalizes them by approving optimization of a random
differentiable loss function. The gradient descent is used
by ‘Gradient Boosting’ to generate new trees based on all
previous trees. It supervises the objective function toward
the minimum direction [38]. An objective function has a
form, and it divides into training loss and regularization. The
mathematical equation has been added as follows:

0bj(0) = L(0) + 2(6), (6)

where 6 denotes the parameters, 2 symbolizes the reg-
ularization term, and L is the training loss. The main
hyper-parameters of XGB are N_estimators, learning_
rate, n_jobs, max_depth, Gamma, min_child_weight,
colsample_by_tree. The hyper-parameters such as
N _estimators, learning_rate, max_depth have already been
discussed. Besides, n_jobs are relevant to the number of
parallel threads used to run XGB; Gamma represents the
loss required to make a further partition on a leaf of the
tree. The min_child_weight denotes the minimum sum of
feature example, i.e., instance weight needed in a child, and
colsample_by_tree is used for the subsampling of columns.

9) SUPPORT VECTOR MACHINE CLASSIFIER (SVC)

SVC is one of the most powerful supervised classi-
fiers and used mostly for data classification in medical
diagnosis [39], [40]. It aims to build a decision boundary
in such a way that it is as far as possible from the clos-
est data points from each of the classes, which are known
as support vectors. For non-linear problems like COVID
detection, a Radial Basis function (RBF) kernel is used.
For RBF-SVC, the controlling hyper-parameters are Cost(C)
and Gamma(y). The Cost(C) represents the regularization
parameter that controls the misclassification of the training
instances. Gamma(y) controls the “spread” of RBF ker-
nel and, therefore, the decision region. The lower value of
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Gamma(y ) will broaden the decision region and vice versa.
The proper value of C and y will increase the classification
performance, which can be achieved by optimization.

D. REQUIREMENT OF OPTIMIZATION

Most of the classifiers used in our entire study have some
hyperparameters. The classifier itself is the function of hyper-
parameters, and these parameters control the hyper-plane.
As an exemplification, XGB requires 7 Hyperparameters,
while KNN and DT have one parameter each [Table 1].
Classifier performance indices, e.g., classification accuracy,
error, specificity, sensitivity, etc. depend on the proper choice
of these parameters. This is an optimization problem, whose
general framework can be written as:

lienZlJ(le(z); Z), (7N

where z € Z denotes the hyper-parameters z1, 22, 23, - - - .-,2n
belongs to Z. CIf denotes the classifiers, e.g. RE, SVM,
DT, NB, etc. and J(.) represents the objective function. This
objective function is the user-defined function where users
can use different classifier metrics such as classification
error or accuracy or other metrics described in the following
section of statistical evaluation of classification measures.
The general framework of the optimization problem can be
interpreted as minimizing the classification objective J(.) as
a function of classifier’s hyperparameters z € Z. In this
study; mean of the the 10-fold cross-validation error is used
as an objective function. We chose one of the state-of-the-art
optimization algorithms named Bayesian optimization. This
algorithm used a stochastic process, namely, as a Bayesian
process, and it tried to find the optimal parameters in a smaller
number of iterations saving both memory and time [41].
Although various meta-heuristic algorithms such as GWO,
GBO, SMA, and HHO etc. successfully integrated into
many applications [42]-[44], hyper-parameter optimization
in expensive-to-evaluate objective function e.g., 10-fold
cross-validation loss, used in this study, makes it more
complicated [45]. Besides, meta-heuristic algorithms require
a set of input parameters that need to be found out to
obtain an improved performance as the performance of
the meta-heuristic algorithms are very sensitive to the
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input parameters. Furthermore, comparison among vari-
ous meta-heuristic algorithms is only valid if the proper
input parameters have been set, which requires domain
knowledge [46]. Bayesian optimization is used to set the
parameters of the meta-heuristic algorithm [45], [46].

The Bayesian optimization algorithm is a global opti-
mization method that is specially designed to deal with
such expensive-to-evaluate objective function, which is the
population and genetic operator (mutation, cross-over, and
selection) free algorithm. Bayesian optimization utilizes a
Gaussian process to compute an acquisition function that
evaluates the objective function. Besides, Bayesian optimiza-
tion memorizes its previous evolution and utilize these statis-
tics towards good solutions. It has been recently used in
COVID-19 detection using x-ray images [22]. Considering
the above rationale, Bayesian optimization has been applied
in this study.

To justify further, the proposed Bayesian optimization is
compared with the recently proposed Harris Hawk Opti-
misation algorithm [25]. This popular swarm-based and
gradient-free optimization algorithm is based on the cooper-
ative behaviour and chasing styles of Harris” hawks in nature
called ““surprise pounce” [25]. We have chosen this algorithm
for comparison as it is very recent and outperformed by many
popular meta-heuristic algorithms such as GWO, Multi-Verse
Optimizer, Moth-Flame Optimization, Whale Optimiza-
tion Algorithm, Bat Algorithm, Cuckoo Search, Firefly
Algorithm.

E. BAYESIAN OPTIMIZATION

Bayesian optimization (BO) is superior to grid search, ran-
dom search, and manual tuning and therefore used in this
study [47]. This algorithm keeps track of the past evalu-
ation results and uses them to form a probabilistic Gaus-
sian model of BO of the objective function and use it to
find out the most optimal hyper-parameters; as an exem-
plar, in the case of RBF-SVM, the hyper-parameters are
C and y. The BO algorithm selects C and y for which
objective function J(RBFSVM; (C, y)) provides the min-
imum value. Note that, the classification error is used
as an objective function. The BO algorithm is given
below:

Step 1: Build a Gaussian probability model of the objec-
tive function. In this study, classification error is the
objective function.

Step 2: Find the controlling parameters or hyper-
parameters that perform best on the Gaussian process.
Step 3: Apply these hyper-parameters to the true objec-
tive function.

Step 4: Update the Gaussian model incorporating the
new results.

Step 5: Repeat Step 2-4 until maximum iteration is
reached.

The Mathematics behind the Bayesian Optimization for X =
(x1,x2, x3, ..., x,) independent features and y target variable
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is given below:

P(X|y)P
POYIX) = %))(y) (8)
_ PO1ly)P@ly) ... POuly)PG)
P(x1)P(x2) ... P(x,)
_ POIIEL, Peily)
P(x1)P(x2) . . . P(xy)

(8b)

(8¢c)

[ : ]xP( TPy, 6o
POPG) . PG| o LITER

Since all the variables except the target variable are inde-
pendent, P(x1)P(x3) ... P(x;) = Constant, Then Eq. (8d) can
be simplified as:

POlxixy ... x,) o PO) [ [ Pxily), &)

i=1

Now, from Eq. (9), we find the probability of a given set of
inputs for all possible values of the target variable y and pick
up the output with maximum probability:

y = argmax P(y) [ [ PGily), (10)
y

i=1

F. STATISTICAL EVALUATION OF CLASSIFICATION METRICS
We have used several performance evaluation metrics to eval-
uate the performance of the proposed framework. The accu-
racy (ACC), error, false-positive rate (FPR), sensitivity (SE),
specificity (SP), positive predictive value (PPV), Matthew’s
correlation coefficient (MCC), F1_score, and Kappa index
can be calculated from confusion matrix [48], [49]. A lower
value of error and FPR, and a higher value of ACC, SE,
SP, PPV, MCC, F1_score, and Kappa index indicate a better
model. Besides, 10-fold cross-validation has been used [52]
on the overall dataset. The most significant point should
be mentioned here that the box-plot and Analysis of Vari-
ance (ANOVA) test are typically executed, relying on the
10-fold cross-validation result. The statistical significance
is determined by the p-value derived from the ANOVA
test [50], [51]. Furthermore, the receiver operating character-
istic (ROC) curve and the area under the ROC curve (AUC)
has also been used to evaluate the performance of the classi-
fier. The recall rate vs the decision boundary curve has been
used to examine the performance. In this study, we have used
the value of 0.5 as the decision boundary threshold to provide
the same importance to COVID-yes and COVID-no classes.

G. FEATURE IMPORTANCE USING SHAP VALUES

The SHapely Adaptive exPlanations (shortly known as
SHAP), proposed in recent papers by Lundberg and Lee [53],
are calculated for any tree-based model. The SHAP val-
ues from Game Theory to attribute ¢; value to each fea-
ture can be mathematically ascertained using the following
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formula [54]:

SI\M —|S| = D!
o=y S B R um - an
SeN\i

where M is the total input features, N is the set of all input
features, and S is a subset of the input features.

« In this plot, all the variables are ranked in descending
order.

o The horizontal line (x-axis) quantifies how much the
value is associated with a higher or lower prediction. All
the left-sided points represent the observations shifting
the predicted value in a negative direction. In contrast,
the points on the right contribute to shifting the predic-
tion in a positive direction. All the features are on the
left y-axis.

o The color shows whether that variable is high (in red) or
low (in blue) for that observation.

Ill. EXPERIMENTAL RESULTS

In this paper, the Bayesian optimization has been used along
with and without the ADASYN algorithm. In the case of
ADASYN, sufficient adaptive synthetic data has been cre-
ated to eliminate the imbalanced nature among the majority
and the minority classes. Firstly, the effect of ADASYN has
been evaluated along with ROC, shown in section III.A. The
balanced model has also been tested on the original test
data in section III.B. Box-plot and ANOVA are presented in
section III.C using cross-validation accuracy to evaluate the
statistical significance. The Recall rate vs. decision boundary
curve and Bootstrap ROC with ADASYN are discussed in
sections III.D and IIL.E, respectively. Then, the evaluation of
feature importance using SHAP and the analysis of SHAP
values have been presented in sections III.F and III.G, respec-
tively. Finally, the performance of Bayesian optimization
has been compared with the Grid search and random search
in section IIL.H.

A. BAYESIAN OPTIMIZATION WITH AND WITHOUT
ADASYN

The newly obtained balanced dataset has been utilized; 67%
of the total dataset is used for training and validation, and
33% is used for testing. After that, multiple classifiers are
used, and various statistical measurements are presented. The
effect of ADASYN has been experimented and validated in
this subsection.

To begin, in the upper portion of Table 2, the perfor-
mance analysis for the COVID Dataset with the utilization
of the ADASYN algorithm has been demonstrated. It can
be seen that; RF provides the highest classification perfor-
mance. However, the performance of XGB and GBC is very
close to RF. LDA and QLD show the worst classification
performance among various classifiers presented in Table 2.
The same AUC value of 99.70% is observed among these
three classifiers, as shown in Figure 4. To demonstrate the
effect of the ADASYN algorithm, the original unbalanced
dataset is used. The dataset is also divided in the same manner,
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FIGURE 4. ROC Curve with ADASYN.

i.e., 67% of the total dataset is used for training and validation,
and 33% is used for testing. We rerun the optimized code
on this dataset, and the results on the test dataset without
ADASYN is presented in the lower portion of Table 2. It can
be observed that the highest accuracy of 97.17% is obtained
by RF, which is close to the classification accuracy using RF
with ADASYN. This could happen in the imbalance dataset.
Therefore, accuracy is not a good performance indicator. The
Kappa index, MCC, and AUC are more robust and reliable
indicators in this case.

It can be seen that the highest Kappa, MCC, and AUC
values of 8.96%, 9.36% using NB, and 75.80% using XGB
(Figure 5), respectively, are obtained. Compared to the upper
portion of Table 2, i.e., results with ADASYN, the Kappa,

10 ROC Curve
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FIGURE 5. ROC curve without ADASYN. Note that the optimized model
has not been created by using a balanced dataset.
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TABLE 2. Classification performance (in %) on the COVID dataset with and without ADASYN.

With ADASYN
Classifiers | ACC | Error | F1_score FPR Kappa | MCC PPV SE SP AUC
LDA 73.69 | 26.31 75.11 31.55 47.35 47.60 | 71.68 | 78.88 | 68.45 | 81.30
QLDA 53.89 | 46.11 16.83 0.93 8.29 18.90 | 90.96 9.27 99.07 | 73.90
KNN 80.01 19.99 76.52 4.51 60.10 63.20 | 93.56 | 64.72 | 9549 | 93.50
NB 7374 | 26.26 75.60 33.48 47.43 4791 | 7098 | 80.87 | 66.52 | 82.70
DT 93.53 6.47 93.55 6.25 87.06 87.06 | 93.80 | 93.31 | 93.75 | 96.20
RF 98.59 1.41 98.61 2.08 97.19 9720 | 9797 | 99.26 | 97.92 | 99.70
XGB 98.50 1.50 98.52 2.30 97.00 97.02 | 97.76 | 99.29 | 97.70 | 99.70
GBC 98.50 1.50 98.52 2.02 97.00 97.01 | 98.02 | 99.02 | 97.98 | 99.70
SvC 96.60 3.40 96.63 3.51 93.20 9320 | 96.54 | 96.71 | 96.49 | 98.90
Without ADASYN
LDA 96.57 3.43 98.25 84.21 19.11 20.14 | 97.58 | 9893 | 15.79 | 76.20
QLDA 17.96 | 82.04 27.22 7.37 0.56 3.86 98.66 | 15.79 | 92.63 68
KNN 97.14 2.86 98.55 100.00 0.06 0.30 97.16 | 99.97 0.00 64
NB 96.06 3.94 97.99 91.58 8.96 9.36 97.36 | 98.62 8.42 71
DT 97.14 2.86 98.55 100.00 0.06 0.30 97.16 | 99.97 0.00 57.60
RF 97.17 2.83 98.56 98.95 1.95 6.94 97.19 | 99.97 1.05 71.90
XGB 97.14 2.86 98.55 100.00 0.06 0.30 97.16 | 99.97 0.00 75.80
GBC 97.14 2.86 98.55 100.00 0.06 0.30 97.16 | 99.97 0.00 74.20
SvC 97.14 2.86 98.55 100.00 0.06 0.30 97.16 | 99.97 0.00 63.40
TABLE 3. Classification performance (in %) on the original test data of COVID.
Classifier | ACC | Error | F1_score | FPR | Kappa | MCC | PPV SE SP AUC
LDA 7842 | 21.58 87.66 36.84 9.69 16.75 98.66 | 78.87 | 63.16 | 77.20
QLDA 11.82 | 88.18 16.97 1.05 0.51 4.76 99.67 | 9.28 | 98.95 | 67.20
KNN 65.62 | 34.38 78.53 3.16 8.98 21.16 | 99.86 | 64.71 | 96.84 | 94.40
NB 79.68 | 20.32 88.55 61.05 5.10 8.27 97.84 | 80.87 | 38.95 | 68.60
DT 93.38 6.62 96.50 27.37 35.65 40.97 | 99.16 | 93.98 | 72.63 | 88.80
RF 98.54 1.46 99.25 20.00 | 74.87 7499 | 99.41 | 99.08 | 80.00 | 97.10
XGB 98.63 1.37 99.29 24.21 75.08 75.08 | 99.29 | 99.29 | 7579 | 96.40
GBC 91.76 8.24 95.61 25.26 30.95 37.68 | 99.21 | 92.26 | 74.74 | 86.50
svC 96.75 3.25 98.30 2.11 61.57 66.28 | 99.94 | 96.71 | 97.89 | 98.90

MCC, and AUC values are 88.23%, 87.84%, and 23.90%
times lower ADASYN algorithm is not applied, respectively.
This can be happened due to an imbalanced model. This
significant improvement using ADASYN concludes that clas-
sification performance can significantly be improved through
directly applying the ADASYN algorithm.

B. RESULTS USING ORIGINAL TEST DATA ONLY

So far, we have seen the effect of ADASYN on classification
performance. The ADASYN is an oversampling method, and
the synthetic data is mixed with original test data during data
balancing. Therefore, it could be argued that what are the
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results of the balanced model on the original test data only
where synthetic data is not mixed?

To answer this question, balanced and Bayesian-optimized
models have been applied to the original test data. Dif-
ferent performance measures, such as accuracy, sensitiv-
ity, specificity, and ROC, are presented in Table 3 and
Figure 6. It can be seen that XGB provides the highest
accuracy, error, F1_score, FPR, Kappa, MCC and sensitiv-
ity of 98.63%, 1.37%, 99.29%,24.21%,75.08%,75.08%, and
99.29%, respectively. In contrast, SVC provides the highest
PPV, specificity, and AUC of 99.94%, 97.89% and, 98.90%,
respectively. It can also be seen that XGB performs the best
in most of the classification metrics presented in Table 3.
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TABLE 4. The accuracy score (in %) of the different optimized classifiers using 10-fold cross-validation.

LDA | QLDA | KNN NB DT RF XGB | GBC | SVC

Fold-1 76.03 20.39 68.16 | 82.11 | 89.98 | 9544 | 9598 | 89.09 | 94.10

Fold-2 75.45 20.16 69.62 | 83.96 | 89.61 | 96.33 | 96.24 | 92.03 | 95.25

Fold-3 78.87 20.05 67.68 | 80.75 | 91.23 | 96.87 | 96.69 | 92.66 | 95.17

Fold-4 78.23 20.88 67.47 | 8091 | 91.40 | 96.95 | 96.77 | 92.12 | 95.61

Fold-5 76.28 23.37 69.29 | 82.27 | 90.15 | 96.96 | 96.96 | 91.67 | 95.70

Fold-6 76.81 19.88 66.97 | 8227 | 91.76 | 96.42 | 96.60 | 91.14 | 94.36

Fold-7 78.27 20.48 66.19 | 79.79 | 89.18 | 96.60 | 97.23 | 89.54 | 93.92

Fold-8 77.15 22.76 68.19 | 81.81 | 91.31 | 9642 | 97.22 | 90.23 | 9543

Fold-9 77.06 21.77 67.38 | 81.45 | 91.22 | 96.06 | 96.42 | 90.68 | 95.70

Fold-10 | 78.09 2451 67.62 | 80.59 | 90.16 | 96.60 | 96.87 | 89.27 | 94.72
Average | 77.22 21.43 67.86 | 81.59 | 90.60 | 96.46 | 96.70 | 90.84 | 95.00
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FIGURE 6. ROC Curve for COVID on original test data only using each
model. The optimized model has been created by using a balanced
dataset and then applied to the original test dataset.

Furthermore, these results are mostly inclined with
ADASYN results (upper portion of Table 2), and results are
significantly better than without ADASYN in all classifica-
tion measures. The ROC curve shown in Figure 6 is also
visually very close to Figure 4. Note that the same test dataset
has been used without ADASYN (i.e., in the lower portion of
Table 2) and in Table 3 for a fair comparison. Finally, it can
be concluded that a balanced model can significantly improve
the performance of the COVID dataset and XGB shows the
best classifiers. The confusion matrix of the best performing
balanced model with ADASYN and with original test data
have been presented in Figure 7 to show how much COVID
and Non-COVID patients are correctly classified.

C. K-FOLD CROSS-VALIDATION
In the standard train-test-split method, generally, a small por-
tion of the data is taken as the test set, and the total dataset is
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not tested. To overcome this issue, the k-fold cross-validation
(CV) is one of the helpful techniques exploited to test
the effectiveness of machine learning models. It is also a
re-sampling procedure to evaluate, and k = 10 is used in
this study. The first fold is used for testing, and the remaining
folds are used for training and repeated ten times to test the
total dataset fold-by-fold basis. The 10-fold cross-validation
result is presented in Table 4, where the classification result of
each fold is shown. The final row provides the average classi-
fication accuracy of the 10-fold results. From the Table 4, it is
observed that the least score has been obtained using QLDA,
whereas the XGB touched the mountain point, grabbing a
score of 96.70% and RF has attained an average accuracy
of 96.46%. On the other side, the classification performance
using Decision Tree, SVC, and GBC was less than XGB
and RF but above 90%. Note that, the data processed by
ADASYN is used only to train the classifier, but the original
test is used during testing and performance comparison.

Figure 8(a) showed the accuracy of different classifiers
using the COVID original dataset using a box-plot. Here
one-way ANOVA provided a p-value of 3.32 x 107107 for
the original COVID test dataset, which is statistically sig-
nificant (p < 0.005). It also provided an interactive plot of
multiple comparisons of means in Figure 8(b) that showed
the highest mean accuracy from XGB that is statistically
significant from seven classifiers (GBC, DT, SVC, NB, KNN,
QLDA, and LDA). In contrast, it is statistically not significant
from RF, because the mean of RF is almost identical. Note
that, Figure 8(b) is an interactive plot where the significance
of different classifiers can be visualized by clicking on the
specific classifier level. For instance, RF is blurred (shown
in grey) defining its insignificance as XGB is selected. Simi-
larly, GBC and DT will also exhibit statistical insignificance
if one of them is selected.

D. RECALL RATE VS. DECISION BOUNDARY CURVE

The recall rate, in general, depends on the decision boundary
using a certain threshold. To exemplify, the recall rate vs.
decision boundary curve displayed in Figure 9(a), where
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FIGURE 7. Confusion matrix of the balanced model applied in (a) COVID
test Dataset with ADASYN, (b) original COVID test Dataset only. Figure 7(a)
depicts the percentage of the correct classification in with the first two
diagonal cells generated by the trained network. The numbers of patients
who are correctly classified as a COVID and non-COVID were 3150 and
3233, corresponding to 48.7% and 49.9% in each group’s patients,
respectively. Likewise, the numbers of patients who are incorrectly
classified as a COVID and non-COVID were 24 and 67, with 0.4% and 1.0%
correspondingly among all patients in each group. Similarly, the overall
99.2% were correctly, and 0.8% were incorrectly classified COVID, and
non-COVID were overall, 98.0% and 2.0% correctly and incorrectly
classified accordingly. In the case of prediction, the correct overall
predictions for COVID and non-COVID were 97.9% and 99.3%, respectively.
On the other hand, the incorrect results for COVID and non-COVID were
2.1% and 0.7%. Similarly, we can also interpret Figure 7(b).

0.5 decision boundary threshold (7') has been used for the
“COVID-19-yes” class. The recall rate of QLDA is about
0.98 at default threshold 7 = 0.5, meaning that about
98% times this optimized classifier can truly classify the
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FIGURE 8. Box-plot for (a) COVID Dataset and (b) multi-comparison test.
Note that (b) is a graphical user interface tool by which one can test the
statistical significance of any classifiers. Here we only show the effect

of XGB. The effect of other classifiers can also be interpreted in the same
way.

“COVID-19-yes”. The XGB and RF provided a mod-
erate performance of around 0.75 at default threshold
T = 0.5 defining the “COVID-19-yes” class. The SVC shows
the third highest performance of around 0.90. In contrast,
the recall rate of NB at this threshold is 0.25, meaning
that only 25% times NB can truly classify the “COVID-
19-yes” class. A similar scenario is observed for the
LDA classifier.

On the other hand, looking at Figure 9(b), the recall rate of
QLDA is drastically falling to a value of 0.1 at T = 0.5,
revealing that only 10% times QLDA can classify the
“COVID19-no” class. The recall rate of XGB, GBC, and
RF is about 0.99 at this threshold whereas the recall rate
of SVC is 0.90. Finally, considering both “COVIDI19-yes”
and “COVID-19-no” classification using recall rate vs.
decision threshold measure, it can be concluded that
SVC, XGB, and, RF provide the satisfactory recall
rate among different optimized classifiers predicting both
classes.

VOLUME 9, 2021



M. A. Awal et al.: Novel Bayesian Optimization-Based Machine Learning Framework for COVID-19 Detection

IEEE Access

COVID-19_yes
Recall vs. Decision Boundary
1.0 i ——
i
1
0.8 i
(] i
L 1
Lo6 i
x :
s ! LDA
¢ 04 | o
1 — RF
H — GBC
0.2 H — XGB
1 KNN
i — NB
H SVM
1
O'%.O 0.2 0.4 0.6 0.8 1.0

Decision Boundary (T)

Recall Rate

COVID-19_no
Recall vs. Decision Boundary

1.0
e 1
\ i —_—
]
0.8 ' \
i
1
i
0.6 !
i
— LDA H
0.4| — QAbA i
— DT 1
— RF i
—— GBC H
02— xeB :
KNN 1
l— nm |
SVM H
1
O'%.O 0.2 0.4 0.6 0.8 1.0

Decision Boundary (T)

FIGURE 9. Recall rate vs. decision boundary curve for (a) COVID positive and (b) COVID negative.

E. BOOTSTRAP ROC WITH ADASYN

To determine whether the optimized model is highly sensitive
to training data or not, bootstrapping is performed on the
XGB model as it is the best performing model. This gives
Npoor XGB having slightly different discriminative abilities.
To show the error, three ROC curves are plotted in Figure 10;
the middle one represents the average ROC where upper
and lower curves represent the 95% confidence interval (CI).
To obtain this bootstrap ROC, Npypr = 100 XGB mod-
els are trained and mean AUC of 0.98 with an upper and
lower confidence interval of 0.97 and 0.99, respectively, are
obtained. This indicates that training is not highly sensitive to
the training dataset.

F. FEATURE IMPORTANCE USING SHAP

In a variable importance plot, the most significant vari-
ables are sorted in descending order. The top variables
contribute more to the model than the bottom ones
and thus have high predictive power. By way of exam-
ple, “fever”, “cough”, ‘“‘high_risk_exposure_occupation™,
“high_risk_interactions”, ‘“‘wheezes” are the most important
features, where “fever” touched the mountain point in this
case [shown in Figure 11]. Simultaneously, “pulse” and
““sore_throat™ received the least importance in classifying
the COVID-19 contaminated patients.

G. SHAP VALUE ANALYSIS

From the pictorial example of SHAP analysis [Figure 12] for
training data, it can be summarized that the three features,
“fever”, “cough”, “high_risk_exposure_occupation” and
“loss_of _smell” have a massive positive impact is on the
target variable. The ‘“high” comes from the red colour, and
the ‘““positive” impact is shown on the X-axis. Whereas,
we conclude by mentioning that the features “ctab” and
“wheeze” are highly negatively correlated with the target
variable. In this way, all the variables can be efficiently
explained. It should be mentioned that the behaviour of the
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FIGURE 10. Bootstrap ROC curve of the COVID dataset using XGB
with 95% CI.

XGB model is defined by the SHAP and are not necessarily
causal in the real world. In other word, SHAP values do not
provide the causality; it only describes the model behaviour
and the behaviour of the data used to build the model [55].
As the model does not predict all the COVID patients accu-
rately, it is plausible to get some false positives and false
negatives. However, the SHAP value can able to explain such
results, and the summary plot will be helpful to explain those
results.

H. PERFORMANCE ON THE GRID SEARCH, RANDOM
SEARCH, BAYESIAN OPTIMIZATION AND HARRIS

HAWKS OPTIMIZATION

We propose to use Bayesian optimization techniques in
our framework, and therefore, it is logical to compare

10275



IEEE Access

M. A. Awal et al.: Novel Bayesian Optimization-Based Machine Learning Framework for COVID-19 Detection

TABLE 5. Comparative search techniques.

Optimization techniques Parameters evaluated | The overall time is taken (in Sec)* | Cross-validation score (%) | Test score (%)
Grid Search 6561 10473.740 97.39 98.00
Random Search 30 162.794 97.97 98.10
Bayesian optimization 30 675.389 98.00 98.20
Harris Hawks optimization 200 6204.80 98.39 98.00
*In case of grid search: time is taken to iterate overall parameter combination.
*In case of random search and Bayesian optimization: time is taken to go over a predefined number of iterations (30)
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FIGURE 11. Feature importance plot using SHAP for XGB.
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FIGURE 12. The SHAP variable importance plot of training data using XGB.

the Bayesian optimization algorithm with commonly used
parameter search algorithms. Two popular and widely used
algorithms, namely, grid search and random search, compare
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with our proposed techniques. Table 5 presents the com-
parison of different search algorithms in terms of several
parameters evaluated; the overall time is taken (in sec.) to
complete the program, cross-validation accuracy score, test
score. All the simulations were run on Intel core {9 computer
having 64GB RAM and used the XGB model. It can be seen
that it takes 10473.740 Sec. to complete the simulation using
grid search, whereas random search and proposed Bayesian
optimization take only 162.794 Sec. and 675.389 Sec, respec-
tively. Furthermore, the random search and Bayesian algo-
rithm take 30 parameters each, while the grid search requires
more parameters, which is 218 times than that of others. The
test score using Bayesian optimization is 98.20%, which is
better than grid search, random search.

The pictorial depiction of the comparative search meth-
ods has also been given in Figure 13, from where it can
be added that at the initial stage, the accuracy of Random
Search was nearly 97.50%, which was almost stable up to
12 iterations. Then, with a single iteration, it takes a
sharp change in its accuracy, touching closely the score
of 98%, which was followed by an unchanged condition until
30 iterations. In contrast, the score of our proposed Bayesian
Optimization technique commenced before 97%, which was
almost steep up to 2 iterations, touching the accuracy

Finding the optimum
/

o
©
©
N
L

0.980 ~ (

0.978 A

0.976 A

0.974 -
—— Random Search Optimization

Cross-Validation Score (accuracy)
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0 5 10 15 20 25 30
Iteration

FIGURE 13. Comparative optimization techniques applied to the XGB
model.
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above 98%. The most exciting information should be men-
tioned here that the score of our proposed method remains
unchanged, except for a slight change after 15 iterations.
Before finishing 30 iterations, its accuracy touched the moun-
tain point.

The proposed Bayesian Optimisation Framework has
also been applied to the most recent Harris Hawks opti-
mization algorithm calculated over 200 evolutions with
20 populations on the same train-test settings. It provides
98.39% cross-validation accuracy, whereas the testing accu-
racy is 98%. The result is very similar to the Bayesian Opti-
misation framework. However, it takes 6204.80 Sec. which is
9.4 times slower than our proposed framework as it requires
more evaluations and optimization calculations; see Table 5.

To further justify, a statistical significance test between
Bayesian optimization and Harris Hawks optimization algo-
rithm is performed on 10-fold cross-validation using t-test.
After that, the p-value is calculated, and the box-plot is
plotted. A p-value of 0.47 is found, which suggests that
there is no statistically significant difference between these
two optimizations. The box-plot illustrated in Figure 14 also
justifies the same statements.

10 Fold CV
—_ _
o7 == ==
—_—
96.5 -
9
T 96 F
g +
=
54
<955
95
94.5 - M

XGB with Bayesian Opt. XGB with Harris Hawks Opt.

FIGURE 14. Box-plot of Bayesian optimization and Harris Hawks
optimization.

IV. DISCUSSION AND COMPARISON

In this research, a Bayesian optimization-based machine
learning framework with a class balancing strategy using
the ADASYN algorithm is proposed to identify COVID
patients from their inpatient facility data. Nine state-of-the-
art classifiers such as LDA, QLDA, NB, KNN, DT, RF,
XGB, GB, and SVC are utilized in this proposed frame-
work to identify COVID patients. Different classification
measures such as accuracy, sensitivity, specificity, Kappa
index, Matthews correlation coefficient are used to show the
efficacy of different classifiers. This study also performed
10-fold cross-validation accuracy to achieve statistical sig-
nificance using ANOVA, recall rate vs. decision boundary
threshold analysis, ROC, and bootstrap ROC. Finally, SHAP
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analysis is performed to interpret the feature importance and
interpret the model. These different classification indicators
describe model performance from another point of view.
The primary intention to use these indicators is to describe
the classification performance from a different perspective.
It can be seen from Table 2 that RF yielded the highest
classification performance in terms of accuracy, kappa index,
and MCC, etc. However, the classification performance of
XGB and GBC is very close to RF. The ANOVA and
multi-comparison tests show that the average accuracy of
RF, XGB, and GBC are very close and are not statistically
significant. However, the 10-fold cross-validation accuracy
of XGB provides the highest value (see Table 4). More-
over, the balanced XGB model offers the highest classifica-
tion performance when applied to the original test data (see
Table 3). Also, the recall rate vs. decision threshold bound-
ary indicates the superior performance of XGB and SVC
(see Figure 9). This concludes that the balanced and opti-
mized XGB model would be the best choice for detecting
COVID patients using their inpatient facility data. Therefore,
further analyses such as bootstrap ROC and SHAP analysis
and features importance analysis are done on a balanced and
optimized XGB model.

Regarding the ADASYN algorithm, it should be mentioned
that ADASYN adaptively generates synthetic data samples
for the COVID-yes class since it is a minority class to reduce
bias introduced by imbalanced data distribution. ADASYN
moves the classifier’s decision boundary towards harder-to-
learn examples, improving the learning performance [28].
Therefore, applying the ADASYN algorithm enhances the
learning process and eventually improves our COVID classi-
fication performance; see Table 2 to understand the effect of
ADASYN in detail. Regarding Bayesian optimization (BO),
unlike grid search and random search, it can be mentioned
that BO takes the previous objective function evaluation
into account, and the function goes to the optimal solution.
Therefore, the hyperparameter using BO provides fine-tuning
parameters, which ultimately builds an optimized model and
consequently increases the classification performance. SHAP
is used to determine feature importance and model interpre-
tation; it can be mentioned that SHAP uses a game-theoretic
approach, which has an excellent mathematical background
and current state-of-the-art approach.

Due to the salient features mentioned above, it can be
noted that the proposed framework can not only be applied to
COVID-19 detection but also applied to other classification
problems such as diabetic prediction, asthma prediction, etc.
While describing the significance and strength of this study,
it is also logical to explain the weaknesses of this study. The
database used in this study is a moderately large dataset.
It will be useful to apply the proposed framework on a larger
dataset and validate the proposed approach on a completely
independent dataset before clinical use. Clinical blood sample
data and integration to X-ray and CT-scan will enhance the
detection rate and validity. This is beyond the scope of this
study.
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TABLE 6. Description of the clinically operable decision tree algorithm.

Node No | Input: x1= cough; x2=loss of smell; x3= high risk exposure occupation; x4= sats;
Output: The decision of Covid Yes or Covid_no.

Node 1: if x2<0.5 then node 2 elseif x2>=0.5 then node 3 else Covid_no
Node 2: if x1<0.5 then node 4 elseif x1>=0.5 then node 5 else Covid_no
Node 3: class = Covid_Yes

Node 4: if x3<0.5 then node 6 elseif x3>=0.5 then node 7 else Covid_no
Node 5: class = Covid_Yes

Node 6: class = Covid_no

Node 7: if x4<2.5 then node 8 elseif x4>=2.5 then node 9 else Covid_no
Node 8: class = Covid_Yes

Node 9: class = Covid_no

FIGURE 15. A decision rule using four key features and their thresholds
in absolute value.

A. DEVELOPMENT OF A CLINICALLY OPERABLE

DECISION TREE

A clinically operable decision tree would benefit clinical staff
as it is straightforward to understand the underlying pro-
cess. As DT are simple classifiers consisting of sequences of
binary decisions organized hierarchically [56], we have built
a simple tree by using four important features, x1 = cough;
x2 = loss of smell; x3 = high-risk exposure occupation;
x4 = sats; Note that, the continuous value of oxygen satura-
tion feature, i.e., x4 feature is discretized into three different
levels of 1, 2 and 3 to denote severe, moderate and normal
level, respectively. x4 feature value lies between 75 and 90
mm-Hg is treated as severe, 91 and 95 mm-Hg as moderate,
and 96 and 100 mm-Hg as a normal level. Figure 15 repre-
sents the corresponding DT, and the description of the tree
algorithm is given in Table 6.

B. DEVELOPMENT OF A DECISION SUPPORT

SYSTEM (DSS)

A DSS could be beneficial to support clinical staff for screen-
ing COVID-19 patients from their inpatient facility data.
A DSS is usually a graphical representation of decision,

10278

Covid-yes —
True label |
— — — Predicted label |
|
|
CoVid-N0 [ !
I I I I I I I I I
10 20 30 40 50 60 70 80 92 100
Subject number
= 1r Probability of affecting Covid
= — — — Threshold
BO0S-———————————————f —
©
St
[
0 4
10 20 30 40 50 60 70 80 90 100

Subject number

FIGURE 16. Probabilistic output for the DSS. In the upper figure, the 0 has
represented a subject with COVID negative, whereas 1 represented a
subject with COVID positive. The lower figure represents a probabilistic
outcome of the subject affected by COVID, where the red dotted line
defines the threshold level. When the patient data level exceeds this
threshold level, then the subject will be considered as COVID positive.
Whereas the subject with the probability of less than 0.5, i.e., the
threshold value, will be regarded as COVID negative. In either way, we can
say that this the chance that a person is affected by COVID.

COVID-19, in this case, to visualize the probable state of the
patient. A possible outcome of COVID suspected patient’s
inhouse facility data is presented in Figure 16, in terms of the
posterior probability. A probabilistic result is more intuitive
to the clinical staff and, therefore, used in this DSS. Note
that 100 patients are used from the test database for illus-
tration purposes. The patient is sorted in ascending order so
that patients with “COVID-no” labelled appears first, and
patients with “COVID-yes” appear.

C. COMPARISONS WITH OTHER METHODS/STUDIES

To delineate the superiority of our proposed research,
an illustrative comparison of our work has been accom-
plished to other COVID studies. From the tabular illustration
[Table 7], it can be mentioned that both Jim et al. [11] and
Ozturk et al. [57] used CNN to obtain the accuracy respec-
tively 92.50% and 98.08%. Furthermore, multiples research
works have been carried out by [7], [63], [64] with the direct
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TABLE 7. Comparison of performance with other methods.

References Classifiers Dataset ACC SE SP AUC
[11] Deep Convolutional Neural Network Clinical Image Data 92.5% 94.2% 95.6%
[58] RF Clinical, Demographics 95.95% 96.95%
[60] SVM Clinical, Demographics 77.5% 78.4% 98%
[57] CNN Darknet Clinical, Mammographic 98.08%
[7] XGB Clinical, Blood samples of 75 Features 90%
[61] Deep learning using LSTM Demographic 92.67%
[62] Logistic Regression and Multinomial NB Clinical Data 96.2% 96%
[59] DT, RF Hematochemical Values from Blood Exams 86% 95%
[63] XGB, RF, DT, SVM Demographic and Symptom 85% 90%
[64] XGB Clinical Data 92.5% 97.9% >90%
Proposed XGB Inpatient Facility Data 98.50% | 99.02% | 97.98% | 99.4%
implementation of XGB using mostly clinical data, where DATA AVAILABILITY
the average of the accuracy obtained from [7], [63] was The raw dataset can be accessed through Github:

less than 90%. On top of that, Wu et al. [58] used RF to
get a classification accuracy of approximately 96%, which
outperformed Brinati et al. [59], who utilized both DT and
RF. In addition, the lowest performance was obtained by Sun
et al. [60], who used the SVM classifier for clinical and
Demographic data. Most importantly, although the accuracy
of Wu et al. [58] is slightly higher than that of our proposed
method, the AUC and Specificity of our work far outweigh
the other methodologies mentioned here.

V. CONCLUSION

This paper presents the optimal use of different machine
learning techniques, including state-of-the-art classifiers,
to predict COVID. The proposed approach is aimed to handle
the real-time in-home dataset in detecting the COVID effec-
tively. Thus, the proposed technique provides a user-friendly
and low-cost tool for COVID detection. In designing the
method, the COVID dataset, collected from CH-BH, has
been used to assess the performance using different clas-
sification metrics such as accuracy, sensitivity, specificity,
kappaindex, etc. The hyper-parameters of different classifiers
have been optimized using Bayesian optimization, and the
ADASYN has been used to balance the dataset. Compared
to the studies presented in this study, it is evidenced that
both the classification accuracy and AUC for our proposed
framework has attained the highest values of 98.50% and
99.40% using XGB, respectively. As the proposed approach
has been applied to a moderately large dataset, it should be
used on a big dataset before clinical trials. However, our
primary intention is to test the feasibility of such settings.
A similar approach can be applied to design other classifi-
cation problems. Finally, two potential applications of our
proposed technique, namely clinically operable decision tree
and decision support system, would be beneficial for clinical
staff and building an efficient recommender system. It could
easily be integrated into mobile devices which would be very
useful for the end-users.
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https://github.com/mdcollab/covidclinicaldata. The pro-
cessed data can be obtained from the first author (Md Abdul
Awal; m.awal @ece.ku.ac.bd) of this paper.
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