Skip to main content
. 2021 Jan 25;9:20235–20254. doi: 10.1109/ACCESS.2021.3054484

TABLE 3. Well-Known CNN Architectures Used for the Detection of COVID-19.

Research study Datasets CNN architecture(s) employed
[72] [18], [65], [22] InceptionV3
Deep-COVID [28] [18], [66] ResNet18, ResNet50, SqueezeNet, DenseNet121
[73] [18], [23] Bayesian ResNet50V2
[74] [18], [22], [66], [68], [66], [64] VGG 16, InceptionV3, Xception, DenseNet121, NASNet-mobile
[31] [18], [23] CapsNet
[26] [18], [22] ResNet18
DeTraC [36] [18], [63] AlexNet, ResNet18
[75] [18], [64] ResNet50V2, Xception
[51] [18], [64], [65], [19], [23] AOCT-Net, MobileNet, ShuffleNet
[34] [18] [23] AlexNet, SqueezeNet, GoogLeNet, VGG, MobileNet, ResNet18, ResNet50, ResNet101, DenseNet
[53] [18], [64] Autoencoders, ResNet18
[76] [18], [65], [23] DenseNet161
[57] [23] ResNet152
[41] [18], [20] VGG16, VGG19, InceptionResNetV2, InceptionV3, Xception
[6] [18], [69] RestNet50
[77] Locally collected from Hospital San Gerardo, Monza, Italy, and IRCCS Policlinico San Donato, Italy RestNet10
[46] [18] VGG19, DenseNet121, InceptionV3, ResNetV2, Inception, ResNet-V2, Xception, MobileNetV2
[35] [18], (Winner of the COVID-19 Dataset Award) [21] AlexNet, DenseNet201, GoogleNet, InceptionV3, ResNet18, ResNet50, ResNet101, VGG16, VGG19, XceptionNet, InceptionResNetV2
[44] [18], [65], [69] ResNet50, VGG16
[27] [18], [23] ResNet50, InceptionV3, InceptionResNetV2
[79] [20] SqueezeNet
[66] DenseNet121
[80] [20] DenseNet121
[42] [18] [23] VGG16, VGG19, ResNet50, ResNet50V, ResNet101, ResNet101V2, ResNet152, ResNet152V2, DenseNet121, DenseNet169, DenseNet201, MobileNetV1, XeptionNet, InceptionV3, InceptionResNetV2
[82] [18] CNN