Skip to main content
. 2021 Jan 25;9:20235–20254. doi: 10.1109/ACCESS.2021.3054484

TABLE 6. Sizes of the Datasets Used in the Reviewed Research.

Research study Total samples Training samples Testing samples Method for handling class imbalance
ALL COVID-19 ALL COVID-19 ALL COVID-19
CovidAID [90] 3,969 106 3,516 80 424 19 Fixed ratio of classes in each batch
[72] 3,550 864
[30] 109,895 225
Deep-COVID [28] 5,071 71 2,031 31 3,040 40
[73] 5,941 68 4,753 1,188
[74] 37,220 314 3,883 11,706 314
COVID-CAPS [31] 94,638 315 284 31 Modification of the loss function
[26] 1,531 100 764 50 767 50
COVID-Net [60] 13,975 358 Batch re-balancing
DeTraC [36] 196 11 138 58
[75] 15,085 180 3,783 149 11,302 31 Fixed ratio of classes in each training batch: # samples = 633
[56] 930 310 Equal # samples for each class = 310
CheXNet [59] 2,339 187 2,159 127 180 60 Data augmentation
COVID-DA [62] 11,663 318 10,718 258 945 60 Focal loss
[34] 800 240 800 200 160 40 Equal # samples for each class = 200
CoroNet [53] 18,529 99 16,576 89 1,953 10 Class-weighted entropy loss function
[76] 621 207 366 125 255 82 Equal # samples for each class = 2017
[57] 8,588 62 SMOTE
[41] 327 129
[8] 127 125
[5] 9,672 161 7,254 2,418 Data augmentation
[92] 610 324 500 250 110 74 Equal # samples for each class
[46] 50 25 50 20 50 5 Equal # samples for each class
[35] 316 158 0.6 0.2
[44] 455 135 204 102 251 33 Equal # samples for each class = 102
[79] 5,949 1,536 153 153 Data augmentation
[91] 1,493 284 228 56
[58] 6,320 464 Class-weighted entropy loss function
[80] 224,316
[81] 16,130 10 10
[82] 1,141 New conditional loss, learned with joint balance optimization and cost-sensitive learning
[42] 860 260 580 180 140 40