| CovidAID [90]
|
3,969 |
106 |
3,516 |
80 |
424 |
19 |
Fixed ratio of classes in each batch |
| [72] |
3,550 |
864 |
|
| [30] |
109,895 |
225 |
| Deep-COVID [28]
|
5,071 |
71 |
2,031 |
31 |
3,040 |
40 |
|
| [73] |
5,941 |
68 |
4,753 |
|
1,188 |
|
| [74] |
37,220 |
314 |
3,883 |
11,706 |
314 |
|
| COVID-CAPS [31]
|
94,638 |
315 |
|
284 |
|
31 |
Modification of the loss function |
| [26] |
1,531 |
100 |
764 |
50 |
767 |
50 |
|
| COVID-Net [60]
|
13,975 |
358 |
|
Batch re-balancing |
| DeTraC [36]
|
196 |
11 |
138 |
|
58 |
|
| [75] |
15,085 |
180 |
3,783 |
149 |
11,302 |
31 |
Fixed ratio of classes in each training batch: # samples = 633 |
| [56] |
930 |
310 |
|
Equal # samples for each class = 310 |
| CheXNet [59]
|
2,339 |
187 |
2,159 |
127 |
180 |
60 |
Data augmentation |
| COVID-DA [62]
|
11,663 |
318 |
10,718 |
258 |
945 |
60 |
Focal loss |
| [34] |
800 |
240 |
800 |
200 |
160 |
40 |
Equal # samples for each class = 200 |
| CoroNet [53]
|
18,529 |
99 |
16,576 |
89 |
1,953 |
10 |
Class-weighted entropy loss function |
| [76] |
621 |
207 |
366 |
125 |
255 |
82 |
Equal # samples for each class = 2017 |
| [57] |
8,588 |
62 |
|
SMOTE |
| [41] |
327 |
129 |
|
| [8] |
|
127 |
|
125 |
|
| [5] |
9,672 |
161 |
7,254 |
|
2,418 |
|
Data augmentation |
| [92] |
610 |
324 |
500 |
250 |
110 |
74 |
Equal # samples for each class |
| [46] |
50 |
25 |
50 |
20 |
50 |
5 |
Equal # samples for each class |
| [35] |
316 |
158 |
0.6 |
|
0.2 |
|
| [44] |
455 |
135 |
204 |
102 |
251 |
33 |
Equal # samples for each class = 102 |
| [79] |
5,949 |
1,536 |
|
153 |
|
153 |
Data augmentation |
| [91] |
1,493 |
284 |
|
228 |
|
56 |
|
| [58] |
6,320 |
464 |
|
Class-weighted entropy loss function |
| [80] |
224,316 |
|
| [81] |
16,130 |
|
10 |
|
10 |
|
| [82] |
1,141 |
|
New conditional loss, learned with joint balance optimization and cost-sensitive learning |
| [42] |
860 |
260 |
580 |
180 |
140 |
40 |
|