Skip to main content
. 2021 Feb 9;9:27840–27867. doi: 10.1109/ACCESS.2021.3058066

TABLE 9. The Performance of ML for Testing Result (COVID 19 Dataset).

Feature extraction method ML Models Matrix Size Measure Performance Methods
Accuracy Precision Recall F1-score
Unigram DT 3000 95.0 93.71 95.0 94.26
Bi-Gram 94.94 93.64 94.94 94.2
Tri-Gram 94.82 93.49 94.82 94.08
Four-gram 94.82 93.53 94.82 94.1
Unigram KNN 3000 95.66 92.16 95.66 93.81
Bi-Gram 95.54 92.21 95.54 93.77
Tri-Gram 95.56 92.23 95.56 93.78
Four-gram 95.59 92.36 95.59 93.81
Unigram RF 3000 96.1 94.95 96.1 94.83
Bi-Gram 96.35 96.07 96.35 95.0
Tri-Gram 96.08 94.89 96.08 94.8
Four-gram 95.97 94.6 95.97 94.73
Unigram LR 3000 94.73 93.75 94.73 94.19
Bi-Gram 94.83 93.67 94.83 94.18
Tri-Gram 94.77 93.57 94.77 94.1
Four-gram 95.82 94.24 95.82 94.59
Unigram SVM 3000 96.38 96.18 96.38 95.05
Bi-Gram 96.36 96.09 96.36 95.02
Tri-Gram 96.35 96.07 96.35 95.0
Four-gram 96.35 96.07 96.35 95.0
Unigram NB 3000 96.06 95.29 96.06 94.37
Bi-Gram 96.12 95.54 96.12 94.51
Tri-Gram 96.13 95.74 96.13 94.5
Four-gram 96.12 95.54 96.12 94.51