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ABSTRACT Current standard protocols used in the clinic for diagnosing COVID-19 include molecular or
antigen tests, generally complemented by a plain chest X-Ray. The combined analysis aims to reduce the
significant number of false negatives of these tests and provide complementary evidence about the presence
and severity of the disease. However, the procedure is not free of errors, and the interpretation of the chest
X-Ray is only restricted to radiologists due to its complexity.With the long term goal to provide new evidence
for the diagnosis, this paper presents an evaluation of different methods based on a deep neural network.
These are the first steps to develop an automatic COVID-19 diagnosis tool using chest X-Ray images to
differentiate between controls, pneumonia, or COVID-19 groups. The paper describes the process followed
to train a Convolutional Neural Network with a dataset of more than 79, 500 X-Ray images compiled from
different sources, including more than 8, 500 COVID-19 examples. Three different experiments following
three preprocessing schemes are carried out to evaluate and compare the developed models. The aim is to
evaluate how preprocessing the data affects the results and improves its explainability. Likewise, a critical
analysis of different variability issues that might compromise the system and its effects is performed. With
the employed methodology, a 91.5% classification accuracy is obtained, with an 87.4% average recall for
the worst but most explainable experiment, which requires a previous automatic segmentation of the lung
region.

INDEX TERMS COVID-19, deep learning, pneumonia, radiological imaging, chest X-ray.

I. INTRODUCTION
COVID-19 pandemic has rapidly become one of the biggest
health world challenges in recent years. The disease spreads
at a fast pace: the reproduction number of COVID-19 ranged
from 2.24 to 3.58 during the first months of the pandemic
[1], meaning that, on average, an infected person transmitted
the disease to 2 or more people. As a result, the number
of COVID-19 infections dramatically increased from just
a hundred cases in January –most of them concentrated in
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China– to more than 43 million in November spread all
around the world [2].

COVID-19 is caused by the coronavirus SARS-COV2, a
virus that belongs to the same family of other respiratory
disorders such as the Severe Acute Respiratory Syndrome
(SARS) and Middle East Respiratory Syndrome (MERS).
The symptomatology of COVID-19 is diverse and arises
after incubation of around 5.2 days. The symptoms might
include fever, dry cough, and fatigue; although, headache,
hemoptysis, diarrhea, dyspnoea, and lymphopenia are also
reported [3], [4]. In severe cases, an Acute Respiratory Dis-
tress Syndrome (ARDS) might be developed by underlying
pneumonia associated with COVID-19. For the most severe
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cases, the estimated period from the onset of the disease to
death ranges from 6 to 41 days (with a median of 14 days),
being dependent on the patient’s age and the patient’s immune
system status [3].

Once the SARS-COV2 reaches the host’s lung, it gets
into the cells through a protein called ACE2, which serves
as the ‘‘opening’’ of the cell lock. After the virus’s genetic
material has multiplied, the infected cell produces proteins
that complement the viral structure to produce new viruses.
Then, the virus destroys the infected cell, leaves it, and
infects new cells. The destroyed cells produce radiological
lesions [5]–[7] such as consolidations and nodules in the
lungs, that are observable in the form of ground-glass opacity
regions in the X-Ray (XR) images (Fig. 1c). These lesions
are more noticeable in patients assessed 5 or more days after
the onset of the disease, and especially in those older than
50 [8]. Findings also suggest that patients recovered from
COVID-19 have developed pulmonary fibrosis [9], in which
the connective tissue of the lung gets inflamed, leading to a
pathological proliferation of the connective tissue between
the alveoli and the surrounding blood vessels. Given these
signs, radiological imaging techniques –using plain chest
XR and thorax Computer Tomography (CT)– have become
crucial diagnosis and evaluation tools to identify and assess
the severity of the infection.

Since the declaration of the COVID-19 pandemic, the
World Health Organization identified four major key areas
to reduce the impact of the disease in the world: to prepare
and be ready; detect, protect, and treat; reduce transmission;
and/or innovate and learn [10]. Concerning the area of detec-
tion, significant efforts have been undertaken to improve the
diagnostic procedures of COVID-19. To date, the gold stan-
dard in the clinic is still a molecular diagnostic test based on a
polymerase chain reaction (PCR), which is precise but time-
consuming, requires specialized personnel and laboratories,
and is in general limited by the capacities and resources
of the health systems. An alternative to PCR is the rapid
tests such as those based on real-time reverse transcriptase-
polymerase chain reaction (RT-PCR), as they can be more
rapidly deployed, decrease the load of the specialized labora-
tories and personnel, and provide faster diagnosis compared
to traditional PCR.

Other tests, such as those based on antigens, are now
available but are mainly used for massive testings (i.e. for
non-clinical applications) due to a higher chance of missing
an active infection. In contrast with RT-PCR, which detects
the virus’s genetic material, antigen tests identify specific
proteins on the virus’s surface, requiring a higher viral load,
which significantly shortens the sensitivity period.

In clinical practice, the RT-PCR test is usually comple-
mented with a chest XR, in such a manner that the com-
bined analysis reduces the significant number of false neg-
atives and, at the same time, brings additional information
about the extent and severity of the disease. In addition to
that, thorax CT is also used as a second-row method for
evaluation. Although the evaluation with CT provides more

accurate results in the early stages and have been shown to
have greater sensitivity and specificity [11], XR imaging has
become the standard in the screening protocols since it is fast,
minimally-invasive, low-cost, and requires simpler logistics
for its implementation.

In the search for rapid, more objective, accurate and sensi-
tive procedures, which could complement the diagnosis and
assessment of the disorder, a trend of research has emerged
to employ clinical features extracted from thorax CT or chest
XR with automatic detection purposes. A potential benefit of
studying the radiological images is that these can character-
ize pneumonic states even in asymptomatic population [12].
However, more research is needed in this field as the lack
of findings in infected patients is also reported [13]. The
consolidation of such technology will permit a speedy and
accurate diagnosis of COVID-19, decreasing the pressure
on microbiological laboratories in charge of the PCR tests
and providing more objective means of assessing the dis-
ease’s severity. To this end, techniques based on deep learn-
ing have been employed to leverage XR information with
promising results. Although it would be desirable to employ
CT for detection purposes, some significant drawbacks are
often present, including higher costs, a more time-consuming
procedure, thorough hygienic protocols to avoid infection
spread, and the requirement of specialized equipment that
might not be readily available in hospitals or health centers.
By contrast, XR imaging procedures are available as first
screening tests in many hospitals or health centers, at lower
expenses.

Several approaches for COVID-19 detection based on
chest XR images and different deep learning architectures
have been published in the last fewmonths, reporting classifi-
cation accuracies around 90% or higher. However, the central
analysis in most of those works is focused on the variations
of network architectures, whereas there is less attention to
the variability factors that a real solution should tackle before
it can be deployed in the medical setting. In this sense, no
analysis has been provided to demonstrate the reliability of
the networks’ predictions, which in the context of medical
solutions acquires particular relevance. Moreover, most of
the works in state of the art have validated their results with
data sets containing dozens or a few hundreds of COVID-19
samples, limiting the proposed solutions’ impact.

With these antecedents in mind, this paper uses a deep
learning algorithm based on CNN, data augmentation, and
regularization techniques to handle data imbalance for the
discrimination between COVID-19, controls, and other types
of pneumonia. Themethods are testedwith themost extensive
corpus to date, to the authors’ knowledge. Three different
sets of experiments were carried out in the search for the
most suitable and coherent approach. To this end, the paper
also uses explainability techniques to gain insight about the
manners on how the neural network learns, and interpretabil-
ity in terms of the overlapping among the regions of interest
selected by the network and those that aremore likely affected
by COVID-19. A critical analysis of factors that affect the
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FIGURE 1. Experiments considered in the paper. First row: raw chest XR images belonging to the control, pneumonia, and
COVID-19 classes. Second row: Grad-CAM activation mapping for the XR images. Despite the high accuracy, the model
focuses its attention on areas different from the lungs in some cases. Third row: Grad-CAM activation mapping after
zooming in, cropping to a squared region of interest and resizing. Zooming to the region of interest forces the model to
focus its attention to the lungs, but errors are still present. Fourth row: Grad-CAM activation mapping after a zooming and
segmentation procedure. Zooming in and segmenting force the model to focus attention in the lungs. The black background
represents the mask introduced by the segmentation procedure.
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performance of automatic systems based on deep learning is
also carried out.

This paper is organized as follows: section II presents some
background and antecedents on the use of deep learning for
COVID-19 detection. section III presents the methodology,
section IV presents the results obtained, whereas V presents
the discussions and main conclusions of this paper.

II. BACKGROUND
A large body of research has emerged on the use of Artificial
Intelligence (AI) to detect different respiratory diseases using
plain XR images. For instance, in [14] authors developed
a 121-layer Convolutional Neural Network (CNN) architec-
ture, called Chexnet, which was trained with a dataset of
100, 000 XR images for the detection of different types of
pneumonia. The study reports an area under the Receiving
Operating Characteristic (ROC) curve of 0.76 in a multiclass
scenario composed of 14 classes.

Directly related to the COVID-19 detection, three CNN
architectures (ResNet50, InceptionV3 and InceptionRes-
NetV2) were considered in [15], using a database of just
50 controls and 50 COVID-19 patients. The best accuracy
(98%) was obtained with ResNet50. In [16], seven different
deep CNN models were tested using a corpus of 50 controls
and 25 COVID-19 patients. The best results were attained
with the VGG19 and DenseNet models, obtaining F1-scores
of 0.89 and 0.91 for controls and patients. The COVID-Net
architecture was proposed in [17]. The net was trained with
an open repository, called COVIDx, composed of 13, 975 XR
images, although only 358 -from 266 patients– belonged to
the COVID-19 class. The attained accuracy was of 93.3%. In
[18] a deep anomaly detection algorithm was employed for
the detection of COVID-19, in a corpus of 100 COVID-19
images (taken from 70 patients), and 1, 431 control images
(taken from 1008 patients). 96% of sensitivity and 70% of
specificity was obtained. In [19], a combination of a CNN for
feature extraction and a Long Short Term Memory Network
(LSTM) for classification were used for automatic detection
purposes. The model was trained with a corpus gathered from
different sources, consisting of 4, 575 XR images: 1, 525 of
COVID-19 (although 912 come from a repository applying
data augmentation), 1, 525 of pneumonia, and 1, 525 of con-
trols. In a 5-folds cross-validation scheme, a 99% accuracy
was reported. In [20], the VGG16 network was used for
classification, employing a database of 132 COVID-19, 132
controls and 132 pneumonia images. Following a hold-out
validation, about 100% accuracy was obtained identifying
COVID-19, being lower on the other classes.

Authors in [21] adapted a model for the classification of
COVID-19 by using transfer-learning based on the Xception
network. Experiments were carried out in a database of 127
COVID-19, 500 controls, and 500 patients with pneumo-
nia gathered from different sources, attaining about 97%
accuracy. A similar approach, followed in [22], used the
same corpus for the binary classification of COVID-19 and
controls; and for the multiclass classification of COVID-19,

controls, and pneumonia. With a modification of the Darknet
model for transfer-learning and 5-folds cross-validation, 98%
accuracy in binary classification and 87% in multiclass clas-
sification was obtained. Another Xception transfer-learning-
based approach was presented in [23], but considering two
multi-class classification tasks: i) controls vs. COVID-19
vs. viral pneumonia and bacterial pneumonia; ii) controls
vs. COVID-19 vs. pneumonia. To deal with the imbalance
of the corpus, an undersampling technique was used to
randomly discard registers from the larger classes, obtain-
ing 290 COVID-19, 310 controls, 330 bacterial pneumonia,
and 327 viral pneumonia chest XR images. The reported
accuracy was 89% in the 4-class problem and 94% in the
3-class scenario. Moreover, in a 3-class cross-database exper-
iment, the accuracy was 90%. In [24], four CNN networks
(ResNet18, ResNet50, SqueezeNet, and DenseNet-121) were
used for transfer learning. Experiments were performed on
a database of 184 COVID-19 and 5, 000 no-finding and
pneumonia images. Reported results indicate a sensitivity of
about 98% and a specificity of 93%. In [25], five state-of-the-
art CNN systems –VGG19, MobileNetV2, Inception, Xcep-
tion, InceptionResNetV2– were tested on a transfer-learning
setting to identify COVID-19 from control and pneumonia
images. Experiments were carried out in two partitions: one
of 224 COVID-19, 700 bacterial pneumonia, and 504 control
images; and another that considered the previous normal and
COVID-19 data but included 714 cases of bacterial and viral
pneumonia. The MobileNetV2 net attained the best results
with 96% and 94% accuracy in the 2 and 3-classes clas-
sification. In [26], the MobileNetV2 net was trained from
scratch and compared to one net based on transfer-learning
and to another based on hybrid feature extraction with fine-
tuning. Experiments performed in a dataset of 3905 XR
images of 6 diseases indicated that training from scratch
outperforms the other approaches, attaining 87% accuracy
in the multiclass classification and 99% in the detection
of COVID-19. A system, also grounded on the Inception-
Net and transfer-learning, was presented in [27]. Experi-
ments were performed on 6 partitions of XR images with
COVID-19, pneumonia, tuberculosis, and controls. Reported
results indicate 99% accuracy, in a 10-folds cross-validation
scheme, in the classification of COVID-19 from other classes.

In [28], fuzzy color techniques were used as a pre-
processing stage to remove noise and enhance XR images
in a 3-class classification setting (COVID-19, pneumonia,
and controls). The pre-processed images and the original
ones were stacked. Then, two CNN models were used to
extract features: MobileNetV2 and SqueezeNet. A feature
selection technique based on social mimic optimization and a
Support Vector Machine (SVM) was used. Experiments were
performed on a corpus of 295 COVID-19, 65 controls and 98
pneumonia XR images, attaining about 99% accuracy.

Given the limited amount of COVID-19 images, some
approaches have focused on generating artificial data to train
better models. In [29], an auxiliary Generative Adversarial
Network (GAN) was used to produce artificial COVID-19
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XR images from a database of 403 COVID-19 and 1, 124
controls. Results indicated that data augmentation increased
accuracy from 85% to 95% on the VGG16 net. Similarly,
in [30], GAN was used to augment a database of 307
images belonging to four classes: controls, COVID-19, bac-
terial and viral pneumonia. Different CNN models were
tested in a transfer-learning-based setting, including Alexnet,
Googlenet, and Restnet18. The best results were obtained
with Googlenet, achieving 99% in a multiclass classifica-
tion approach. In [31], a CNN based on capsule networks
(CapsNet), was used for binary (COVID-19 vs. controls)
and multi-class classification (COVID-19 vs. pneumonia
vs. controls). Experiments were performed on a dataset of
231 COVID-19, 1, 050 pneumonia and 1, 050 controls XR
images. Data augmentation was used to increase the num-
ber of COVID-19 images to 1, 050. On a 10-folds cross-
validation scheme, 97% accuracy for binary classification,
and 84% multi-class classification were achieved. The Cov-
XNet architecture, based on depth-wise dilated convolution
networks, was proposed in [32]. In the first stage, pneumo-
nia (viral and bacterial) and control images were employed
for pretraining. Then, a a refined model of COVID-19 is
obtained using transfer learning. In experiments using two-
databases, 97% accuracy was achieved for COVID-19 vs.
controls, and of 90% for COVID-19 vs. controls vs. bacte-
rial and viral cases of pneumonia. In [33], an easy-to-train
neural network with a limited number of training parame-
ters was presented. To this end, patch phenomena found on
XR images were studied (bilateral involvement, peripheral
distribution, and ground-glass opacification) to develop a
lung segmentation and a patch-based neural network that
distinguished COVID-19 from controls. The basis of the
system was the ResNet18 network. Saliency maps were also
used to produce interpretable results. In experiments per-
formed on a database of controls (191), bacterial pneumonia
(54), tuberculosis (57) and viral pneumonia (20), about 89%
accuracy was obtained. Likewise, interpretable results were
reported in terms of large correlations between the saliency
maps’ activation zones and the radiological findings found
in the XR images. The authors also indicate that when the
lung segmentation approach was not considered, the system’s
accuracy decreased to about 80%. In [34], 2D curvelets trans-
formations were used to extract features from XR images. A
feature selection algorithm based on meta-heuristic was used
to find the most relevant characteristics, while a CNN model
based on EfficientNet-B0 was used for classification. Exper-
iments were carried out in a database of 1, 341 controls, 219
COVID-19, and 1, 345 viral pneumonia images, and 99%
classification accuracy was achieved with the proposed
approach. Multiclass and hierarchical classification of differ-
ent types of diseases producing pneumonia (with 7 labels and
14 label paths), including COVID-19, were explored in [35].
Since the database of 1, 144 XR images was heavily imbal-
anced, different resampling techniques were considered. By
following a transfer-learning approach based on a CNN archi-
tecture to extract features, and a hold-out validation with

5 different classification techniques, a macro-avg F1-Score of
0.65 and an F1-Score of 0.89 were obtained for the multiclass
and hierarchical classification scenarios, respectively. In [36],
a three-phases approach is presented: i) to detect the presence
of pneumonia; ii) to classify between COVID-19 and pneu-
monia; and, iii) to highlight regions of interest of XR images.
The proposed system utilized a database of 250 images of
COVID-19 patients, 2, 753 with other pulmonary diseases,
and 3, 520 controls. By using a transfer-learning system
based on VGG16, about 0.97 accuracy was reported. A
CNN-hierarchical approach using decision trees (based on
ResNet18) was presented in [37], on which a first tree clas-
sified XR images into the normal or pathological classes;
the second identified tuberculosis; and the third COVID-19.
Experiments were carried out on 3 partitions obtained after
having gathered images from different sources and data aug-
mentation. The accuracy for each decision tree –starting from
the first– was about 98%, 80%, and 95%, respectively.

A. ISSUES AFFECTING RESULTS IN THE LITERATURE
Table 1 presents a summary of state of the art in the auto-
matic detection of COVID-19 based on XR images and deep
learning. Despite the excellent results reported, the review
reveals that some of the proposed systems suffer from certain
shortcomings that affect the conclusions extracted in their
respective studies, limiting the translational possibilities to
the clinical environment. Likewise, variability factors have
not been deeply studied in these papers and their study can
be regarded as necessary.

For instance, one of the issues that affect most of the
reviewed systems to detect COVID-19 from plain chest XR
images is the use of very limited datasets, which compromises
their generalization capabilities.

Indeed, to date and from the authors’ knowledge, the
paper employing the largest database of COVID-19 considers
1, 525 XR images gathered from different sources. However,
912 images belong to a data augmented repository, which
does not include additional information about the initial num-
ber of files or the number of augmented images. In general
terms, most of the works employ less than 300 COVID-19
XR images, having systems that use as few as 50 images.
However, this is understandable given that some of these
workswere published during the onset of the pandemicswhen
the number of available registers was limited.

On the other hand, a good balance in the patients’ age is
considered essential to avoid the model to learn age-specific
features. However, several previous works have used XR
images from children to populate the pneumonia class.1 This
might be biasing the results given the age differences of
COVID-19 patients.

Despite many works in the literature report a good perfor-
mance in detecting COVID-19,most of the approaches follow

1First efforts used the RSNA Pneumonia Detection Challenge dataset,
which is focused on the detection of pneumonia cases in children.
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/overview
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TABLE 1. Summary of the literature in the field.

a brute force approach exploiting deep learning’s potentiality
to correlate with the outputs (i.e., the class labels) but provide
low interpretability and explainability of the process. It is
unclear if the good results are due to the system’s actual
capability to extract information related to the pathology or
because it leart other aspects during training that are biasing
and compromising the results. As a matter of example, just
one of the studies reported in the literature follows a strat-
egy that forces the network to focus on the most significant
areas of interest for COVID-19 detection [33]. It does so by
proposing a methodology based on semantic segmentation of
the lungs. In the remaining cases, it is unclear if the models
are analyzing the lungs or if they are categorizing given
any other information available, which might be interesting
for classification purposes but might lack diagnostic inter-
est. This is relevant, as in all the analyzed works in liter-
ature, pneumonia and controls classes come from a certain
repository, whereas others such as COVID-19 comes from
a combination of sources and repositories. Having classes
generated in different conditions might undoubtedly affect
the results, and as such, a critical study about this aspect is
needed. In the same line, other variability issues such as the
sensor technology employed, the type of projection used, the
sex of the patients, and even age, require a thorough study.

Finally, the literature review revealed that most of the
published papers showed excellent correlation with the dis-
ease but low interpretability and explainability (see Table 1).
Indeed, it is often more desirable in clinical practice to
obtain interpretable results that correlate with pathological

conditions or a particular demographic or physiological vari-
able than a black box system that yields a binary or a multi-
class decision. From the revision of literature, only [33] and
[32] partially addressed this aspect. Thus, further research on
this topic is needed.

With these ideas inmind, this paper addresses these aspects
by training and testing with a wide corpus of RX images,
proposing and comparing two strategies to preprocess the
images, analyze the effect of some variability factors, and
provide some insights to more explainable and interpretable
results. The primary goal is to present a critical overview
of these aspects since they might be affecting the modeling
capabilities of the deep learning systems for the detection of
COVID-19.

III. METHODOLOGY
The design methodology is presented in the following
section. The procedure followed to train the neural network
is described first, along with the process that was followed to
create the dataset. The network and the source code to train
it are available at https://github.com/jdariasl/COVIDNET, so
results can be readily reproduced by other researchers.

A. THE NETWORK
The core of the system is a deep CNN based on the
COVID-Net2 proposed in [17]. Some modifications were

2Following the PyTorch implementation available at
https://github.com/IliasPap/COVIDNet
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made to include regularization components in the last two
dense layers and a weighted categorical cross-entropy loss
function to compensate the class imbalance. The network
structure was also refactored to allow gradient-based local-
ization estimations [38], which are used after training in the
search for an explainable model.

The network was trained with the corpus described in III-B
using the Adam optimizer with a learning rate policy: the
learning rate decreases when learning stagnates for some time
(i.e., ’patience’). The following hyperparameters were used
for training: learning rate = 2-5, number of epochs = 24,
batch size = 32, factor = 0.5, patience = 3. Furthermore,
data augmentation for pneumonia and COVID-19 classes was
leveraged with the following augmentation types: horizontal
flip, Gaussian noise with a variance of 0.015, rotation, elastic
deformation, and scaling. The variant of the COVID-Net
was built and evaluated using the PyTorch library [39]. The
CNN features from each image are concatenated by a flatten
operation, and the resulting feature map is fed to three fully
connected layers to generate a probability score for each
class. The first two fully connected layers include dropout
regularization of 0.3 and ReLU activation functions. Dropout
was necessary because the original network tended to overfit
since the very beginning of the training phase.

The network’s input layer rescales the images keeping the
aspect ratio, with the shortest dimension scaled to 224 pixels.
Then, the input image is cropped to a square of 224 × 224
pixels located in the center of the image. Images are nor-
malized using a z-score function with parameters mean =
[0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225], for
each of the three RGB channels respectively. Even though we
are working with grayscale images, the network architecture
was designed to be pre-trained on a general-purpose database
including colored images; this characteristic was kept in case
it would be necessary to use some transfer learning strategy
in the future.

The network’s output layer provides a score for each of
the three classes (i.e. control, pneumonia, or COVID-19),
which is converted into three probability estimates –in the
range [0, 1]– using a softmax activation function. The class
membership’s final decision is made according to the highest
of the three probability estimates obtained.

B. THE CORPUS
The corpora used in the paper have been compiled from a set
of Posterior-Anterior (PA) and Anterior-Posterior (AP) XR
images from different public sources. The compilation con-
tains images from participants without any observable pathol-
ogy (controls or no findings), pneumonia, and COVID-19
cases. After the compilation, two subsets of images were
generated, i.e., training and testing. Table 2 contains the
number of images per subset and class. Overall, the corpus
contains more than 70, 000 XR images, including more than
8, 500 images belonging to COVID-19 patients.
The repositories of XR images employed to create the cor-

pus used in this paper are presented next. Most of these con-

TABLE 2. Number of images per class for training and testing subsets.

tain solely registers of controls and pneumonia patients. Only
the most recent repositories include samples of COVID-19
XR images. In all cases, the annotations were made by a
specialist as indicated by the authors of the repositories.

The COVID-19 class is modelled compiling images com-
ing from three open data collection initiatives: HM Hospi-
tales COVID [40], BIMCV-COVID19 [41] and Actualmed
COVID-19 [42] chest XR datasets. The final result of the
compilation process is a subset of 8, 573 images from more
than 3, 600 patients at different stages of the disease.3

Table 3 summarizes the most significant characteristics of
the datasets used to create the corpus, which is presented next:

1) HM HOSPITALES COVID-19 DATASET
This dataset was compiled by HM Hospitals [40]. It con-
tains all the available clinical information about anonymous
patients with the SARS-CoV-2 virus treated in different cen-
ters belonging to this company since the beginning of the
pandemic in Madrid, Spain.

The corpus contains the anonymized records of 2, 310
patients and includes several radiological studies for each
patient corresponding to different stages of the disease. A
total of 5, 560 RX images are available in the dataset, with
an average of 2.4 image studies per subject, often taken in
intervals of two or more days. The histogram of the patients’
age is highly coherent with the demographics of COVID-19
in Spain (see Table 3 for more details).

Only patients with at least one positive PCR test or positive
immunological tests for SARS-CoV-2 were included in the
study. TheData Science Commission and the Research Ethics
Committee of HM Hospitales approved the current research
study and the data for this purpose.

2) BIMCV COVID19 DATASET
BIMCV COVID19 dataset [41] is a large dataset with chest
radiological studies (XR and CT) of COVID-19 patients
along with their pathologies, results of PCR and immuno-
logical tests, and radiological reports. It was recorded by the
Valencian Region Medical Image Bank (BIMCV) in Spain.
The dataset contains the anonymized studies of patients with
at least one positive PCR test or positive immunological tests
for SARS-CoV-2 between February 26th and April 18th,
2020. The corpus is composed of 3, 013 XR images, with an
average of 1.9 image studies per subject, taken in intervals
of approximately two or more days. The histogram of the
patients’ age is highly coherent with the demographics of

3Figures at the time the datasets were downloaded. The datasets are still
open, and more data might be available in the next future.
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TABLE 3. Demographic data of the datasets used. Only those labels confirmed are reported.

COVID-19 in Spain (Table 3). Only patients with at least
one positive PCR test or positive immunological tests for
SARS-Cov-2 were included in the study.

3) ACTUALMED SET (ACT)
The actualmed COVID-19 Chest XR dataset initiative [42]
contains a series of XR images compiled by Actualmed and
Universitat Jaume I (Spain). The dataset contains COVID-19
and control XR images, but no information is given about the
place or date of recording and/or demographics. However, a
metadata file is included. It contains an anonymized descrip-
tor to distinguish among patients and information about the
XR modality, type of view, and the class to which the image
belongs.

4) CHINA SET - THE SHENZHEN SET
The set was created by the National Library of Medicine,
Maryland, USA, in collaboration with the Shenzhen No.3
People’s Hospital at Guangdong Medical College in Shen-
zhen, China [43].

The dataset contains normal and abnormal chest XR with
manifestations of tuberculosis and includes associated radi-
ologist readings.

5) THE MONTGOMERY SET
The National Library of Medicine created this dataset in
collaboration with the Department of Health and Human
Services, Montgomery County, Maryland, USA. It contains
data from XR images collected under Montgomery County’s
tuberculosis screening program [43], [44].

6) ChestX-ray8 DATASET (CRX8)
The ChestX-ray8 dataset [45] contains 12, 120 images from
14 common thorax disease categories from 30, 805 unique
patients, compiled by the National Institute of Health (NIH).
For this study, the images labeled with ’no radiological find-
ings’ were used to be part of the control class, whereas the
images annotated as ’pneumonia’ were used for the pneumo-
nia class.

7) CheXpert DATASET
CheXpert [46] is a dataset of XR images created for an
automated evaluation of medical imaging competitions and

contains chest XR examinations carried out in Stanford Hos-
pital during 15 years. For this study, we selected 4, 623 pneu-
monia images using those annotated as ’pneumonia’ with
and without additional comorbidity. COVID-19 never caused
these comorbidities. The motivation to include pneumonia
with comorbidities was to increase the number of pneumonia
examples in the final compilation for this study, increasing
this cluster’s variability.

8) MIMIC-CXR DATABASE
MIMIC-CXR [47] is an open dataset complied from 2011 to
2016, and comprising de-identified chest RX from patients
admitted to the Beth Israel Deaconess Medical Center. In
our study, we employed the images for the pneumonia class.
The labels were obtained from the agreement of the two
methods indicated in [47]. The dataset reports no information
about gender or age; thus, we assume that the demograph-
ics are similar to those of CheXpert dataset and those of
pneumonia [48].

C. IMAGE PRE-PROCESSING
XR images were converted to uncompressed grayscale ’.png’
files, encoded with 16 bits, and preprocessed using the
DICOM WindowCenter and WindowWidth details (when
needed). All images were converted to a Monochrome 2
photometric interpretation. Initially, the images were not re-
scaled to avoid loss of resolution in later processing stages.

Only AP and PA views were selected. No differentiation
was made between erect, either standing or sitting, or decu-
bitus. This information was inferred by a careful analysis of
the DICOM tags and required manual checking due to certain
labeling errors.

D. EXPERIMENTS
The corpus collected from the aforementioned databases was
processed to compile three different datasets of equal size
to the initial one. Each of these datasets was used to run a
different set of experiments.

1) EXPERIMENT 1. RAW DATA
The first experiment was run using the raw data extracted
from the different datasets. Each image is kept with the orig-
inal aspect ratio. Only a histogram equalization was applied.
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2) EXPERIMENT 2. CROPPED IMAGE
The second experiment consists of preprocessing the images
by zooming in, cropping to a squared region of interest, and
resizing to a squared image (aspect ratio 1 : 1). The process
is summarized in the following steps:

1) Lungs are segmented from the original image using
a U-Net semantic segmentation algorithm.4 The algo-
rithm used reports Intersection-Over-Union (IoU) and
Dice similarity coefficient scores of 0.971 and 0.985
respectively.

2) A black mask is extracted to identify the external
boundaries of the lungs.

3) The mask is used to create two sequences, adding
the grey levels of the rows and columns respectively.
These two sequences provide four boundary points,
which define two segments of different lengths in the
horizontal and vertical dimensions.

4) The sequences of added grey levels in the vertical and
horizontal dimensions of the mask are used to identify
a squared region of interest associated with the lungs,
taking advantage of the higher added values outside the
lungs (Fig. 2). The process to obtain the squared region
requires identifying the middle point of each of the
identified segments and cropping in both dimensions
using the length of the longest of these two segments.

5) The original image is cropped with a squared template
placed in the centre of the matrix using the information
obtained in the previous step. No mask is placed over
the image.

6) Histogram equalization of the image obtained.

This process is carried out to decrease the variability of the
data, to make the training process of the network simpler, and
to ensure that the region of significant interest is in the centre
of the image with no areas cut.

3) EXPERIMENT 3. LUNG SEGMENTATION
The third experiment consists of preprocessing the images by
masking, zooming in, cropping to a squared region of interest,
and resizing to a squared image (aspect ratio 1 : 1). The
process is summarized in the following steps:

1) Lungs are segmented from the original image using
the same semantic segmentation algorithm used in
experiment 2.

2) An external black mask is extracted to identify the
external boundaries of the lungs.

3) The mask is used to create two sequences, adding the
grey levels of the rows and columns respectively.

4) The sequences of added grey levels in the vertical and
horizontal dimensions of the mask are used to identify
a squared region of interest associated to the lungs,
taking advantage of the higher added values outside
them (Fig. 2).

4Following the Keras implementation available at https://github.com
/imlab-uiip/lung-segmentation-2d

FIGURE 2. Identification of the squared region of interest. Plots in the top
and left represent the normalized accumulated gray level in the vertical
and horizontal dimension respectively.

5) The original image is cropped with a squared template
placed in the center of the image.

6) The mask is dilated with a 5× 5 pixels kernel, and it is
superimposed to the image.

7) Histogram equalization is applied only to the seg-
mented area (i.e. the area corresponding to the lungs).

This preprocessingmakes the training of the networkmuch
simpler and forces the network to focus the attention on
the lungs region, removing external characteristics –like the
sternum– that might influence the obtained results.

E. IDENTIFICATION OF THE AREAS OF SIGNIFICANT
INTEREST FOR THE CLASSIFICATION
The areas of significant interest used by the CNN for
discrimination purposes are identified using a qualitative
analysis based on a Gradient-weighted Class Activation
Mapping (Grad-CAM) [38]. This is an explainability method
that serves to provide insights about the manners on how
deep neural networks learn, pointing to the most significant
areas of interest for decision-making purposes. The method
uses the gradients of any target class to flow until the final
convolutional layer, and to produce a coarse localization map
which highlights the most important regions in the image
identifying the class. The result of this method is a heat map
like those presented in Fig. 1, in which the colour encodes the
importance of each pixel in differentiating among classes.

IV. RESULTS
The model has been quantitatively evaluated computing
the test Positive Predictive Value (PPV), Recall, F1-score
(F1),Accuracy (Acc),Balanced Accuracy (BAcc),Geometric
Mean Recall (GMR) and Area Under the ROC Curve (AUC)
for each of the three classes in the corpus previously described
in section III-B. The performance of the models is assessed
using an independent testing set, which has not been used
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TABLE 4. Performance measures for the three experiments considered in the paper.

FIGURE 3. ROC curves and confusion matrices for each one of the experiments, considering each one of the classes separately. Top: ROC curves. Bottom:
Normalized confusion matrices. Left: Original images (experiment 1). Center: Cropped Images (experiment 2). Right: Segmented images (experiment 3).

during development. A 5-folds cross-validation procedure
has been used to evaluate the obtained results (Training/Test
balance: 90/10 %). The performance of the CNN network on
the three experiments considered in this paper is summarized
in Table 4. Likewise, the ROC curves per class for each of the
experiments, and the corresponding confusion matrices are
presented in Fig. 3. The global ROC curve displayed in Fig. 4
for each experiment summarizes the global performance of
the experiments.

Considering experiment 1, and although slightly higher for
controls, the detection performance remains almost similar

for all classes (the PPV ranges from 91-93%) (Table 4). The
remaining measures per class follow the same trend, with
similar figures but better numbers for the controls. ROC
curves and confusion matrices of Fig. 3a and Fig. 3d point out
that the largest source of confusion for COVID-19 is the pneu-
monia class. The ROC curves for each one of the classes reach
in all cases AUC values larger than 0.99, which, in principle
is considered excellent. In terms of global performance, the
system achieves an Acc of 91% and a BAcc of 94% (Table 4).
This is also supported by the average ROC curve of Fig. 4,
which reveals the excellent performance of the network and
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FIGURE 4. Average ROC curves for each experiment, including AUC values.

the almost perfect behaviour of the ROC curve. Deviations
are small for the three classes.

When experiment 2 is considered, a decrease in the perfor-
mance per class is observed in comparison to experiment 1.
In this case, the PPV ranges from 81-93% (Table 4), with a
similar trend for the remaining figures of merit. ROC curves
and confusion matrices in Fig. 3a and Fig. 3d report AUC
values in the range 0.96-0.99, and an overlapping of the
COVID-19 class mostly with pneumonia. The global perfor-
mance of the system -presented in the ROC curve of Fig. 4
and Table 4- yields an AUC of 0.98, an Acc of 87% and a
BAcc of 81%.

Finally, for experiment 3, PPV ranges from 78% − 96%
(Table 4). In this case, the results are slightly worse than those
of experiment 2, with the COVID-19 class presenting the
worse performance among all the tests. According to Fig. 3c,
AUCs range from 0.94 to 0.98. Confusion matrix in Fig. 3f
reports a large level of confusion in the COVID-19 class
being labelled as pneumonia 18% of the times. In terms of
global performance, the system reaches an Acc of 91% and a
BAcc of 87% (Table 4). These results are consistent with the
average AUC of 0.97 shown in Fig. 4.

A. EXPLAINABILITY AND INTERPRETABILITY OF THE
MODELS
The regions of interest identified by the network were ana-
lyzed qualitatively using Grad-CAM activation maps [38].
Results shown by the activation maps, permit the identifica-
tion of the most significant areas in the image, highlighting
the zones of interest that the network is using to discriminate.

In this regard, Fig. 1, presents examples of the Grad-CAM
of a control, a pneumonia, and a COVID-19 patient, for each
of the three experiments considered in the paper. It is impor-
tant to note that the activation maps are providing overall
information about the behaviour of the network, pointing to
the most significant areas of interest, but the whole image is
supposed to be contributing to the classification process to a
certain extent.

The second row in Fig. 1 shows several prototypical results
applying the Grad-CAM techniques to experiment 1. The
examples show the areas of significant interest for a control,
pneumonia and COVID-19 patient.

The results suggest that the detection of pneumonia or
COVID-19 is often carried out based on information that is
outside the expected area of interest, i.e. the lung area. In the
examples provided, the network focuses on the corners of the
XR image or in areas around the diaphragm. In part, this is
likely due to the metadata which is frequently stamped on
the corners of the XR images. The Grad-CAM plots corre-
sponding to the experiment 2 (third row of Fig. 1), indicates
that the model still points towards areas which are different
from the lungs, but to a lesser extent. Finally, the Grad-CAM
of experiment 3 (fourth row of Fig. 1) presents the areas of
interest where the segmentation procedure is carried out. In
this case, the network is forced to look at the lungs, and
therefore this scenario is supposed to be more realistic and
more prone to generalizing as artifacts that might bias the
results are somehow discarded.

On the other hand, for visualization purposes, and in order
to interpret the separability capabilities of the system, a t-SNE
embedding is used to project the high dimensional data of the
layer adjacent to the output of the network, to a 2-dimensional
space. Results are presented in Fig. 5 for each of the three
experiments considered in the paper.

Fig. 5 indicates that a good separability exists for all
the classes in both training and testing data, and for all
experiments. The boundaries of the normal cluster are very
well defined in the three experiments, whereas pneumonia
and COVID-19 are more spread, overlapping with adjacent
classes.

In general terms, the t-SNE plots demonstrate the ability
of the network to learn a mapping from the input data to the
desired labels. However, despite the shape differences found
for the three experiments, no additional conclusions can be
extracted.

B. POTENTIAL VARIABILITY FACTORS AFFECTING THE
SYSTEM
There are several variability factors which might be biasing
the results, namely: the projection (PA vs. AP); the tech-
nology of the detector (Computed Radiography (CR) vs.
Digital Radiography (DX)); the gender of the patients; the
age; potential specificities of the dataset; or having trained
with several images per patient.

The use of several images per patient represents a certain
risk of data leak in the COVID-19 class due to its underlying
imbalance. However, our initial hypothesis is that using sev-
eral images per COVID-19 patient but obtained at different
instants in time (with days of difference), would increase the
variability of the dataset, and thus that source of bias would
be disregarded. Indeed, the evolution of the associated lesions
often found in COVID-19 is considered fast, in such a manner
that very different images are obtained in a time interval
as short as one or two days of the evolution. Also, since
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FIGURE 5. Mapping of the high-dimensional data of the layer adjacent to the output into a two dimensional plot. Top: Output network embedding
using t-SNE for the training data. Bottom: Output network embedding using t-SNE for the testing data. Left: Original images (experiment 1).
Center: Cropped Images (experiment 2). Right: Segmented images (experiment 3).

TABLE 5. Performance measures considering the XR projection (PA/AP).

every single exploration is framed differently, or sometimes
even taken with different machines and/or projections, the
potential bias is expected to be minimized.

Concerning the type of projection, and to evaluate its
effectiveness, the system has been studied taking into
account this potential variability factor, which is consid-
ered to be one of the most significant. In particular,
Table 5, presents the outcomes after accounting for the

influence of the XR projection (PA/AP) in the perfor-
mance of the system. In general terms, the system demon-
strates consistency with respect to the projection used,
and differences are mainly attributable to smaller train-
ing and testing sets. However, significant differences are
shown for projection PA in class COVID-19/experiment 3,
decreasing the F1 up to 65.61%. The reason for the
unexpected drop in performance is unknown, but likely
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FIGURE 6. Mapping of the high-dimensional data of the layer adjacent to the output into a two dimensional plot. Top: Output network embedding
using t-SNE for the training data. Bottom: Output network embedding using t-SNE for the testing data. Left: Original images (experiment 1).
Center: Cropped Images (experiment 2). Right: Segmented images (experiment 3). Labels correspond to data sets and classes.

attributable to an underrepresented class in the corpus (see
Table 3).

Besides, Table 6 shows –for the three experiments under
evaluation and for the COVID-19 class– the error distribu-
tion with respect to the sex of the patient, technology of
the detector, dataset and projection. For the four variability
factors enumerated, results show that the error distribution
committed by the system follows –with minor deviations– the
existing proportion of the samples in the corpus. These results
suggest that there is no clear bias with respect to these poten-
tial variability factors, at least for the COVID-19 class which
is considered the worst-case due to its underrepresentation.
Similar results would be expected for control and pneumonia
classes, but these results are not provided due to the lack of
certain labels in some of the datasets used (see Table 3).

Concerning age, the datasets used are reasonably well
balanced (Table 3), but with a certain bias in the normal class:
COVID-19 and pneumonia classes have very similar average
ages, but controls have a lower mean age. Our assumption

has been that age differences are not significantly affecting
the results, but the mentioned difference might explain why
the normal cluster in Fig. 5 is less spread than the other two.
In any case, no specific age biases have been found in the
errors committed by the system.

An additional study was also carried out to evaluate the
influence of potential specificities of the different datasets
used to compile the corpus (i.e. the variability of the results
with respect to the datasets merged to build the corpus). This
variability factor is evaluated in Fig. 6 using different t-SNE
plots (one for each experiment in a similar way than in Fig. 5)
but differentiating the corresponding cluster for each dataset
and class.

Results for the different datasets and classes are clearly
merged or are adjacent in the same cluster. However, sev-
eral datasets report a lower variability for certain classes
(i.e. variability in terms of scattering). This is especially
clear in Chexpert and NIH pneumonia sets, which are suc-
cessfully merged with the corresponding class but appear
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TABLE 6. Percentage of testing samples and error distribution with
respect to several potential variability factors for the COVID-19 class.
(% in hits represents the percentage of samples of every factor under
analysis in the correctly predicted set).

clearly clustered, suggesting that these datasets have certain
unknown specific characteristics different to those of the
complementary datasets. The model has been able to manage
this aspect but is a factor to be analyzed in further studies.

V. DISCUSSION AND CONCLUSION
This study evaluates a deep learning model for the detection
of COVID-19 from RX images. The paper provides addi-
tional evidence to the state of the art, supporting the poten-
tial of deep learning techniques to accurately categorize XR
images corresponding to control, pneumonia, and COVID-19
patients (Fig. 1). These three classes were chosen under the
assumption that they can support clinicians in making better
decisions, establishing potential differential strategies to han-
dle patients depending on their cause of infection [17]. How-
ever, the main goal of the paper was not to demonstrate the
suitability of deep learning for categorizing XR images but to
make a thoughtful evaluation of the results and the different
preprocessing approaches, searching for better explainability
and interpretability of the results while providing evidence of
potential effects that might bias results.

The model relies on the COVID-Net network, which has
served as a basis for the developing a more refined archi-
tecture. This network has been chosen due to its tailored
characteristics and given the previous good results reported
by other researchers. The COVID-Net was trained with a
corpus compiled using data gathered from different sources:
the control and pneumonia classes –with 49, 983 and 24, 114
samples respectively– were collected from the ACT, Chi-
naset, Montgomery, CRX8, CheXpert, and MIMIC datasets;
and the COVID-19 class was collected from the information
available at the BIMCV, ACT, and HM Hospitales datasets.

Although the COVID-19 class only contains 8, 573 chest
RX images, the developers of the data sources are continu-
ously adding new cases to the respective repositories, so the
number of samples is expected to grow in the future. Despite
the unbalance of the COVID-19 class, up to date, and to the
authors’ knowledge, this is the most extensive compilation of
COVID-19, images based on open repositories. Despite that,
the number of COVID-19 RX images is still considered small
compared to the other two classes. Therefore, it was necessary

to compensate for the class imbalance by modifying the
network architecture, including regularization components in
the last two dense layers. To this end, a weighted categorical
cross-entropy loss function was used to compensate for this
effect. Likewise, data augmentation techniques were used for
pneumonia and COVID-19 classes to generate more samples
for these two underrepresented classes automatically.

We stand that automatic diagnosis is much more than a
classification exercise, meaning that many factors have to be
considered to bring these techniques to clinical practice. In
this respect, there is a classic assumption in the literature
that the associated heat maps –calculated with Grad-CAM
techniques- provide a clinical interpretation of the results,
which is unclear in practice. In light of the results shown in
the heat maps depicted in Fig. 1, we show that experiment 1
must be carefully interpreted. Despite the high-performance
metrics obtained in experiment 1, the significant areas identi-
fied by the network are pointing towards certain areas with
no clear interest for the diagnosis, such as corners of the
images, the sternum, clavicles, etc. From a clinical point of
view, this is biasing the results. It means that other approaches
are necessary to force the network to focus on the lung
area. In this respect, we have developed and compared the
results with two preprocessing approaches based on cropping
the images and segmenting the lung area (experiment 2 and
experiment 3). Again, given the heat maps corresponding
to experiment 2, we also see similar explainability prob-
lems to those enumerated for experiment 1. The image area
reduction proposed in experiment 2 significantly decreases
the system’s performance by removing the metadata that
usually appears in the top left or right corner. This technique
removes areas that can help categorize the images but have
no interest from the diagnosis point of view. However, while
comparing experiments 2 and 3, performance results improve
in the third approach, which focuses on the same region
of interest but with a mask that forces the network to see
only the lungs. Thus, results obtained in experiments 2 and
3 suggest that eliminating the needless features extracted
from the background or non-related regions improves the
results. Besides, the third approach (experiment 3) provides
more explainable and interpretative results, with the network
focusing its attention only on the area of interest for the
disease. The gain in explainability of the last method is still
at the cost of a lower accuracy with respect to experiment
1, but the improvement in explainability and interpretability
is considered critical in translating these techniques to the
clinical setting. Despite the decrease in performance, the
proposed method in experiment 3 has provided promising
results, with an 91.53% Acc, 87.6 BAcc, 87.37% GMR,
and 0.97 AUC.

Performance results obtained are in line with those pre-
sented in [17], which reports sensitivities of 95, 94, and 91
for control, pneumonia, and COVID-19 classes respectively
–also modeling with the COVID-Net in similar conditions as
our experiment 1–, but training with a much smaller corpus
of 358 RX images from 266 COVID-19 patients, 8, 066
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controls, and 5, 538 RX images belonging to patients with
different types of pneumonia.

The paper also critically evaluates the effect of several
variability factors that might compromise the network’s per-
formance. For instance, the projection (PA/AP) effect was
evaluated by retraining the network and checking the out-
comes. This effect is important, given that PA projections are
often practiced in erect positions to observe pulmonary ways
better and are expected to be examined in healthy or slightly
affected patients. In contrast, AP projections are often pre-
ferred for patients confined in bed, and as such are expected
to be practised in the most severe cases. Since AP projections
are common in COVID-19 patients, in these cases, more
blood will flow to the lungs’ apices than when standing;
thus, not considering this variability factor may result in
a misdiagnosis of pulmonary congestion [49]. Indeed, the
obtained results have highlighted the importance of taking
into account this factor when designing the training corpus,
as PPV decreases for PA projections in our experiments with
COVID-19 images. This issue is probably due to an under-
representation of this class (Table 5), which would require a
further specific analysis when designing future corpora.

On the other hand, results have shown that the error distri-
bution for the COVID-19 class follows a similar proportion to
the percentage of images available in the corpus while cate-
gorizing by gender, the detector’s technology, the projection,
and the dataset. These results suggest no significant bias with
respect to these potential variability factors, at least for the
COVID-19 class, which is the less represented one.

An analysis of how the clusters of classes were distributed
is also presented in Fig. 5, demonstrating how each class
is differentiated. These plots help identify existing overlap
among classes (especially that present between pneumonia
and COVID-19, and to a lesser extent between controls and
pneumonia). Similarly, since the corpus used to train the
network was built around several datasets, a new set of t-SNE
plots was produced, but differentiating according to each
of the subsets used for training (Fig. 6). This test served
to evaluate the influence of each dataset’s potential specific
characteristics in the training procedure and, hence, possible
sources of confusion that arise due to particularities of the
corpora that are tested. The plots suggest that the different
datasets are correctly merged in general terms, but with some
exceptions. These exceptions suggest that there might be
certain unknown characteristics in the datasets used, which
cluster the images belonging to the same dataset together.

The COVID-Net has also demonstrated being a good start-
ing point for the characterization of the disease employingXR
images. Indeed, the paper’s outcomes suggest the possibility
to automatically identify the lung lesions associated with
a COVID-19 infection (see Fig.1) by analyzing the Grad-
CAM mappings of experiment 3, providing an explainable
justification about the way the network works. However,
the interpretation of the heat maps obtained for the control
class must be carried out carefully. Whereas the areas of
significant interest for pneumonia and COVID-19 classes are

supposed to point to potential lesions (i.e. with higher density
or with different textures in contrast to controls), the areas of
significant interest for the classification in the control group
are supposed to correspond to something complementary,
potentially highlighting less dense areas. Thus, in the control
class, these areas do not point towards any kind of lesion in
the lungs.

Likewise, the system developed in experiment 3 attains
comparable results to those achieved by a human evaluator
differentiating pneumonia from COVID-19. In this respect,
the ability of seven radiologists to correctly differentiate
pneumonia and COVID-19 from XR images was tested in
[50]. The results indicated that the radiologists achieved sen-
sitivities ranging from 97% to 70% (mean 80%), and speci-
ficities ranging from 7% to 100% (mean 70%). These results
suggest that AI systems have a potential use in a supervised
clinical environment.

COVID-19 is still a new disease, and much remains
to be studied. The use of deep learning techniques
would potentially help understand the mechanisms on
how the SARS-CoV2 attacks the lungs and alveoli and
how it evolves during the different stages of the dis-
ease. Despite there is some empirical evidence on the
evolution of COVID-19 –based on observations made by
radiologists [6]–, the employment of automatic techniques
based on machine learning would help analyze data mas-
sively, guide research onto certain paths, or extract conclu-
sions faster. Nevertheless more interpretable and explainable
methods are required to go one step forward.

Inline with the previous comment, and based on the empir-
ical evidence respecting the evolution of the disease, it has
been stated that during the early stages of the disease, ground-
glass shadows, pulmonary consolidation and nodules, and
local consolidation in the centre with peripheral ground-
glass density are often observed. However, once the disease
evolves, the consolidations reduce their density resembling
a ground-glass opacity that can derive in a ‘‘white lung’’ if
the disease worsens or in a minimization of the opacities
if the course of the disease improves [6]. In this manner,
if any of these characteristic behaviours are automatically
identified, it would be possible to stratify the disorder’s stage
according to its severity. Computing the extent of the ground-
glass opacities or densities would also be useful to assess the
severity of the infection or to evaluate the evolution of the
disease. In this regard, the infection extent assessment has
been previously tested in other CT studies of COVID-19 [51]
using manual procedures based on observation of the images.

Solutions like the one discussed in this paper are intended
to support a much faster diagnosis and alleviate radiolo-
gists and specialists’ workload, but not to substitute their
assessment. A rigorous validation would open the door to
integrating these algorithms in desktop applications or cloud
servers for its use in the clinic environment. Thus, its use,
maintenance, and update would be cost-effective and straight-
forward and would reduce healthcare costs and improve
diagnosis response time and accuracy. [52]. In any case,
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the deployment of these algorithms is not exempt from
controversies: hosting the AI models in a cloud service
would entail uploading the images that might be subject
to national and international regulations and constraints to
ensure privacy [53].
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