Skip to main content
. 2020 Sep 29;8:185786–185795. doi: 10.1109/ACCESS.2020.3027738

TABLE 4. Quantitative Comparison of the Proposed Model and Four Widely Used Deep Models for Multi-Class Infection Segmentation. (Mean ± Standard Deviation of DSC, Sensitivity, and Specificity, Best Results are Highlighted in Bold).

Method Infection type DSC Sen. Spec. P-value
U-Net [21] Ground-Glass Opacities 0.6034 ± 0.073 0.72 31 ± 0.011 0.9775 ± 0.010 Inline graphic
Interstitial Infiltrates 0.6423 ± 0.081 0.7361 ± 0.025 0.9756 ± 0.008
Consolidation 0.7526 ± 0.036 0.8209 ± 0.026 0.9863 ± 0.005
U-Net++ [22] Ground-Glass Opacities 0.7160 ± 0.052 0.8017 ± 0.014 0.9675 ± 0.004 Inline graphic
Interstitial Infiltrates 0.6971 ± 0.034 0.7829 ± 0.018 0.9847 ± 0.008
Consolidation 0.8041 ± 0.042 0.8172 ± 0.009 0.9865 ± 0.003
Attention U-Net [24] Ground-Glass Opacities 0.7226 ± 0.026 0.8038 ± 0.019 0.9665 ± 0.012 Inline graphic
Interstitial Infiltrates 0.7158 ± 0.024 0.7953 ± 0.011 0.9812 ± 0.007
Consolidation 0.8012 ± 0.041 0.8147 ± 0.015 0.9814 ± 0.008
U-Net+CBAM [41] Ground-Glass Opacities 0.7037 ± 0.039 0.8172 ± 0.013 0.9675 ± 0.005 Inline graphic
Interstitial Infiltrates 0.6824 ± 0.032 0.7975 ± 0.018 0.9431 ± 0.008
Consolidation 0.8005 ± 0.052 0.8727 ± 0.021 0.9827 ± 0.004
Our network Ground-Glass Opacities 0.7422 ± 0.038 0.8593 ± 0.018 0.9742 ± 0.005
Interstitial Infiltrates 0.7384 ± 0.021 0.8268 ± 0.020 0.9869 ± 0.005
Consolidation 0.8769 ± 0.015 0.8645 ± 0.017 0.9889 ± 0.007