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ABSTRACT In this paper, we propose a deep learning model to forecast the range of increase in COVID-
19 infected cases in future days and we present a novel method to compute equidimensional representations
of multivariate time series and multivariate spatial time series data. Using this novel method, the proposed
model can both take in a large number of heterogeneous features, such as census data, intra-county mobility,
inter-county mobility, social distancing data, past growth of infection, among others, and learn complex
interactions between these features. Using data collected from various sources, we estimate the range of
increase in infected cases seven days into the future for all U.S. counties. In addition, we use the model
to identify the most influential features for prediction of the growth of infection. We also analyze pairs of
features and estimate the amount of observed second-order interaction between them. Experiments show
that the proposed model obtains satisfactory predictive performance and fairly interpretable feature analysis
results; hence, the proposedmodel could complement the standard epidemiological models for national-level
surveillance of pandemics, such as COVID-19. The results and findings obtained from the deep learning
model could potentially inform policymakers and researchers in devising effective mitigation and response
strategies. To fast-track further development and experimentation, the code used to implement the proposed
model has been made fully open source.

INDEX TERMS COVID-19, deep learning, interpretable machine learning, feature interactions, pandemic
surveillance, disease spread modeling, policy making.

I. INTRODUCTION
COVID-19 has had an unprecedented social and economic
impact worldwide. With more than 13 million infected cases
and more than half a million deaths as of mid-July, the pan-
demic is still accelerating globally without showing any signs
of nearing an end. In dealing with COVID-19 and future
pandemics, it is imperative to design reliable intervention
strategies and to implement effective mitigation efforts. The
design of such strategies hinges on effective surveillance of
the spatiotemporal evolution of disease. Hence, a reliable and
relatively interpretable method of forecasting the spread of
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the virus could significantly improve the predictive surveil-
lance capability and help in designing policies for disease
containment.

Facing this need, prior research has proposed and tested
various statistical, epidemiological and machine learning-
based forecasting models for COVID-19 [1]–[8] based on
features such as number of existing infections, deaths and
recoveries. Other forecasting models proposed for other epi-
demics [9]–[11] rely on features like human mobility and
within-season and between-season observations. Although
thesemodels show potential for predicting the initial outbreak
and growth trajectories, their capability in capturing various
temporally dynamic and spatially variant features affecting
disease spread is limited [12]. For example, mathematical
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models such as susceptible-infectious-recovery (SIR) models
only account for a small subset of relevant features identified
to be responsible for the spread of the virus, as shown below.

Existing studies [13] have shown that the spread of dis-
ease is dependent on many factors; thus, reliable forecasting
models must capture all major factors that might influence
the spread of infection. Specifically, a multitude of factors
including, but not limited to, human mobility [14], social
distancing guidelines [15], [16], weather [17], population
density [18], and demographics [19] affect the spread of
COVID-19. In other fields of study where prediction also
depends upon a large number of features, researchers often
find that identifying interactions between input features is
essential to yielding satisfactory results [20], [21]. Although,
to the best of our knowledge, no literature has yet been
published that identifies specific feature interactions for the
spread of COVID-19, we hypothesize that it is quite likely
that many features upon which the spread is dependent inter-
act in complexways. Hence, an exhaustive examination of the
relevant features and their possible interactions is essential for
an effective prediction model of disease spread.

Advances in deep learning can enable contemporary mod-
els to use a large number of features and to account for
possible interactions. Several deep learning models [22]–[24]
used for online ad click predictions are particularly known for
using multiple heterogeneous features as input and learning
interactions among them; however, since many features used
for epidemic forecasting are in the form of multivariate time
series andmultivariate spatial time series, an effectivemethod
to compute representations of such features that accounts for
both the temporal and spatial structure of data is essential
before using them as input to the aforementioned models.
Perhaps, due to the challenges associated with building such
representations for heterogeneous input features, existing
deep learning models for epidemic forecasting rely upon
more conventional recurrent architectures that do not explic-
itly account for feature interactions and consider only few
input features [2], [6], [25].

To complement existing epidemiological models, we pro-
pose a deep learning model based on the high-level frame-
work of DeepFM [22] that takes inmultiple features, accounts
for interactions between them and forecasts growth in the
number of infected cases in all U.S. counties. For effective
processing of the many input features, the model includes
a novel method to compute equidimensional representations
(also called embeddings) of heterogeneous features such
as multivariate time series, multivariate spatial time series,
and multidimensional time-independent variables. Further-
more, we perform feature importance evaluations to iden-
tify the most influential features for predicting the growth
of infected cases. Also, since the proposed model accounts
for possible interactions among input features, we perform
an analysis to estimate the relative amount of second-order
interaction between pairs of input features. The results show
that the model obtains satisfactory performance. In addition,
the highly interpretable feature importance results can also

help policymakers develop control strategies in response to
the rapidly evolving pandemic situation. To fast-track future
research and experimentation with new features or models,
we have also made our code fully open source.

II. RELATED WORK
A. STANDARD DISEASE-SPREAD MODELS
To estimate the growth of infected populations, epidemiol-
ogists and mathematical modelers have developed multiple
statistical and mathematical models to simulate the spread
of disease in terms of susceptible, infected, recovered, and
deceased populations. These models include the susceptible-
infectious-recovery (SIR) model and its derived models, such
as the susceptible-exposed-infectious-recovery (SEIR)model
[26], [27]. Through contact activities of people, these stan-
dard models attempt to capture the community spread of
disease [28]. While these models provide useful insights
regarding the initial outbreak and growth trajectories, they
have limitations in terms of the number of influencing factors
and complex relationships captured. For example, existing
models can include only a limited number of features (pri-
marily infection rate) to forecast the spread of infection;
however, research has shown that disease spread is related to
a large number of factors (such as socio-demographic factors,
mobility, population density, and visits to points of interest),
which possibly interact in complex ways. Data-driven mod-
els can be adopted to capture various dynamic features and
their interactions to complement the standard disease-spread
models.

Existing studies also reveal that population flow drives
the spatiotemporal distribution of COVID-19 cases [29], and
travel ban was projected to be successful in slowing the
epidemic spread. This has been demonstrated in the context of
COVID-19 in China [30]. To complement existingmathemat-
ical disease spread models, the global epidemic and mobility
model [10] was developed to incorporate the movement of
people (which may hasten transmission of the disease across
different areas) and predict the spread of disease. This model
focuses mainly on cross- and within-community transmission
of the disease through the analysis of global human mobility;
however, as shown in recent literature, the spread of the dis-
ease is affected not only by human contact, but is also related
to multiple additional factors, such as population density,
human shopping activities, and directives of local government
[14]–[16], [31]. Existing models have a limited capability
to capture the effects of these factors; hence, developing a
model that can take various relevant factors into account,
predict the spread of disease, and attribute importance to each
factor could be informative for pandemic surveillance and
associated policy making.

B. DEEP LEARNING MODELS
Deep learning [33] is a sub-field of machine learning with
the goal of studying deep artificial neural networks (i.e. net-
works with many layers) and how they can be used for
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TABLE 1. Short description of input feature groups. Refer appendix for full details.

knowledge discovery and enhanced predictive intelligence.
Recent advances in deep learning [34], [35] have signif-
icantly improved the state of the art in computer vision,
natural language processing, and many other fields. Based on
such advances, researchers have identified that deep learning-
based predictive models could be effective in aiding decision
making in response to COVID-19 [36]–[38]. In the following,
we discuss some related work on using deep learning to
forecast the spread of the virus.

Huang et al. [5] proposed a convolutional neural network
to forecast the spread of the virus using six input features
related to the number of confirmed, recovered, and deceased
people. Their model predicts the spread one day ahead using
data from last five days. Although their work shows that
deep learning can be effective in forecasting the pandemic,
the model cannot be directly deployed in practice because it
predicts only one day of future scenario and considers only a
limited number features affecting the spread of disease.

Chimmula and Zhang [6] proposed a long short-termmem-
ory (LSTM) model [39] to forecast the spread of the virus
based on past number of confirmed, deceased, and recovered
cases. Similarly, Tian et al. [25] also used an LSTMmodel to
forecast the spread based on similar features but normalized
by population. The authors also compared their results with
a Hidden Markov Model and a Hierarchial Bayes Model, but
concluded that LSTM exhibits the best performance of the
three, demonstrating the potential impact deep learning can
have on pandemic forecasting.

Tian et al. [40] also proposed a custom model to fore-
cast cumulative confirmed cases and deaths by combining
the LSTM [39] and GRU [35] cells. Their model used past
numbers of confirmed cases and deaths as input and five other
time-independent features. They reported their model perfor-
mance only in terms of relative error, so it is difficult to judge
the effectiveness of their model in absolute terms. Further,
the authors did not clarify why some features, such as violent
crime rate, were used in the model and how these features
could contribute to prediction of infections and deaths by
COVID-19.

In another study, Huang et. al. [1] proposed a novel
deep learning model using convolutional and bidirectional

GRU layers to forecast the virus in European countries. The
study used the proposed architecture to process spatial and
temporal features separately and obtained good performance.
However, the study only considered a limited number of fea-
tures and captured only the past trends of confirmed, recov-
ered and deceased populations even though past research [13]
has shown that the spread of the virus depends on several fea-
tures related to population attributes, activities, and mobility
as mentioned above.

Further, an important and perhaps similar work is the
DeepCOVID model [41]. The associated researchers have
developed a deep learning-based forecasting model using
‘‘syndromic, clinical, demographic, mobility, and point-of-
care data’’ to forecast mortality and hospitalization in the
United States. However, information such as model accuracy,
model architecture, and feature importance about this work
has not yet been made public.

To the best of our knowledge, the proposed DeepCOVID-
Net model is among the first significant deep learning models
for COVID-19 forecasting to be completely open-source.
Moreover, a notable distinction of our work is that we perform
feature analysis to understand which features are important
in forecasting the growth of the virus, an analysis not per-
formed in prior studies. Further, we also account for possible
interactions among our many input features and identify pairs
of features with relatively higher amount of second-order
interaction between them, which again has not been done by
other models.

III. INPUT FEATURE GROUPS
To have a comprehensive understanding of the situation and
characteristics of counties, it is important to examine sev-
eral features for each county. To this end, we extensively
surveyed the literature and identified certain ‘‘influencing
factors’’ that might affect the spread of infection. We then
identified specific feature groups that corresponded with the
set of influencing factors identified earlier. A feature group is
simply a set of similar features grouped together to facilitate
further processing. A brief description of all feature groups
is presented in Table 1. In this section, we describe the
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process of feature collection, organization, and inclusion in
the proposed model in detail.

A. FEATURE COLLECTION
Since there is no universally accepted set of input features
to use in the task of COVID-19 forecasting, it is impor-
tant to comprehensively review the literature and identify
influencing factors that play a major role in explaining the
spread of the virus. Our extensive analysis of the literature
helped us identify four such factors that may influence the
spread of COVID-19 both spatially and temporally. These
‘‘influencing factors’’ include population attributes (such as
population density, age/race-based population distribution,
etc.), population activities (such as visits to certain types
of points of interest, adherence to social distancing guide-
lines, etc.), mobility (movement from more infected places
to less infected ones), and disease spread attributes (such as
reproduction number, growth of infections in past, etc.). The
feature groups used in correspondence with each influencing
factor are shown in Table 2. A more complete discussion of
all feature groups is provided in appendix. In the following,
we provide evidence to show the importance of each influ-
encing factor in predicting the growth of the virus.

TABLE 2. The feature groups used in correspondence with each
influencing factor.

Features related to population attributes, such as popula-
tion size and density, are important in predicting the growth
of infection as shown by research studies discussed below.
Rocklöv and Sjödin [18] demonstrated that the spread of the
virus in a geography is directly proportional to its population
density. Dyer [42] and Kirby [43] showed that the impact of
the pandemic has been disproportionately higher in black and
other minority communities. Dowd et al. [19] illustrated how
population age distribution and inter-generational contacts
(possibly captured by household type and size) affect the
impact of the virus in a community. Together, these studies
provide a strong rationale for using features that capture pop-
ulation attributes of counties by showing that these unchange-
able population characteristics contribute significantly in
understanding the spread/impact of the virus. As shown
in Table 2, to account for population attributes, we use cen-
sus features, population density, and some other engineered
features built by the Surgo Foundation to assess vulnerability
of each county due to COVID-19 (refer appendix).

Multiple research studies have found that population activ-
ities are important in predicting the growth of future cases.
Benzell et al. [44] identified risks associated with visits to
venues at which people would be placed in proximity and
showed that particularly high risk was associated with vis-
its to restaurants, grocery stores, fast food establishments,
cafes, and gyms. Also, Lai et al. [45] found that there is
high risk of small disease outbreaks within residential facil-
ities for elderly, indicating that examining the number of
visits to such facilities could be helpful in forecasting the
growth of infection. Moreover, since research has shown
that COVID-19 is communicated via airborne particles, espe-
cially indoors, visits to hospitals, especially by healthcare
workers, could be risky [46], [47], and therefore are impor-
tant to consider when determining the growth of infection.
Further, Gao et al. [48] showed that adherence to social
distancing orders helps to reduce the spread of infection.
Cohen and Kupferschmidt [49] and Sen-Crowe et al. [50]
also acknowledged the importance of social distancing in
slowing the spread of the virus. Further, Béland et al. [51]
demonstrated that workers in certain occupations in which
they are more likely to work in proximity are more affected
by the virus, indicating that the percentage of people working
full- or part-time could influence infection spread. These
studies, together, show the importance of capturing pop-
ulation activities as input features. As shown in Table 2,
we use points of interest (POI) visitation patterns, Venables
distance [32], and social distancing metrics to capture these
activities. As explained in appendix, visitation patterns cap-
ture the number of visits to important types of POIs, Venables
distance captures the agglomeration of population activities
in a county, and social distancing metrics show adherence
to stay-at-home orders. Together, these three feature groups
show the extent to which people are likely to come in close
contact and potentially facilitate the spread of infection.

Further, the dynamics of urban mobility are also
important in predicting the spatial spread of the virus.
Kraemer et al. [14] showed that human mobility played a
major role in explaining the initial spatial distribution of
infections in China. They showed that more than 50% of
initial cases identified outside Wuhan could be traced back
to travel from Wuhan. Sirkeci et al. [52] also confirmed that
human mobility from more infected places to less infected
places is a significant factor in predicting the spatial spread
of the virus. Other studies [29], [53] also concurred regarding
the role played by mobility in the spread of the virus. There-
fore, we use data of incoming traffic from other counties to
capture mobility in the proposed model as shown in Table 2.
We further augment the mobility information by including
the number of infections in source counties because travel
statistics alone are not sufficient to inform the model about
counties from which travel could be more dangerous due to
the high prevalence of infection.

Finally, disease spread attributes, such as the growth of
cases in the past few days and reproduction number, are
also important factors in determining the spread of virus

159918 VOLUME 8, 2020



A. Ramchandani et al.: DeepCOVIDNet: An Interpretable Deep Learning Model for Predictive Surveillance of COVID-19

in the future. As mentioned in Section II, several existing
models [5], [6], [25] obtain satisfactory results in forecasting
future cases by using features similar to the growth of cases
in past days. Further, epidemiology-based studies [54]–[56]
have reported that estimating the reproduction number can
be essential to understanding the behavior of virus spread,
thereby making it an important input feature to consider.
Based on these studies, we include both the growth of cases in
past days and reproduction number (estimated by the method
proposed by Fan et al [54]) as input features to the model.

B. FEATURE ORGANIZATION
As discussed above, we combine similar features into a fea-
ture group to better process and organize data.We define three
types of feature groups based on their spatial and temporal
characteristics as described below: constant, time-dependent,
and cross-county time-dependent feature groups. The exact
feature groups used in the model are shown in Table 1 and
are fully explained in the appendix.

1) CONSTANT FEATURE GROUPS
Constant feature groups contain features that do not vary
significantly over the analysis period. For example, the set
of census features for a county (such as population size and
population density) are considered constant features because
their values do not change significantly within a few months.

2) TIME-DEPENDENT FEATURE GROUPS
This group contains features whose values change over time.
For example, the number of people who visit grocery stores
on a particular day in a given county is a time-dependent fea-
ture since its value changes depending on the particular day.
A time-dependent feature group is basically a multivariate
time series.

3) CROSS-COUNTY TIME-DEPENDENT FEATURE GROUPS
In cross-county time-dependent feature groups, features cap-
ture a time-dependent interaction between two counties. For
example, the number of people traveling from one county to
another on a particular day is a cross county time dependent
feature. A cross-county time-dependent feature group is basi-
cally a multivariate spatial time series.

IV. DeepCOVIDNet
Wehave designed a novel deep learningmodel, DeepCOVID-
Net, to estimate the range of increase in the number of
infected cases on a particular day given multiple constant,
time-dependent, and cross-county time-dependent feature
groups as input. The ‘‘projection interval’’ of the model is
7 days, which means the model can forecast the range of
increase in cases for 7 days into the future.

Themodel comprises of twomodules: the embeddingmod-
ule and the DeepFM module. The embedding module takes
as input various heterogeneous feature groups and outputs
an equidimensional embedding corresponding to each feature
group. These embeddings are then passed to the DeepFM

module which computes second- and higher-order interac-
tions between them. Finally, we use a shallow, fully connected
network which takes as input the computed interactions and
the sum of feature embeddings (to improve gradient flow)
and outputs n probabilities corresponding to n binary classi-
fication tasks, as explained in Section V. We transform the n
probabilities to get the probability distribution of the current
rise in cases to lie within n + 1 ordered ranges. We expect
the rise in cases to lie within the range with the greatest
probability. Fig. 1 shows a schematic representation of the
process described above.

A. EMBEDDING MODULE
The novel embedding module used in this study produces
embeddings of the same dimension for all feature groups
using a generalizable process, which is described in detail
below for each feature group type. The fundamental idea
behind extracting embeddings from various feature groups is
to utilize all available structure in the data. For example, for
time-dependent features, we would like the model to be able
to treat the same features on different dates more similarly
than different features on different dates. We accomplish this
goal by sharing parameters, which is a successful technique
used to design novel models and arguably is at the heart of the
success of both recurrent and convolutional neural networks.

1) CONSTANT FEATURE EMBEDDINGS
Since constant feature groups do not have a time dimension,
the shape of a group of constant features is simply [n], where
n is the number of features in the group. As shown in Fig. 1,
the embeddings of constant features are calculated simply by
using a fully connected layer that converts the input tensor of
shape [n] to a tensor of shape [e] where e is the embedding
dimension.

2) TIME-DEPENDENT FEATURE EMBEDDINGS
Since the time dimension of time-dependent feature groups
needs to be taken into account, the shape of a time-dependent
feature group is [t, n], where t represents the time steps, and
n represents the number of features for each time step. From
the n input features, our method computes a holistic feature
score by performing a weighted summation of the n original
features for every time step. This holistic score can be thought
of as a new time-dependent feature, engineered by the model
as per its needs. Next, a weighted summation is conducted
over all time steps to learn the influence of different time
steps on the final output. As shown in equation 1, when the
embedding size is e, the model has a chance to engineer e
new time-dependent features and understand how each new
feature behaves over time.

In a formal formulation, let Ft ∈ Rt×n be a time-
dependent feature matrix of shape [t, n]. Let (Ft )ij represent
the jth feature at the ith time step. Let the output embedding be
Et ∈ Re and (Et )k represent the k th element in the embedding.
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FIGURE 1. A schematic representation of the entire pipeline of the DeepCOVIDNet model which takes as input raw features and outputs a
probability distribution to predict the range of the rise in infected cases in a given county on a given date in the future. f1, f2, f3 correspond
to number of features, t refers to the number of time steps (experimentally set to 13), c refers to the number of counties (set to 3146), e
refers to the dimension of each embedding, and σ refers to any non-linearity. More explanation related to the tensor shapes is presented in
Section IV-A.

Then, we calculate (Et )k in the following way:

(Et )k = σ (
∑

i∈[1...t]

W T
ik · σ [

∑
j∈[1...n]

WF
jk · (Ft )ij]) (1)

where σ is any activation function and WF
∈ Rn×e and

W T
∈ Rt×e are learnable parameters in the network.

In part 2 of Fig. 1, we show exactly how equation 1 is
implemented in a vectorizable method.

3) CROSS-COUNTY TIME-DEPENDENT
FEATURE EMBEDDINGS
Since each feature value of a cross-county time-dependent
feature group is associatedwith all counties and all time steps,
the shape of a cross-county time-dependent feature group is
[t, c, n], where t represents the total time steps, c represents
the total number of counties in the U.S. and n represents the
number of features.

As shown in Fig. 1, let Fcc ∈ Rt×c×n represent the raw
features so that (Fcc)ijk is the k th feature of the jth county at
the ith time step. Further, if we let Ecc ∈ Re represent the final
embedding of this feature group and (Ecc)p represent the pth

element of Ecc, then we compute (Ecc)p using an extension of
equation 1 in the following way:

(Ecc)p=σ (
∑

i∈[1...t]

W T
ip · σ (

∑
j∈[1...c]

WC
jp · σ [

∑
k∈[1...n]

WF
kp · Fijk ]))

(2)

where σ is any activation function,WF
∈ Rn×e,WC

∈ Rc×e

and W T
∈ Rt×e are learnable parameters in the network.

Note that equation 2 is an extension of equation 1 over
the county dimension. As in the previous case, the inner-
most summation computes a holistic feature score for every

county and time step using the same weights/parameters.
Next, an overall score for each time step is computed by a
weighted sum of all holistic feature scores for all counties.
Finally, a weighted combination of all time steps is computed.

B. DeepFM MODULE
We hypothesize that there exist several interactions between
different feature groups. An interaction between two features
exists when their values together convey some information
that cannot be extracted by considering their values individ-
ually. For example, there could be an interaction between
the percentage of population staying indoors in a county and
the total number of infected cases in the county. A higher
incidence of new cases is expected if few people remain
indoors and there are already a high number of infected cases.
However, the model may not be able to predict the number of
new cases as effectively if only one of the two feature values
is given. Hence, it is important for the model to identify and
learn many such interactions that could exist among different
features. In this section, we provide an overview of how
the model computes second- and higher-order interactions
among input features using the DeepFM [22] framework
(with slight modifications).

The embeddings of all features obtained from the embed-
dings module described above serve as input to the DeepFM
model. Note that all raw features groups are of different sizes,
but their embeddings have the same dimensions and are easy
to further process by the DeepFMmodule, as shown in Fig. 1.

In the model, the dot products between a pair of
embeddings represent second-order interactions between the
corresponding two feature groups. To identify higher-order
interactions, we concatenate all embeddings and process
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them through a self-normalizing neural network [57]. The
network comprises of a sequence of dense layers with the
same output dimensions, followed by the SELU (Scaled
Exponential Linear Units) non-linearity and the alpha
dropout layer [57]. We treat the number of dense layers
and the dimension of their output as hyperparameters in the
model, which are tuned by using Bayesian optimization as
explained in Section V. The final architecture to compute
higher order interactions, as chosen by Bayesian optimiza-
tion, is shown in Fig. 2.

FIGURE 2. The architecture of the network that takes in the concatenated
feature embeddings and computes higher order interactions. ‘‘FC 468’’
denotes a fully connected layer with 468 output neurons.

V. IMPLEMENTATION DETAILS
A. LOSS FUNCTION
The proposed model predicts a range between which the rise
in the number of infected cases is expected to lie. In this
section, we describe how themodel is trainedwith this output.
Let C ∈ Zn represent a list containing boundaries of ranges
used for prediction in the model. Therefore, if the model
predicts class i ∈ [0, n], the rise in cases is expected to
be within the interval [Ci,Ci+1) under the assumptions that
C0 = 0 and Cn+1 = ∞. Naturally, Ci ≤ Ci+1 for all i.

SinceC is sorted and ordered, we can treat the output of the
model as an ordinal variable and perform ordinal regression
using the method described by Frank et al. [58]. According to
the method, n binary classifiers need to be trained such that
classifier i ∈ [1, n] outputs the probability P(x > ci), where
x is the rise in number of cases and ci is a constant. After
n probabilities are obtained from these n classifiers, we can
easily find P(cj ≤ x < cj+1) for all j ∈ [0, n]. Finally,
the rise in cases is expected to lie in the interval [ck , ck+1)
for some k ∈ [0, n] so that ∀i P(ck ≤ x < ck+1) ≥ P(ci ≤
x < ci+1). Frank et al. [58] suggest that the model should be
trained by using only binary cross entropy loss on the n binary
classifiers. However, this could seem non-ideal because the
final goal is to predict the interval [cj, cj+1) rather than to
predict P(x > ci) for all i. Therefore, for the proposed model,
a multi-class cross-entropy loss on P(ci ≤ x < ci+1) for all
i is added in addition to the binary cross-entropy loss on all
binary classifiers. The conducted experiments show that the
results are slightly better when this new loss term is added.

B. CLASS RANGES FOR OUTPUTS
As described above, the proposed method predicts a range
within which the increase in the number of cases would lie.
It is important to discuss how range boundaries (i.e., list C)

FIGURE 3. A histogram to show the distribution of the weekly rise in
infected cases across the U.S. from April 5 through June 28 — the x-axis
shows a value for the weekly rise in cases and the y-axis shows the
frequency of occurrences of that value in the dataset. The colored shaded
regions correspond to different classes representing a range of the
weekly rise in cases as explained in Section V. As shown, all instances in
which the weekly rise in cases is above 103 have been merged into the
last bin. Note that the logarithmic scale is used on both axis.

are actually chosen. Basically, we start by finding the rise in
the number of cases in every county from April 5 through
June 28 during the same projection interval of the model.
We then find the 33rd, 67th and the 90th percentile of the rise
in cases during those dates. In raw numbers, this turns out
to be 1, 13, and 93. So the output classes correspond to the
following ranges: 0 to 1 (negligible increase), 2 to 13 (moder-
ately low increase), 14 to 93 (moderately high increase), and
94 and above (significantly high increase). These numbers
denote the rise in cases in every county during one week. For
more clarity, Fig. 3 shows the histogram of weekly rise in
cases of all counties from April 5 through June 28 with the
class boundaries marked in different colors.

It should be noted that due to the distribution of the labels,
a naive model which predicts the same class always would at
most get 33% accuracy. This should also help contextualize
our results. We achieved about 64% accuracy on the testing
data (June 12 through June 28), which is about two times bet-
ter than a naive model. In light of this and the feature analysis
results presented in Section VI-B, we can be confident that
the model has learned useful information. It is also important
to note that these class boundaries can easily be changed to
make the model predictions finer or coarser as per different
use cases.

C. TRAIN AND TEST SPLITS
The total data used was from April 5 through June 28. 68%
of this data was used for the training set, 12% for valida-
tion and 20% for the testing set. Equivalently, data from
April 5 through June 1 was used for training, June 2 through
June 11 for validation, and June 12 through June 28 for test-
ing. Although data since January 21 was available, we used
data only from April 5 onward because of the lack of
widespread testing availability before then. Since the model
was trained on labels derived from the results of COVID-19
testing data, it was essential to use data that was relatively
accurate and did not underestimate the number of infections
due to lack of testing [12].
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D. AMOUNT OF PAST DATA USED
As explained in Section III, the values of many input
feature groups used in the model change with time (time-
dependent or cross-county time-dependent feature groups).
For all such features, we used 13 days of past data. We exper-
imentally found that increasing the number of past days to
21 and 28 had insignificant effect on the model accuracy.
Therefore, for reasons related to computational efficiency,
we chose to use 13 days of past data.

So, to be clear, when predicting the range of increase in
infected cases on, for example, June 21, we use input data
from June 1 to June 13. Features from June 14 through 20 are
not given as input because that represents the interval for
which the model is predicting the rise in cases.

E. HYPERPARAMETER TUNING
We used Bayesian optimization for 30 iterations with
expected improvement as the acquisition function to choose
hyperparameters for the model [59].

F. TRAINING METHOD
As shown in Fig. 4, the model’s testing results become less
accurate as it is tested on dates further in time from the dates
onwhich it was trained. Since the dates of the training, valida-
tion, and testing set are in ascending order, we hypothesized
that training on the validation set as well should improve
testing performance, since more recent dates will be used in
training. In light of this belief, the model is trained in two
steps.

FIGURE 4. The plot of accuracy vs time on the testing set - the results
show that the accuracy keeps decreases as the model tries to project
further in the future.

First, we keep the original training and validation sets
intact and use Bayesian optimization as described above to
perform hyperparameter tuning. We then choose the model
with the best performance on the validation set and note the
corresponding hyperparameters and the number of epochs
needed to train this model using backpropagation. Second,
we combine the training and validation sets to make a larger
set and train the model on it with the hyperparameters chosen
in the first step and for the same number of epochs. Themodel
obtained in the second step is the final model. Note that the

first step has two purposes: (1) choosing best hyperparame-
ters, and (2) helping decide a stopping point for the second
step to avoid/reduce overfitting.

G. FEATURE ANALYSIS
For the model to be informative for policy making, it should
be explainable. To this end, we adopted a simple and pop-
ular method to evaluate feature importance [60]. We first
evaluated the accuracy of the model on a small section of
the training set. Next, we looped through every feature in
every feature group, randomized its value, and reevaluated
the model’s accuracy on the same section of the training set.
We assigned higher importance to those features which when
randomized cause greater decrease in the model accuracy.

A similar analysis was performed to determine feature val-
ues at which time steps are the most important in determining
the final output. To perform this analysis, we randomized
all features on a given time step, and then assigned greater
importance to those time steps which when randomized cause
greater decrease in performance.

It is important to note that the method used to evaluate
importance at both the time step and feature level shows only
relative importance and must be interpreted as such.

H. FEATURE INTERACTION ANALYSIS
As described in Section IV, the DeepCOVIDNet model
explicitly computes second-order interactions between input
feature groups. Due to this explicit representation of second-
order interactions, it is possible to identify pairs of fea-
tures between which high amount of interaction is observed.
To perform this analysis, we evaluated the network on a
section of the training set and tracked themagnitude of activa-
tions in the vector representing the second-order interactions
of input features. We concluded that the observed interaction
among two feature groups is high when the average mag-
nitude of their second-order interaction is also high. This
implicit assumption that neurons are activated highly when
they capture a pattern to which they are responding to is
common in deep learning and is used in other interpretation
techniques, such as activation maximization [61].

VI. RESULTS
A. PREDICTIVE PERFORMANCE
In this section, we discuss the performance of the proposed
model on the test set. As discussed above, the test set con-
tains 17 days of data from June 12 through June 28. The
average accuracy of the model on these 17 days is 63.7%
when using four output classes to categorize the growth in
the number of new cases for each county (i.e. negligible
increase, moderately low increase, moderately high increase,
and significantly high increase).

Further, as shown in Fig. 4, the performance of the model,
which is trained from April 5 through June 11, decreases
as we evaluate on dates further from June 11. The same
trend of the model performance decreasing over time can
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FIGURE 5. Results showing the absolute difference in predicted class and the actual class for all counties (since classes are ordered).
Therefore, the value of 0 means the model’s prediction was correct, 1 means it was one class away from ground truth, and so on. The
accuracy of the model on the given date is shown above each subfigure. (The few counties not shown in these plots either have no
infected cases or did not have sufficient data.)

FIGURE 6. Example results for the model predictions over time for three types of counties: counties with high growth, counties with
medium growth, and counties with low growth of cases.

also be observed in Fig. 5 and Fig. 6. It should be noted that
research [13] has shown that predictive performance of many
other forecasting models also declines with time. This could
be due to two possible reasons. One, the COVID-19 situation
is highly dynamic and the behavior of people and the adaptive
strategies they use change frequently. For example, mask
use in the United States has increased over time, especially
after the Centers for Disease Control and Prevention (CDC)
advised it [62]. So if the model were trained on data before
mask use became prevalent, it would learn trends that will
not hold true after masks become more widespread. Two,
the testing capacity of the United States continues to ramp up
with time. As testing becomes more accessible, the trends a
model may have learned earlier may not hold, as more people
would be tested, resulting in more infected cases being found.

Therefore, during deployment, a good strategy is to let the
model forecast only 7 days beyond the end of dates used
in training, as new features are released about every 7 days.

To project further into the future, the model must be retrained
on the most recent training data available to ensure that the
knowledge it learns holds for the dates it is asked to forecast
on. Therefore, since the model will only forecast 7 days into
the future in practice, it is important to know its ‘‘use case
accuracy’’ or ‘‘7-day accuracy,’’ which is the model’s accu-
racy from June 12 through June 18 (7 days of test data). The
model’s ‘‘use case accuracy’’ is much higher at 70.8%. Note
that since other deep learning models [2], [5], [6], [25], [40]
use different types of input features, different output formats
(by treating COVID-19 forecasting as a regression problem
instead of an ordinal classification one like in this paper), and
test their models on different set of dates and spatial locations,
it is difficult to directly compare DeepCOVIDNet’s perfor-
mance with them. However, to contextualize performance
better, note that the proposedmodel performs about two times
better than a naive model that predicts the same class always
as explained in Section V.
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FIGURE 7. Feature importance results (the greater the decrease in accuracy, the more important the feature).

Fig. 5 shows the predictive performance of the model in all
U.S. counties on a series of dates. The figure shows that the
majority of the predicted results are consistent with or one
class away from the actual growth in the number of cases.
The predicted growth for only a few counties are more than
two or three classes away from the actual situation. This
shows that the model generally performs well in predict-
ing growth in spread of infection in a county. Even when
the model’s predictions are incorrect, they are usually just
one category away from being correct. Further, as discussed
above, the figure also shows that the accuracy of the model
decreases for dates further away from those used in the train-
ing set.

Fig. 6 shows the model predictions over time for different
counties based on the growth of infected cases in them.
We see the same general trend as in Fig. 5 that the model
makes more inaccurate predictions as we go further in the
future.

B. FEATURE IMPORTANCE EVALUATION
In the next step, we evaluated the importance of different
county features in terms of their contribution to the prediction
of the number of new cases in each county. Fig. 7 shows
some of the most salient features identified by the model
using the method described in Section V. As shown in Fig. 7,
the most important feature is the past increase in infected
cases in the current county. This implies that the past trend of
the growth of infection in a county is a strong determinant of
future growth.Moreover, the second and third most important
features are the cumulative infected cases in all counties
and the number of people from other counties visiting the
county under study. As explained in appendix, these are
both cross-county time-dependent features. Together, these
features could imply that the phenomenon of people traveling
from more infected counties to other counties is associated
with the growth of infected cases in the destination county.
In other words, the results show that inter-county travel risk

could be high for the destination county, consistent with pre-
vious studies about the risks of travel [63], [64]. Other impor-
tant features, such as the median home dwell time, percentage
of people working full- or part-time, percentage of people
staying home, and number of people traveling to work for less
than 5 minutes all show that the model has learned the impor-
tance of staying home and social distancing in general, which
is again consistent with the reported findings in previous stud-
ies [65]. In addition, the model also shows that various man-
ually engineered features are effective and indicative of the
growth of infected cases. For example, COVID-19 Vulnera-
bility Index (CCVI) score, socioeconomic vulnerability, epi-
demiological vulnerability, and healthcare system factors are
engineered features designed by the Surgo Foundation [66]
to identify communities that are at a greater risk of infection,
and our results show that all these features are important.
Note that other features, such as estimated reproduction num-
ber (equal to the number of other infections caused by one
infected person) and population density, also make the list of
important features.

Fig. 8 shows the results of the time-step analysis so we
know features of which of the past days are most influ-
ential in predicting the final output. As discussed earlier,
all time-dependent and cross-county time-dependent features
use 13 days of past data. Since the projection interval of the
model is 7 days, the most recent day used for input features
is 7 days before the prediction date (also called projected
date). As shown by Fig. 8, the most recent days are the most
important in predicting the growth of cases.

C. FEATURE INTERACTIONS
Fig. 9 shows second-order interactions between all feature
groups computed by the method described in Section V.
The values in the cells represent the mean activations of the
second-order interactions of corresponding feature groups.
As discussed in Section V, higher values represent higher
observed interactions. An important observation from the
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FIGURE 8. Time step analysis. This analysis shows how important
features of each of the past days are in predicting the final output. The
results indicate that the feature values related to the most recent days
are most important in predicting the growth of cases 7 days in the future.
Refer VI-B for more details.

FIGURE 9. The observed second-order interactions between input feature
groups. Higher value in a cell represents higher amount of interaction
among the corresponding feature groups. Refer to VI-C for more details.

figure is that almost all feature groups have notable interac-
tion with census features. This result indicates that all other
county-level features must be interpreted in the context of the
population attributes of that county. For example, two coun-
ties with different population attributes may require varying
amounts of adherence to social distancing orders to produce
the same dampening effect in the growth of disease spread.
Note also that Fig. 7, which shows important features iden-
tified by the model, does not include many census features,
indicating that census features alone do not contribute much
to prediction of the growth in future cases.

Also, the results show that many feature groups have
relatively high interaction with cross-county mobility and
infections. For example, a relatively high interaction exists
between cross-county mobility & infections and social dis-
tancing metrics. This result indicates that travellers from

other counties have a different kind of impact in destination
counties which have higher adherence to social distancing
than they do in destination counties with lower adherence
levels. This analysis validates our initial hypothesis that inter-
actions among the many input feature groups are likely to
exist and aid in predicting the rise in future number of cases
in counties.

VII. LIMITATIONS AND FUTURE WORK
Although a novel and effective deep learning based
COVID-19 forecasting model has been proposed in this
paper, there are a few limitations of the proposed method as
described in this section.

Although the model explicitly accounts for second order
interactions between feature groups, there is currently no
suitable method to interpret these interactions at the indi-
vidual feature level. In other words, although we may be
able to show with our current analysis that there is high
interaction between census features and social distancing
features, we cannot determine which exact census features
interact with which exact social distancing features. Also,
since the current model is based on the DeepFM [22] frame-
work, higher order interactions are only captured implicitly,
and therefore, cannot be easily interpreted. However, any
interpretable information about both individual feature inter-
actions and higher order interactions could be very useful
for researchers and policymakers to better understand the
spread of the virus. In the future, the design of the DeepFM
framework can be modified to capture feature interactions
more explicitly based on recent deep learning advances
[67], [68] with similar goals.

In addition, although the model achieves satisfying accu-
racy, there is still room for improvement. One potential
method to improve the accuracy can be to add new fea-
tures to the model since the model is capable of taking in
arbitrary number of heterogeneous features. As mentioned
in section VI-B, many features identified to be important
in forecasting the spread of the virus have been manually
engineered. Hence, researchers could engineer more tempo-
ral and spatiotemporal features important in predicting the
spread of the virus, which can later be included in models
like DeepCOVIDNet to increase their performance.

VIII. DISCUSSION AND CONCLUDING REMARKS
In this paper, we propose a novel deep learning model to
examine heterogeneous county-level features and to predict
growth of infected cases in the future. The proposed method
can extract embeddings from multivariate time series and
multivariate spatial time series data in a novel way by uti-
lizing both the temporal and spatial (if available) structure
of the data. This process of extracting embeddings could be
employed by other deep learning research to process similar
type of data. Further, unlike existing models [2]–[6], [8],
the proposed model takes in a large number of input fea-
tures and learns interactions between them. The applica-
tion of the model has been demonstrated in predicting the
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growth in the number of new cases in U.S. counties during
the COVID-19 pandemic. The model has acceptable perfor-
mance in prediction and provides highly interpretable fea-
ture analysis results that can help policymakers cope with
spread.

The proposed forecasting model can be effectively used for
predictive pandemic surveillance by both governments and
industries. For example, hospitals in each U.S. county can use
the model to estimate the growth in the number of cases and
determine their needs of future supplies and resources based
on the projected number of infections. Similarly, schools and
offices can make better plans for future weeks to be prepared
in the best way. In addition, policymakers can use this model
to deploy proactive measures instead of taking a reactive
approach to dampen the spread of the virus and possibly save
lives.

The findings of feature importance evaluations can further
help researchers decide which features to include in their
forecasting models. The results also open up new avenues
for other researchers to do a detailed statistical analysis on
how the most important features identified by our model
exactly contribute to the growth of infected cases. Further,
the proposed model can also be used to test the effectiveness
of various hand engineered features in predicting the growth
of the virus. For example, our results have shown that several
manually engineered features like COVID-19 Vulnerability
Index (CCVI) is effective in predicting the spread of the
virus. Similarly, newly developed features created by other
researchers can be added to our model and the feature anal-
ysis results can be relied upon to show relative importance
of those features. Lastly, due to the high interpretability
of our feature importance results, policymakers can design
effective control strategies to prevent the growth of infection
based on controlling the important factors identified by this
study.

Similarly, the results of identifying pairs of features with
high second-order interactions show that interactions among
the many input features exist and are important to explicitly
account for by future researchers in their forecasting models.
Further, this analysis also opens up opportunities for data
scientists and statisticians to explain more clearly the reasons
for such interactions and their possible implications to epi-
demiologists studying the spread of COVID-19.

In addition, we believe that data-driven models like the
DeepCOVIDNet mark the advent of an era of extensively
using deep learning for pandemic forecasting, which can
complement existing epidemiology models. Already, there is
an increasing interest in using recurrent networks to forecast
the spread of COVID-19 [40], [69], [70]. To the best of
our knowledge, the proposed model is among the earliest
non-recurrent and non-conventional deep learning models
used for pandemic prediction, which should encourage other
researchers to develop more creative models. Finally, this
work also presents one of the first attempts to make the
results of a deep learning based COVID-19 forecasting model
interpretable to policymakers and the public.

APPENDIX
FEATURE DESCRIPTIONS
In this section, we provide detailed descriptions of the feature
groups used in the model and some general statistical infor-
mation of some features. As shown in Section III, the feature
groups of themodel are categorized based on four influencing
factors. In this section, we provide the definition and detailed
calculation of all feature groups based on their influencing
factors followed by some general statistical information.

A. POPULATION ATTRIBUTES
As mentioned in Table 2, we use the following features to
capture population attributes:

1) Census Features: We use a subset of 2100 sociode-
mographic features compiled by SafeGraph [71].
These features include population level information
about age/sex, race, ethnicity, commuting information,
household/family type, school enrollment, language
spoken at home, poverty status, income, employment
status and occupation. This data was originally col-
lected by the American Community Survey in 2016.

2) Vulnerability Features: In this group, we add popula-
tion density and other features built by the Surgo Foun-
dation [66] to identify counties that aremore vulnerable
to the spread of the virus. Specifically, the foundation
has created seven features, six of which assess vulnera-
bility of a county across different areas and one assesses
overall vulnerability to COVID-19 as described in the
following. All features are bounded between 0 and 1,
where 0 means least vulnerability and 1 means greatest
vulnerability. It is important to note that these features
are defined in a relative context, meaning that the value
1 is associated with the most vulnerable county. Due
to this reason, the ‘‘feature values’’ actually represent
vulnerability rankings of all counties. Each of the seven
features shown below is developed by combining mul-
tiple other features as described below.
a) Socioeconomic Vulnerability. This feature is

developed based on population below poverty
line, unemployed population, per-capita income,
and population without high school diploma and
represents the socioeconomic vulnerability of a
county.

b) Household Composition & Disability. This fea-
ture is developed based on the distribution of
population older than 65, population younger than
17, population with a disability, and single parent
households. It is a measure of vulnerability of
households and the population at large.

c) Minority Status & Language. As the name sug-
gests, this feature is developed based on minority
population and number of people who speak ‘‘less
than well’’ English.

d) Housing Type & Transportation. This feature
is developed by using the estimate of mobile
homes, households with more people than rooms,
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households with no available vehicle, housing
with structures with 10 or more units, and per-
sons living in institutionalized group quarters.
This feature helps identify communities with poor
housing or transportation situation.

e) Epidemiological Vulnerability This feature
identifies communities with greater risk of neg-
ative impact during disease epidemics. It is built
by using 11 other features capturing the number
of people with cardiovascular issues, respiratory
conditions, weak immune systems, obesity, dia-
betes, and high vulnerability to influenza and
pneumonia. The feature also considers population
density of the county.

f) Healthcare System Factors. This feature tries
to measure the capacity, strength (measured by
county spending on health and research quality)
and preparedness of the health care system in a
county using 8 different features.

g) COVID-19 Vulnerability Index (CCVI).
Finally, the above 6 features are combined with
equal weighting to create the COVID-19 vul-
nerability index, which is intended to identify
communities ‘‘with a limited ability to mitigate,
treat, and delay the transmission of’’ the virus.

B. POPULATION ACTIVITIES
We use the mobility data collected by SafeGraph to capture
population activities. The SafeGraph Patterns [72] and Safe-
Graph Social Distancing Metrics [73] are adopted in our use
case. The former includes information related to the number
of visits to certain points of interest, and the latter provides
data to show adherence to stay-at-home guidelines.

1) Visitation Patterns: SafeGraph Patterns data has infor-
mation about the number of people that visit different
types of points of interest (i.e. grocery stores, health
facilities, etc) on a given day. We consider visits to
the following types of places in our model: amusement
parks and arcades, colleges/universities/professional
schools, living facilities for elderly, department stores,
hospitals, merchandise stores/supercenters, grocery
stores, and restaurants/eating places. As discussed
in III-A, visits to grocery stores, restaurants/other
eating places, living facilities for elderly, and hospi-
tals could be particularly helpful in forecasting the
growth of cases since these places could facilitate virus
transmission [44]–[47].

2) Social Distancing Metrics: We use SafeGraph social
distancing metrics to compute/extract the percentage
of people staying home, percentage of people working
full- or part-time, median distance travelled from home
and the median amount of time spent at home for each
county and each day. As discussed in III-A, adherence
to stay-at-home guidelines and the number of people
working outside are both important in determining the
spread of the virus [48]–[51].

3) Venables Distance: Venables distance captures the
concentration of population activities in a county.
Venables distance, DV (t), is defined formally as [32]:

DV (t) =

∑
i<j si(t)sj(t)dij∑
i<j si(t)sj(t)

(3)

where si, sj represents the population activity intensity
in cell i and j respectively and dij represents the distance
between the two cells. In our analysis, we define a
cell to be a 4 km2 area. We compute DV for each day
and county by basically using the daily average values
for si(t) and sj(t). Louail et al. [32] describe more
details about this equation. We use Mapbox digital
trace telmetry data, which basically uses aggregated
cell phone data to estimate population activity in small
spatial regions of each county, to extract values of
si(t) and sj(t) for cells.

C. MOBILITY
To capturemobility across regions, we employed inter-county
travel data from SafeGraph as described below.

1) Cross County Mobility & Infections: The SafeGraph
data [72] include the census blocks where the travelers
visiting a certain point of interest come from. With this
information, we can estimate the total number of travel-
ers from one county to another. We further augment the
mobility data by also adding the cumulative number of
infections in source counties, so the model can realize
that visitors from amore infected county could be more
dangerous than visitors from a less infected county.

D. DISEASE SPREAD ATTRIBUTES
1) Past Rise in Infected Cases: We consider the weekly

rise in the number of confirmed cases in past days as
a feature to represent the past pandemic situation in
a county. This data is obtained from the New York
Times GitHub repository [74]. Since the proposed
model predicts the growth of cases a week in the future,
the weekly rise in cases for the past few days as an input
feature can inform the model about the recent trend of
the variable that it has to predict.

2) Reproduction Number: The basic reproduction num-
ber is also used, which is an estimate of how fast the
number of cases are expected to increase by. Formally,
it is the estimated number of other cases caused by
one infected person. Fan et al. [54] describe the exact
method of estimating reproduction number by using a
simple epidemic model. They assume that an infected
person infects another R0 people after time τ . There-
fore, if the number of infected people at time step 0
are i(0), then at time step t , the number will grow to
i(0)Rt/τ0 . Simple algebraic manipulations show that:

R0 = e
(ln i(t)−ln i(0))·τ

t (4)

Fan et al. [54] set τ to 5.1 days and provide justifica-
tions for this choice in their work. As Table 1 shows,
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TABLE 3. Summary statistics for some features collected from April 5 through June 28.

we use reproduction number as a time dependent fea-
ture in the model. Therefore, for this analysis, we esti-
mate the daily reproduction number based on 10 days
of past data. In other words, to estimate R0 at day d ,
we use the following formula:

R0(d) = e
(ln i(d)−ln i(d−10))·τ

d (5)

E. GENERAL STATISTICAL INFORMATION
Table 3 shows general statistical information about some
individual features to help contextualize their values in a
better way.

DATA AND CODE AVAILABILITY
The data that support this study are available from Safe-
Graph, Mapbox, and The New York Times GitHub reposi-
tory containing information about the past number of cases.
Restrictions apply to the availability of some of these data,
which were used under license for the current study. Due to
the same reason, the raw data used in the study cannot be
released publicly and interested users should directly con-
tact the original providers to access data. However, the full
code used to implement the proposed DeepCOVIDNet model
is available on Github: https://github.com/urban-resilience-
lab/covid-county-prediction. Any future updates such as
model architectural changes, inclusion of new input features
based on new research, and results on more recent dates will
be posted on GitHub.
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