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ABSTRACT When an emerging acute infectious disease occurs, travel restrictions, one-way or two-way, are
often taken to prevent its global spread. In order to investigate the impact of two-way travel restrictions in
the global spread of infectious diseases, this paper defines a risk indicator according to the relative infection
density. Based on this risk indicator and an intervention time on two-way travel restrictions, we define an
adaptive metapopulation network. Then a susceptible-infectious-removed (SIR) metapopulation model on
this network is proposed. Themathematical analysis shows that the basic reproduction number is independent
of human mobility. Furthermore, this essay compares the effects of one-way travel restrictions and two-way
travel restrictions on the global spread of infectious diseases. It is shown that the adaptive metapopulation
network under two-way travel restrictions can effectively suppress the global spread of infectious diseases.
We also obtain a threshold of risk indicator to prevent the global spread of infectious diseases by simulations.
The earlier the intervention time on two-way travel restriction is, the better to curb the global spread of
the disease. Even if two-way travel restrictions are not implemented, controlling the mobility of infectious
persons would help prevent the global spread of the disease. This work will throw lights on the prevention
and control of the globally spreading of an emerging infectious disease.

INDEX TERMS Emerging infectious diseases, travel restrictions, adaptive metapopulation network, risk
indicator.

I. INTRODUCTION
Whether in the past or at present, infectious diseases have
always been serious threats to human life and health. In the
1340s, the black death swept across Europe, killing about
25 million Europeans, a third of the population. From
May 2015 to June 2016, the Zika virus spread to 40 coun-
tries and territories within the Americas in one year [1].
Furthermore, with the rapid development of globalization,
developed transportation makes long-distance travel more
and more convenient. However, the mobility of infectious
individuals facilitates the global spread of infectious dis-
eases. As of August 9, 2020, the coronavirus disease 2019
(COVID-19) has spread over 215 countries and territories,
infected more than 19 million people and caused more than
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720,000 deaths. The outbreak of any infectious diseases has
a significant impact on humans, either physically, mentally,
or economically. Modeling and controlling the global spread
of infectious diseases has always been the focus of researches.
One of the major models to study the global spread of
infectious diseases is a metapopulation network model. For
a metapopulation network, each node (subpopulations) rep-
resent a country, a city or a town, and individuals in each
subpopulation are well-mixed. The mobility of individuals
between two connected subpopulations forms the link of the
network.

Colizza and Vespignani built heterogeneous mean-field
models to describe the transmission of diseases on hetero-
geneous metapopulation networks under two kinds of mobil-
ity patterns: traffic dependent mobility rate and population
dependent mobility rate [2]. Their work lays a foundation
for future researches on metapopulation networks. From the
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point of view of network structure, Cao et al. studied the
rendezvous effects on bipartite metapopulation network and
found that rendezvous effects made for the transmission of
infectious diseases [3]; Liu et al. investigated time-varying
metapopulation networks, which slowed down the spread
of infectious diseases [4]; Mata et al. studied local sub-
population structure on metapopulation networks, that is,
individuals within a subpopulation were not well-mixed but
within a social network [5]; we defined a second-neighbor
network (SNN) and investigated the global spread of infec-
tious disease on a metapopulation network coupled with its
SNN [6]. In order to avoid being infected, individuals may
respond to infectious diseases. Sandro et al. discovered that
the adaptive behavior of individuals contributed to the global
spreading of diseases [7]. Similar results were obtained in [8].
These two works are based on the same assumption that
the higher the relative density of infectious individuals at
the destination subpopulation is, the less likely the individ-
uals will travel. In recent years, with the development of
big data technology, more and more fine-grained data can
be obtained. The metapopulation network model based on
these data has achieved great success. Panigutti et al. studied
recurrent mobility patterns on metapopulaion networks using
census data and mobile phone data [9]. Pei et al. forecast the
spread of influenza in the United States using a metapop-
ulation model [10]. Chinazzi et al. used the Global Epi-
demic andMobility Model (GLEAM) to forecast the effect of
travel limitations on the national and international spread of
COVID-19 [11].

When an emerging acute infectious disease occurs, in order
to prevent its global spread, each subpopulation (maybe a
country, a city, or a town) will assess the risk of disease
invasion and timely prevent and control it. One way to pre-
vent the global spread of infectious diseases is to restrict
travel, which is a problem of broken links in metapopulation
networks. There are two main types of travel restrictions:
two-way travel restrictions and one-way travel restrictions.
Two-way travel restrictions refer to cutting off the links
between the connected subpopulations, with no individuals
moving between them. One-way travel restrictions include
two types. One is to prevent individuals in a subpopulation
from moving into its neighbor subpopulations. The other
is to prevent the move-in from individuals in its neighbor
subpopulation. Travel restrictions between a subpopulation
and its neighbor subpopulations may be on some neighbor
subpopulations or on all neighbor subpopulations. City (or
country) lockdown is a two-way travel restriction on all
neighbor subpopulations. During COVID-19, the munici-
pal government of Wuhan decided to lock down the city
on January 23; nation-wide lockdown was implemented on
March 10, in Italy; subsequently, Spain, the Czech Republic,
France, Belgium announced the nation-wide lockdown.

Until now, the majority of research on metapopulation
network models have been devoted to the effect of different
network structures, safety-driven one-way travel restrictions,
and transmission prediction. Little work has been done on

two-way travel restrictions. This paper focuses on the prob-
lem of two-way travel restrictions on all neighbor subpop-
ulations, and puts forward a susceptible-infectious-removed
(SIR) metapopulation model to study the global transmission
of an emerging infectious disease. Using the relative density
of the infectious, we define a risk indicator ρ (ρ ∈ [0, 1])
that divides all subpopulations into three categories: risk-
free, low-risk, and high-risk. For a subpopulation, if there are
no infectious persons, it is a risk-free subpopulation. If the
number of infectious persons is larger than 0, and the relative
density of infectious persons in the subpopulation is lower
than ρ, then the subpopulation is a low-risk subpopulation.
If the relative density of infectious persons in the subpopu-
lation is no less than ρ, it is a high-risk subpopulation. Since
the relative infection density of in a subpopulation varies over
time, the risk level of the subpopulation varies over time.
Let tρ (tρ ≥ 0) be the minimal time when a subpopulation
goes from low risk to high risk, and T0 (T0 ≥ 0) be the
intervention time on two-way travel restriction. We consider
that T0 for each subpopulation is the same and that it is
independent of the risk level of subpopulations. So the rela-
tionship between T0 and tρ is uncertain. That is, T0 < tρ ,
T0 > tρ and T0 = tρ are all possible. Fig. 1 shows the case
of T0 > tρ . Based on the risk indicator ρ and the intervention
time on two-way travel restriction T0, we define an adaptive
metapopulation network (see Fig. 2). An adaptive metapop-
ulation network is a metapopulation network, whose links
will be broken if one of the two connected subpopulations
is high-risk after T0, and then will be reconnected when the
high-risk subpopulation becomes low-risk after T0. Note that
links broken and reconnected on metapopulation networks
refer to the link weights, not the underlying network. The
adaptive metapopulation network is equivalent to two-way
travel restrictions on all neighbor subpopulations. Results
show that adaptive metapopulation networks can effectively
curb the global spread of infectious diseases.

FIGURE 1. The schematic of the intervention time on two-way travel
restriction T0. The red dashed line is the risk indicator. The blue line is the
time series of the relative infection density of subpopulation i ,
i.e., Ii (t)/Ni (t). The shaded green area indicates the start and end time of
travel restrictions implemented on subpopulation i . tρ is the minimal
time when the subpopulation goes from low risk to high risk.
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FIGURE 2. The schematic depiction of an adaptive metapopulation network. Blue circles represent susceptible individuals, red triangles
represent infectious individuals, and a green pentagram represents a removed individual. The dashed lines mean that there is no mobility
of individuals between the two connected subpopulation, which is equivalent to broken links due to two-way travel restriction. The time
t ≥ T0.

The paper is organized as follows. In Sec. II, according to
the definition of adaptive metapopulation network, an SIR
metapopulation model is built. We make a mathematical
analysis on this model and calculate the basic reproduction
number and final size in Sec. III. In Sec. IV, we simulate
the spread of an SIR infectious disease on adaptive metapop-
ulation networks. Conclusions and discussion are given
in Sec. V.

II. ADAPTIVE METAPOPULATION NETWORK MODELING
In order to investigate the global transmission of an SIR
infectious disease under two-way travel restriction on all
neighbor subpopulations, we consider a connected adaptive
metapopulation network with n (n > 1) nodes, and label
its nodes with the elements in a set V = {1, 2, . . . , n}. The
adjacency matrix A = (aij)n×n of underlying network is a
matrix with entries

aij =

{
1, if i is adjacent to j and i 6= j,
0, otherwise.

Individuals in each subpopulation are divided into three types,
susceptible (S), infectious (I) and removed (R). Removed
individuals represent those who have recovered, or died. In an
unit time, the susceptible may be infected by the infectious at
the transmission rate β and become infectious. And an infec-
tious individual is removed (recovered or died) at removed
rate γ . For subpopulation i, Si, Ii and Ri are the numbers
of susceptible, infectious, removed individuals, respectively.
Ni is the number of individuals andNi = Si+Ii+Ri. Subpopu-
lations are also divided into four types according to the states
of individuals within subpopulations. For subpopulation i,

if there are only susceptible individuals, i.e., Si > 0,
Ii = 0, and Ri = 0, it is called risk-free susceptible
subpopulation (FSS); if the number of infectious individuals
equals 0, and the number of removed individuals is larger
than 0, i.e., Ii = 0, and Ri > 0, it is called a risk-free
recovery subpopulation (FRS); if the number of the infectious
is greater than 0, and the relative density of the infectious is
no less than ρ i.e., Ii > 0, and Ii/Ni ≥ ρ, it is called high-risk
infectious subpopulation (HIS); if Ii > 0, and Ii/Ni < ρ,
it is called low-risk infectious subpopulation (LIS). HIS and
LIS are collectively referred to as infectious subpopulations
(IS). Note that the removed individuals in a FRS may either
be removed from an infectious individual internally, or travel
from neighbor subpopulations.

Assuming that individuals travel randomly, we build an
ordinary differential equation model as follows

S ′i = −β
SiIi
Ni
− δi(t; ρ,T0)Si

+

n∑
j=1

δj(t; ρ,T0)ajiwji(t; ρ,T0)Sj, (1a)

I ′i = β
SiIi
Ni
− γ Ii − δi(t; ρ,T0)Ii

+

n∑
j=1

δj(t; ρ,T0)ajiwji(t; ρ,T0)Ij, (1b)

R′i = γ Ii − δi(t; ρ,T0)Ri

+

n∑
j=1

δj(t; ρ,T0)ajiwji(t; ρ,T0)Rj, i ∈ V. (1c)
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Here T0 is the intervention time on two-way travel restrictions
(shown in Fig. 1); δi(t; ρ,T0) represents mobility rate, which
depends on the risk indicator ρ and the intervention time for
travel restrictions T0; square matrixW = (wij(t; ρ,T0))n×n is
link weights of the adaptive metapopulation network, which
also depends on ρ and T0. Letting �ρ be the set of low-risk
and risk-free subpopulations, i.e., �ρ = {i ∈ V | Ii/Ni < ρ},
we have

δi(t; ρ,T0) =

{
δ, if i ∈ �ρ or t < T0,
0, otherwise,

and

wij(t; ρ,T0) =


1
ki
, if j ∈ Vi and t < T0,

1
k i↔m , if j ∈ �i↔m

ρ and t ≥ T0,

0, otherwise,

where Vi = {j ∈ V | aij = 1}, ki = |Vi|, �
i↔m
ρ = {j ∈ �ρ |

aij = 1, i ∈ �ρ}, k i↔m
= |�i↔m

ρ |.
Consider two extreme cases: ρ = 0 and ρ = 1. ρ = 0 is

equivalent to the case where the number of infectious individ-
uals is zero. That is, whenever an infectious person is present
in a subpopulation, it is high-risk. Ii < 0 is unreasonable.
Thus, when ρ = 0, there are

δi(t; ρ,T0) =

{
δ, if Ii = 0 or t < T0,
0, otherwise,

and

�i↔m
0 = {j ∈ �0 | aij = 1, i ∈ �0}.

Obviously, Ii < Ni for any i ∈ V at any time, when ρ = 1,

δi(t; ρ,T0) ≡ δ,

and

�i↔m
1 = Vi.

In this case, all IS are low-risk, and the two-way travel
restriction makes no sense.

From the perspective of controlling and preventing the
global spread of an emerging infectious disease, an adaptive
metapopulation network is equivalent to a control strategy
which limits the two-way travel (abbreviated as In-Out).
Besides, in order to prevent and control the global spread
of an emerging infectious disease, there are two other major
one-way travel restrictions. One limits the move-out of indi-
viduals in IS (abbreviated as Out). The other prevents indi-
viduals in the neighbor subpopulations of IS from traveling
to IS (abbreviated as In). Travel restrictions In andOut only
cut off the one-way movement, while traveling restriction
In-Out the two-way movement. City (or country) lockdown
is equivalent to travel restriction In-Out.
For travel restriction Out, mobility rates and link weights

behave as

δi(t; ρ,T0) =

{
δ, if i ∈ �ρ or t < T0,
0, otherwise,

and

wij(t; ρ,T0) =


1
ki
, if j ∈ Vi, and i ∈ �ρ or t < T0,

0, otherwise.

With regard to travel restriction In, mobility rates and link
weights become

δi(t; ρ,T0) ≡ δ,

and

wij(t; ρ,T0) =


1
ki
, if j ∈ Vi and t < T0,

1
k i→m , if j ∈ �i→m

ρ and t ≥ T0,

0, otherwise,

where �i→m
ρ = {j ∈ �ρ | aij = 1}, k i→m

= |�i→m
ρ |.

III. MATHEMATICAL ANALYSIS
In this section, we will calculate the equilibria, the basic
reproduction number and the final size of model (1).

A. EQUILIBRIA
On the one hand, summing (1a)-(1c) over i, we obtain

S ′ = −β
n∑
i=1

SiIi
Ni
, (2a)

I ′ = β
n∑
i=1

SiIi
Ni
− γ I , (2b)

R′ = γ I , (2c)

where X =
∑n

i=1 Xi, X ∈ {S, I ,R}. Letting the right side of
(2) equal to 0, we have

S ′ = −β
n∑
i=1

SiIi
Ni
= 0, (3a)

I ′ = β
n∑
i=1

SiIi
Ni
− γ I = 0, (3b)

R′ = γ I = 0, (3c)

Since for any i ∈ V, Ii = 0, according to (3c), Ii = 0 for any
i ∈ V at equilibria.
On the other hand, summing (1a)-(1c) gives

N ′i = −δi(t; ρ,T0)Ni

+

n∑
j=1

δj(t; ρ,T0)ajiwji(t; ρ,T0)Nj, i ∈ V. (4)

Define D = (dij)n×n with entries

dij = δi(t; ρ,T0)aijwij(t; ρ,T0).

With N = [N1, . . . ,Nn]T and 3 = [δ1(t; ρ,T0), . . . , δn
(t; ρ,T0)]T , (4) can be rewritten as

N′ = MN, (5)
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where M = DT − diag(3), and diag(3) is a n × n matrix,
whose diagonal elements forming the vector 3.
Since for any i ∈ V, Ii = 0 at equilibria, δi(t; ρ,T0) ≡ δ,

dij = δaij/ki, and 3 = [δ, . . . , δ]T . Note that each column
sum of −M is zero, that is, 1Tn (−M ) = 0, where the 1 × n
vector 1Tn = [1, . . . , 1]. Thus, matrix −M is a singular
M-matrix. From (5), letting N =

∑n
i=1 Ni, we obtain that

the total population N is constant (because N ′ = 0). Subject
to this constraint, by Theorem 3.3 in [13], we show that (5)
has a unique positive equilibrium Ni = N ∗i , which is globally
asymptotically stable.

Accordingly, for any i ∈ V, Ii = 0 and Si + Ri = N ∗i at
equilibria. If for all i, Ri = 0, the equilibrium is a disease-free
equilibrium; otherwise we call the equilibrium as epidemic
equilibrium.

Next, we calculate the basic reproduction number.

B. THE BASIC REPRODUCTION NUMBER
We calculate the basic reproduction number R0 following
the approach of van den Driessche and Watmough [14]. R0
indicates the number of people infected by an infectious indi-
vidual during his average period of illness at the beginning of
the disease, when all are susceptible. Obviously, there exists
a disease-free equilibrium E0

= (N ∗1 , . . . ,N
∗
n , 0, . . . , 0︸ ︷︷ ︸

2n

)

for (1). According to (1), the rate of appearance of new
infections F and the rate of transfer of individuals out of the
compartments V in the E0 are given by

F = diag(β)

and

V = diag(γ )+ diag(3)− DT ,

here F and V are n × n matrices. Using the next-generation
matrix theory [14], the basic reproduction number is R0 =
ρ(FV−1), where ρ is the spectral radius of the matrix FV−1.
In the following, we calculate R0. Note that the sum of

each column of matrix V is γ and the matrix V is column
diagonally dominant. So V is an irreducible nonsingular
M-matrix. Thus V−1 is a positive matrix.
Matrix V has column sum γ , i.e., 1Tn V = γ1Tn . Hence

1Tn V
−1
= 1/γ1Tn . Therefore, 1

T
n FV

−1
= β/γ1Tn , that

is, matrix FV−1 has column sum β/γ . By Theorem 1.1 in
chapter 2 in [15], the basic reproduction number is

R0 =
β

γ
.

Obviously,R0 depends only on disease parametersβ and γ ,
rather than on mobility rate and network structure. What is
more, R0 equals to the basic reproduction number Ri0 for each
subpopulation i when there is no travel. This is because that
transmission rate β and removed rate γ for each subpopula-
tion i keep the same.

C. FINAL SIZE
For each subpopulation i ∈ V, given initial conditions
Ni = N ∗i , and without consideration of travel restriction,
dividing (2a) by (2c), we have

dS
dR
= −

β

γ

n∑
i=1

SiIi
N ∗i I

. (6)

On the one hand,

dS
dR
≤ −

β

γ

1
Nmax

n∑
i=1

SiIi
I

< −
β

γ

1
Nmax S, (7)

where Nmax is the maximum of N ∗i , i ∈ V. Dividing the right
side of (7) to the left side, multiplying dR to the right side, and
integrating both sides we obtain

R(∞) <
Nmax

R0
(lnS(0)− lnS(∞)). (8)

Here R(∞) is the final size of epidemic, S(0) is the initial
susceptible individuals in the metapopulation network, S(∞)
gives the number of susceptible individuals who escape the
epidemic, and S(∞)+ R(∞) = N . On the other hand,

n∑
i=1

SiIi
N ∗i I
≤

1
Nmin

n∑
i=1

SiIi
I
<

1
Nmin S,

so
dS
dR

> −
β

γ

1
Nmin S. (9)

Here Nmin is the minimum of N ∗i , i ∈ V. Similar to (7),
we have

R(∞) >
Nmin

R0
(lnS(0)− lnS(∞)). (10)

Therefore, without consideration of travel restriction,
the final size satisfies

Nmin

R0
(lnS(0)− lnS(∞)) < R(∞)

<
Nmax

R0
(lnS(0)− lnS(∞)). (11)

When ρ = 0, and T0 = 0, infectious disease will
outbreak only in the initial infectious subpopulation, not
globally. Labeling the initial infectious subpopulation by i0,
we have

S ′i0 = −β
Si0 Ii0
N ∗i0

, (12a)

I ′i0 = β
Si0 Ii0
N ∗i0
− γ Ii0 , (12b)

R′i0 = γ Ii0 . (12c)

With regard to other subpopulations in the adaptive metapop-
ulation network, there is no infection, just the susceptible’
mobility among susceptible subpopulations. So the final size
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FIGURE 3. The time evolution of the number of cumulative infectious individuals and subpopulations on a poisson metapopulation network. Control
strategies are In-Out (red dashed lines), Out (green dot-dashed lines), In (blue dot lines), and None (black solid lines), individually. The panel a shows
the number of cumulative infectious individuals evolving over time, while the panel b is the number of cumulative infectious subpopulations. Parameter
T0 = 0.

of whole network equals to the final size of infectious sub-
population i0. Dividing (12c) by (12a) we have

dRi0 = −
γN ∗i0
β

dSi0
Si0

.

Integrating both sides we obtain

R(∞) = Ri0 (∞) =
N ∗i0
R0

(lnSi0 (0)− lnSi0 (∞)). (13)

Here Si0 (0) and Si0 (∞) are the numbers of initial susceptible
individuals and susceptible individuals who escape the dis-
ease in subpopulation i0, respectively.

It is difficult to compare Eqs. (11) and (13) in theory. In the
next section, we will simulate these two cases and compare
their final sizes.

IV. MONTE CARLO SIMULATION RESULTS
In this section, we simulate an SIR infectious disease on two
kinds of adaptive metapopulation networks with the same
average degree 〈k〉 = 6, and average population N = 1000.
The generation ofmetapopulation networks is followingMol-
loy and Reed algorithm [17]. Parameters β = 0.4, γ = 0.2
and δ = 0.1. For subpopulation i, its initial population is

N 0
i =

ki
〈k〉

N ,

where ki is the degree of subpopulation i. All values in
the figures of this section are obtained by averaging over
100 stochastic realizations.

A. THE COMPARISON OF ONE-WAY AND TWO-WAY
TRAVEL RESTRICTIONS
In this subsection, we compare the impact of three kinds of
travel restrictions: In-Out, In and Out, on the global spread
of infectious diseases.

As shown in Figs. 3 and 4, we simulate an SIR transmis-
sion process on two kinds of metapopulation network with
500 subpopulations under three kinds of travel restrictions.
Fig. 3 is the case on a poisson metapopulation network, and
Fig. 4 is the case on a power-law metapopulation network.
In these two figures, the legend None, a reference, shows
the case without any travel restriction or the case where
ρ = 1. For travel restrictions In-Out, In and Out, ρ = 0.
The left panels show the number of cumulative infectious
individuals evolving over time, while the right panels are
the number of cumulative infectious subpopulations. There
are five infectious individuals in a subpopulation with the
maximum degree in the initial time.

Among three travel restrictions, In is the worst, because
it accelerates the global spread of infectious diseases, not
only the speed of global transmission but also the final size.
Although the number of cumulative infectious subpopula-
tions for travel restrictions In-Out and Out are both one,
the situation is quite different. Travel restriction In-Out can
effectively curb the global spread of infectious diseases, and
the disease will not spread to other individuals in other
subpopulations. The final size of In-Out is less than 1%
of that of None. In the short term, both travel restrictions
are of benefit to preventing the global spread of infectious
diseases. However, in the long term, the infectious disease
will globally spread in the sense of the number of cumulative
infectious individuals under the case of travel restrictionOut

153430 VOLUME 8, 2020



S. Feng, Z. Jin: Infectious Diseases Spreading on an Adaptive Metapopulation Network

FIGURE 4. The time evolution of the number of cumulative infectious individuals and subpopulations on a power-law metapopulation network. Others
are similar to Fig. 3.

FIGURE 5. The time evolution of the number of cumulative infectious individuals and the population of the subpopulation with the maximum
degree under restriction Out on metapopulation networks. They are illustrated by red dashed lines and blue solid lines, individually. The left panel
shows the case of poisson network, while the right panel is of power-law degree distribution.

(shown as red dashed lines in Fig. 5). Nevertheless, the final
size ofOut is about 60% lower than that of None. Therefore,
preventing individuals in the infectious subpopulations from
entering their neighbors is also a relatively effective preven-
tion and control measure of global transmission.

Why is only controlling one-way movement not the best
measure of suppressing the global spread of disease? This is
due to the fact that the mobility between subpopulations with
infectious individuals and without is asymmetric. In theory,
for the subpopulation with the maximum degree (labeled
by kmax), when there exists(exist) infectious individual(s),
the dynamical equations for its population are

None : N ′kmax = −δNkmax +
n∑
j=1

δaj,kmaxwj,kmaxNj, (14)

In : N ′kmax = −δNkmax , (15)

Out : N ′kmax =
n∑
j=1

δj(t; ρ,T0)aj,kmaxwj,kmax (t; ρ,T0)Nj,

(16)

In−Out : N ′kmax = 0, (17)

respectively. Obviously, the difference between In and
None is that there is no any individuals moving from the
neighbor subpolulation(s) of subpolulation kmax to itself.
However, In does not restrict the mobility of infectious
individuals, which leads to more susceptible subpopula-
tions being infected. Although travel restrictions In-Out
and Out can effectively prevent infectious individuals in
infectious subpopulations from entering to their neighbor
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FIGURE 6. The time evolution of Nkmax . Three curves are None (blue dot line), In-Out (red dashed line), and In (green dot-dashed line), individually.
The left panel shows the case of poisson network, while the right panel is of power-law degree distribution.

subpopulations, they are different. For In-Out, there is no any
individuals moving between subpolulation kmax and its neigh-
bor subpolulation(s). While for Out, susceptible individuals
go from the neighbor subpolulation(s) of subpolulation kmax
to itself until Ikmax ≡ 0, which leads to more susceptible indi-
viduals being infected in subpopulation kmax . Travel restric-
tionsOut and In break the balance of the mobility. Under the
case of travel restriction Out, for subpopulation kmax , sus-
ceptible individuals from its neighbor subpopulations travel
to it; susceptible individuals from its second neighbor sub-
population(s) travel to its neighbor subpopulations first and
then travel to subpopulation kmax ; susceptible individuals in
the third neighbor subpopulation(s) will transfer the second
neighbor(s) and the neighbors will eventually enter subpopu-
lation kmax ; and so on, in the end, the majority of individuals
in the network will move into subpopulation kmax , causing
widespread infection. But this process takes a long time.
When Ikmax = 0, individuals in subpopulation kmax travel
to other subpopulations. With regard to travel restriction In,
the continuous move-out of individuals from infectious sub-
population results in a decreasing number of individuals until
there are no infectious individuals. In Figs. 5 and 6, we plot
the time series of Nkmax . The simulation results are consistent
with the theoretical analysis.

From what has been discussed above, adaptive metapopu-
lation networks can prevent effectively the global transmis-
sion of infectious diseases.

B. THE THRESHOLD OF RISK INDICATOR
The mobility of individuals is sometimes necessary to pro-
mote economic and cultural globalization. Moreover, human
behaviour is often out of control. So ρ = 0 is too ideal.
However, ρ = 1 is equivalent to the case of no travel
restriction. It is more appropriate that ρ ∈ (0, 1). What is
the threshold of risk indicator ρ for preventing the global

spread of disease? As illustrated in Fig. 7, we simulate the
final size and the number of cumulative infectious subpopu-
lations under different ρ. We consider two kinds of adaptive
metapoplation networks with 1000 subpopulations: poisson
degree distribution (red circles) and power-law degree dis-
tribution (blue triangles). In the initial time, there are five
infectious individuals in a randomly chosen subpopulation
with a minimal degree.

For these two kinds of networks, the infectious disease
spread globally when ρ ≥ 0.004. In the case of ρ < 0.004,
there are little infectious individuals moving from the ini-
tial infectious subpopulation to its neighbors before being
removed. When ρ ≥ 0.004, as ρ increases, the number of
move-out of infectious individuals in infectious subpopula-
tion(s) increases. So the number of infectious subpopulations
goes up, and the final size increases. For the same ρ, the speed
of global transmission in power-law networks is faster than
that in poisson networks. This is due to the heterogeneity of
the network structure. That is to say, the heterogeneity of the
network structure promotes the global spread of infectious
diseases.

C. THE EFFECT OF INTERVENTION TIME
In real life, the response to an emerging infectious disease
tends to lag. This implies a delay between the onset of disease
transmission and the onset of two-way travel restrictions.
Fig. 8 displays the effect of intervention time for two-way
travel restrictions T0 on both the final size and the number
of cumulative infectious subpopulations under two kinds of
metapopulation networks.

Obviously, the earlier T0, the better to prevent the global
spread of the infectious diseases. The first ten days since the
onset of infectious disease are of great importance. The speed
of global transmission is relatively slow, and implementing
two-way travel restrictions during this period will be effective
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FIGURE 7. The final size and the number of cumulative infectious subpopulations under different ρ. Figures are under two kinds of different adaptive
metapoplation networks, red circles for poisson degree distribution and blue triangles for power-law degree distribution. The left panel shows the final
size versus ρ, while the right panel is the number of cumulative infectious subpopulations. Parameter T0 = 0.

FIGURE 8. The effect of intervention time T0 on final size and cumulative infectious subpopulations. Parameter ρ = 0.002.

in preventing the global spread of the disease. When T0 ≥ 60,
the existence of adaptive metapopulation network makes no
sense, i.e., two-way travel restrictions do not work. Similar
to Fig. 7, for the same T0, final size and the number of
cumulative infectious subpopulations of power-law networks
are larger than those of poisson networks. This also indicates
that the heterogeneity of the network structure promotes the
global spread of infectious diseases.

V. CONCLUSION AND DISCUSSION
Adaptive metapopulation networks help suppress the global
transmission of an acute emerging infectious disease. This
paper defined a risk indicator ρ according to the relative
infection density and divided subpopulations into three types:
risk-free, low-risk, and high-risk. Based on the risk indicator

and intervention time for two-way travel restrictions T0,
this essay defined an adaptive metapopulation network and
proposed an SIR metapopulation model on this network
to investigate the issue of two-way travel restrictions on
all neighbor subpopulations. Then this paper obtained the
equilibria, at which there are no infectious individuals; the
basic reproduction number, which is independent of mobility
rate; and the final size under special cases. Finally, this
paper presented Monte Carlo simulation results on two kinds
of metapopulation networks with different degree distribu-
tions but the same average degree. Comparing two-way
travel restriction and two kinds of one-way travel restric-
tions, we find that controlling the movement of infectious
individuals helps prevent the global spread of infectious
diseases. The conclusion is obvious. However, the mobility
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of susceptible individuals also makes for the transmission of
disease. Therefore, adaptive metapopulation networks under
two-way travel restriction help prevent the global spread of
diseases. Furthermore, we obtained that the threshold of risk
indicator ρ is 0.004. When ρ ≥ 0.004, infectious diseases
will spread globally.What is more, the earlier the intervention
time for two-way travel restriction T0 is, the better to prevent
the disease from spreading globally. It is better to implement
two-way travel restrictions during the first ten days since
the onset of the disease. When T0 ≥ 60, two-way travel
restriction makes no sense. In addition, simulation results
show that the heterogeneity of the network structure promotes
the global spread of infectious diseases.

Our results will provide some useful insights on the global
transmission prevention and control of an emerging acute
infectious disease. Timely two-way travel restrictions (or
city lockdown) help suppress the global spread of the epi-
demic. However, for lockdown subpopulation, controlling
the spread of disease remains a major challenge. Adequate
medical resources are needed to quarantine close contacts
with the infectious, reduce the time that takes for infectious
persons to be diagnosed, and explore effective treatments.
Even if two-way travel restriction can not be implemented,
the mobility of infectious individuals should be restricted.
In order to prevent the invasion of infectious individuals,
there are a series of control measures. Persons entering the
subpopulation shall be quarantined. Individuals leaving the
subpopulation need to provide a health certificate and register
their origin and destination information. In addition, it is
necessary to reduce the number of flights. Within an infec-
tious subpopulation, control measures, including isolating
the infectious, quarantining close contacts, keeping social
distance, and so on, should be taken tomitigate infections. For
an emerging infectious disease, there have been many studies
on control measures within subpopulations [18]–[20]. In this
article, we mainly focused on the prevention and control of
the global spread of the epidemic, so we did not consider the
control measures within a subpopulation.

Although we have investigated the issue of two-way travel
restriction on all neighbor subpopulations, there are still some
problems in this paper to be further solved.
• Travel restrictions we considered is on all neighbor
subpopulations. Because of subpopulation differences,
travel restrictions might be only on some neighbor sub-
populations.

• With regard to the intervention time on travel restric-
tions, we consider it is the same for all subpopulations.
In fact, the disease onset time of each subpopulation is
often different, and the intervention time may vary. So
intervention time for each subpopulationmay be the sum
of its disease onset time and a delay.

• In this paper, we only focused on the effect of two-way
travel restrictions on the global spread of infectious dis-
eases, ignoring its effect on each subpopulation. In the
future, we will consider both the global and local impact
of prevention and control measures. Besides, we will

study the global and local impact of travel restrictions,
keeping social distance, isolating the infectious and
quarantining close contacts at the same time on global
transmission prevention and control.
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