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Abstract

Motivation: Structure-conditioned information statistics have proven useful to predict and visualize tRNA Class-
Informative Features (CIFs) and their evolutionary divergences. Although permutation P-values can quantify the sig-
nificance of CIF divergences between two taxa, their naive Monte Carlo approximation is slow and inaccurate. The
Peaks-over-Threshold approach of Knijnenburg et al. (2009) promises improvements to both speed and accuracy of
permutation P-values, but has no publicly available API.

Results: We present tRNA Structure–Function Mapper (tSFM) v1.0, an open-source, multi-threaded application that
efficiently computes, visualizes and assesses significance of single- and paired-site CIFs and their evolutionary diver-
gences for any RNA, protein, gene or genomic element sequence family. Multiple estimators of permutation P-values
for CIF evolutionary divergences are provided along with confidence intervals. tSFM is implemented in Python 3 with
compiled C extensions and is freely available through GitHub (https://github.com/tlawrence3/tSFM) and PyPI.

Availability and implementation: The data underlying this article are available on GitHub at https://github.com/
tlawrence3/tSFM.

Contact: tlawrence3@ucmerced.edu or dardell@ucmerced.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

In bioinformatics, a structure–function map predicts functional prop-
erties of biological macromolecules from their structural features. A
transfer RNA (tRNA) structure–function map predicts tRNA identity
elements that promote functional interactions with specific (cognate)
tRNA-binding proteins or that diminish non-cognate interactions

(Collins-Hed and Ardell, 2019; Giegé et al., 2012). Earlier, we devel-
oped bioinformatic predictors of tRNA identity elements called Class-
Informative Features (CIFs), measured in bits of structure-conditioned
functional information and visualized in stacked bar-graphs called

Function Logos (Freyhult et al., 2006). Structure-conditioned func-
tional information reverses the conditioning inherent in Sequence
Logos (Gorodkin et al., 1997; Schneider and Stephens, 1990). Later,
we introduced Information Difference (ID) and Kullback-Leibler

Divergence (KLD) logos to quantify and visualize evolutionary diver-
gences between two taxa in the total information of tRNA CIFs and
their functional associations respectively (Freyhult et al., 2007). These
statistics quantify complementary and concurrent modes of evolution

of CIFs: ID quantifies gains and losses of functional information by
features while KLD quantifies changes in their functional associations.

In Kelly et al. (2020), we introduced version 0.9 of the tRNA
Structure–Function Mapper (tSFM), a tool to compute CIF statistics in
any RNA, protein or gene/genetic element family, with several improve-
ments over previously published methods, including prediction and
visualization of structurally paired-site CIFs in non-coding RNA fami-

lies, improved small-sample bias-correction and accuracy with the
Nemenman-Shafee-Bialek (NSB) Bayesian entropy estimator
(Nemenman et al., 2002), quantification of the significance of CIFs
with a Monte Carlo permutation P-value-based approach (Hollander et
al., 2013), and methods to correct for multiple testing by control of the
Family-wise Error Rate (FWER) or False Discovery Rate (FDR)
(Benjamini and Hochberg, 1995; Strimmer, 2008). However, tSFM
v0.9 did not provide a means to compute the statistical significance of

ID and KLD evolutionary divergence metrics for CIFs. In initial work,
we found that Monte Carlo approximations to permutation P-values
for CIF divergences were slow and inaccurate for large divergence val-
ues, which permutation replicates never exceed, resulting in a constant

P-value upper bound estimates that depend only on the Monte Carlo
sample size. Although the permutation P-value ‘Peaks-over-Threshhold’
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(PoT) tail-approximation approach described in Knijnenburg et al.
(2009) is a promising remedy for this problem, we could not find an ac-
cessible and free implementation. Furthermore, their algorithm does
not provide confidence intervals for P-values. We re-implemented their
algorithm with modifications in tSFM v.1.0 resulting in improvements
to both speed and accuracy of permutation-based P-value calculations
as detailed below and in the Supplementary Materials.

tSFM v1.0 is written in Python 3 with compiled C extensions
and released under GNU Lesser General Public License v3.0. Its in-
put is any number of structurally co-aligned non-coding RNA, gene/
DNA element or protein sequences, partitioned into separate
FASTA or ClustalW files by taxon and functional class. An addition-
al optional input file specifies a consensus secondary structure anno-
tation for input RNA gene alignments in one of several standard
formats. The output of tSFM includes one or more function logos in
EPS format and one or more tables of statistics about CIFs, as
detailed in the documentation. tSFM implements the exact entropy
bias calculation of Schneider et al. (1986) in a C extension with
Cython and the NSB estimator using mpmath. For KLD and ID con-
trasts of features between any pair of taxa, tSFM implements
Algorithm APPROXIMATE in Supplementary Material, a modified ver-
sion of the algorithm of Knijnenburg et al. (2009). Maximum

Likelihood estimates of the shape and scale parameters n̂; r̂ of the
Generalized Pareto Distribution (GPD) function are computed by
the genpareto.fit routine of SciPy v1.5.4 using keyword option
floc¼0. The Anderson-Darling Test is computed with a modified
version of scikit-gof v0.1.3 migrated into the tSFM installation. We
computed P-values from the distribution function, falling back on
other P-value estimators in rare cases if the distribution function
returned 0. We found that transforming data and permutation repli-
cates to the fifth power increased the number of features with non-
zero estimates, confirming the recommendations and findings of
Knijnenburg et al. (2009). We abandoned testing convergence of
PGPD as described in Knijnenburg et al. (2009, 2011), opting instead
to calculate confidence intervals to quantify uncertainty by the
‘boundary method’ described in Glotzer et al. (2017); Campbell et
al. (2016) and in Supplementary Material (Algorithm BOUNDARY).

tSFM provides options to estimate P-values exclusively by the
naive Monte Carlo method using pseudo-counts (P0ECDF), by the
Monte Carlo method terminating after S¼10 exceedances (PECDF)
or by algorithm APPROXIMATE, with T¼500 ‘target’ (minimum
number of) permutations, and a maximum number of permutations
per feature of R¼10 000 (PGPD). Table 1 shows that for this data,
terminating after 10 exceedances reduced run time by 37% for
KLD and by 80% for ID. The full algorithm including the GPD-
based tail approximation reduced run time for both statistics more
than ten-fold. As shown in Figure 1, P-value estimates by the three
algorithms show marked stability for smaller divergence signals,
while the full algorithm vastly improves the obtainable range of P-
value estimates for larger signals. A small fraction of features with
small-to-medium sample sizes and larger divergences showed in-
stability in PGPD estimates, and appear with atypically large or
small surprisals and larger confidence intervals in Supplementary
Figures S1 and S2.
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al. (2020) between human tRNAs (431 genes) and the L. enriettii

clade (2 genomes; 160 genes) computed on a Linux compute node
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Statistic Estimator Run time (h)

KLD P0ECDF 7.72

PECDF 4.86

PGPD 0.68

ID P0ECDF 48.96

PECDF 9.57

PGPD 3.19

Fig. 1. Slopegraph of three different P-value estimate algorithms for KLD CIF diver-

gences of L.enriettii clade tRNA genes (n¼160 genes) against human tRNA genes

(n¼ 431 genes). P0ECDF is the naive Monte Carlo method with 10 000 permutations

per feature, using pseudo-counts when there are fewer than S exceedances (by de-

fault, 10). PECDF terminates after S exceedances (PECDF) or a maximum of 10 000

permutations, using pseudo-counts unless there are S exceedances. PGPD uses algo-

rithm APPROXIMATE with T¼ 500 target permutations and a maximum of 10 000

permutations. Colors show the harmonic mean of the number of sequences contain-

ing a given CIF in the two taxa. Points but not lines are jittered against overplotting.

See online for color version.
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